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Abstract

Background: Chronic Obstructive Pulmonary Disease (COPD) is an important comorbidity in patients living with
human immunodeficiency virus (HIV). Previous bacterial microbiome studies have shown increased abundance of
specific bacterium, like Tropheryma whipplei, and no overall community differences. However, the host response to
the lung microbiome is unknown in patients infected with HIV.

Methods: Two bronchial brush samples were obtained from 21 HIV-infected patients. One brush was used for bacterial
microbiome analysis using the Illumina MiSeqTM platform, while the other was used to evaluate gene expression patterns
of the host using the Affymetrix Human Gene ST 2.0 array. Weighted gene co-expression network analysis was used to
determine the relationship between the bacterial microbiome and host gene expression response.

Results: The Shannon Diversity was inversely related to only one gene expression module (p= 0.02); whereas evenness
correlated with five different modules (p≤ 0.05). After FDR correction only the Firmicutes phylum was significantly
correlated with any modules (FDR < 0.05). These modules were enriched for cilia, transcription regulation, and immune
response. Specific operational taxonomic units (OTUs), such as OTU4 (Pasteurellaceae), were able to distinguish HIV
patients with and without COPD and severe emphysema.

Conclusion: These data support the hypothesis that the bacterial microbiome in HIV lungs is associated with specific
host immune responses. Whether or not these responses are also seen in non-HIV infected individuals needs to be
addressed in future studies.
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Background
The increased susceptibility of patients infected with
human immunodeficiency virus (HIV) to lung diseases,
in particular chronic obstructive pulmonary disease
(COPD), has now been recognized in numerous
epidemiological studies [1–3]. Because cigarette smoke
exposure only partially explains this elevated risk [1], the

pathogenesis of comorbid lung disease in HIV is largely
a mystery. Investigation of the HIV lung bacterial micro-
biome using bronchoalveolar lavage fluid has suggested
a greater abundance of Tropheryma whipplei in the HIV
lung [4] and no significant impact of anti-retroviral ther-
apy on the bacterial community composition in HIV-
infected individuals [5]. However, the impact of the lung
microbiota on the pathogenesis of chronic lung diseases
such as COPD in HIV is unclear. Moreover, there is lit-
tle information whether the lung microbiome is associ-
ated with significant host responses in the lungs.
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Although characterization of bacterial community
composition in a disease state is an important first step
in uncovering the possible clinical relevance of the lung
microbiome [4, 6], the next logical step is to discover
whether or not changes in the lung microbiome induce
a host response that may be important in disease patho-
genesis. We have recently shown, using lung tissue sam-
ples from non-HIV infected individuals with COPD, that
shifts in the lung microbiome are associated with im-
portant changes in inflammatory response in these lungs
[7]. One important limitation of that study was that the
microbiome was characterized in a block of lung tissue
and as such cell-specificity could not be ascertained.
Moreover, this study did not include any patients with
HIV infection. Here, we extend these observations by
investigating the interactions between the host gene
expression response and the bacterial microbiome in
bronchial epithelial cells of small airways collected from
the same site in patients infected with HIV. The specific
aims of this study were to describe the bacterial commu-
nity composition of the HIV bronchial epithelium and to
determine whether the bacterial microbiome of the HIV
bronchial epithelium is associated with specific gene
expression signatures of the host that may reveal the
underlying pathogenesis of chronic airways disease in
HIV-infected individuals.

Methods
Patient population
All subjects provided written informed consent for the
collection of cytologic brushings for research purposes
under the UBC Providence Health Care ethics protocol
H14-03267. Subjects were recruited from patients under-
going bronchoscopy for pulmonary nodules, masses, or
pneumonia (all conditions were diagnosed radiographic-
ally by computed tomography (CT) imaging at St. Paul’s
Hospital, Vancouver, BC). Entry criteria into the study in-
cluded documented HIV-1 infection and ≥19 years of age.
All subjects performed spirometry according to the
American Thoracic Society/European Respiratory Society
guidelines [8] within three months, except for five subjects
who underwent bronchoscopy for acute infection. COPD
was defined by post-bronchodilator forced expiratory
volume in one second (FEV1)/forced vital capacity (FVC)
ratio of less than 70 %.
Patients underwent thoracic CT imaging using a 64 de-

tector CT scanner (Discovery HD 750 or a VCT, GE
Healthcare, Milwaukee, WI). A central imaging core la-
boratory (SPH CT Corelab), blinded to spirometry and
clinical data, interpreted the CT images for emphysema
based on a modified method of Kazerooni, et al. [9].
Emphysema severity was qualitatively scored according to
an established algorithm (see Additional file 1). CT scans
were also qualitatively scored for respiratory bronchiolitis

(none, trivial, mild, moderate, and severe) and bron-
chiectasis (presence or absence). Details on bronchos-
copy and specimen collection can be found in the
Additional file 1. Bronchial epithelial cells were ob-
tained from sites away from the acute infection,
masses or nodules.

Bacterial microbiome analysis
DNA was extracted using the Qiagen DNeasy Blood and
Tissue Kit (Qiagen, Toronto, Ontario) from both patient
samples and background negative environmental
controls. Total 16S load was quantified using a droplet
digital polymerase chain reaction (ddPCR) assay [10].
These background controls were used to assess whether
the bacterial community of the HIV samples were im-
pacted by the instruments and reagents used during the
extraction and PCR process. To assess the 16S load
within the samples the average 16S load from the
negative controls were subtracted from each HIV 16S
sample. Touchdown PCR [11] of the 16S rRNA gene V4
region was used to generate a DNA template for sequen-
cing. Cycle conditions for the touchdown PCR can be
found in the Additional file 1. Sequencing was per-
formed on an Illumina MiSeqTM (Illumina, Redwood
City, CA, USA) with 2 × 250 paired end-read chemistry.
The protocol established by Kozich, et al. was used for
the sequencing and subsequent data cleanup within the
program mothur (V1.34.4) [12]. After processing,
sequence cleanup, and chimera removal, a total of
3,559,398 reads remained. Data analysis was performed
in R (V3.2.0) and R studio (V0.99.441) employing the
vegan (V2.3-0) package [13, 14]. In order to adequately
perform alpha and beta diversity analysis subsampling to
the lowest total reads (3164) was performed [15]. Along
with a 97 % similarity threshold, a total of 451 different
Operational Taxonomic Units (OTUs) were identified.
Sequence data has been deposited in the NCBI sequence
read archive under the accession number SRP068430.
The corresponding metadata can be found at http://www.
ncbi.nlm.nih.gov/Traces/study/?acc=SRP068430&go=go.
Alternatively, one can use the following link http://www.
ncbi.nlm.nih.gov/Traces/study/ and search for SRP068430
to bring up the relevant information needed. The relevant
samples used for this study are BIDC1-4, BIDC7-10,
BIDC14-26 for the HIV samples and Neg1-4 for the back-
ground negative control samples.

Microarray analysis
RNA was extracted using the Qiagen RNeasy Plus
Universal Kit (Qiagen, Toronto, Ontario). 1 ug of RNA
was processed and hybridized onto the Affymetrix
Human Gene ST 2.0 array (Affymetrix Inc, Santa Clara,
USA) according to the manufacturer’s protocol at the
Hospital for Sick Children, Centre for Applied Genomics
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(Toronto, Ontario). Raw CEL files were processed and
RMA normalized in R (V3.2.0) and R studio (V0.99.441)
using a standard protocol from the oligo package
(V1.32.0) [16]. Gene symbols and names were obtained
from the hugene20sttranscriptcluster.db from biocon-
ductor [17].

Data analysis and integration
For phyla level comparisons a t-test with Bonferroni cor-
rection was applied. A random forest algorithm with
Boruta feature selection [18, 19] was used to identify any
OTUs that could be discriminative of specific clinical
traits in the patient population (e.g. smoking status,
COPD, etc.). Traits were chosen for Boruta feature
selection analysis based on whether or not their
PERMANOVA value was less than or equal to 0.1. We
determined differences in the bacterial community
composition between groups by a Bonferroni corrected
PERMANOVA [20] of ≤ 0.0125. Robustly co-expressed
sets of genes (i.e. modules) were identified in airway
expression data using a weighted gene co-expression
network analysis (WGCNA) [21, 22]. Modules eigengene
vector values were then compared to alpha diversity
measures (Shannon Diversity, OTU richness, and
evenness) and phyla measures using the WGCNA
(V1.46) R package [21, 22]. For this analysis no grouping
was performed by smoking, CD4 cell count, or viral load
status as these variables were not significantly associated
with microbiome measures. The Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID)
[23] was used to identify the most relevant pathway clus-
ters for each module that were significantly correlated to
the specific bacterial microbiome measurements. The
top 10 enrichment clusters were used as a guide to dis-
covering pathways that were most strongly associated
with each module. A false discovery rate (FDR) of less
than 0.05 was considered significant. In addition to this
module comparison versus microbiome metrics for our
network used p-values of less than 0.05 as well. The
OTU data was reported to the lowest taxonomic identi-
fication, either within the text or in the respective figure.

Results
Overview of the bacterial microbiome in the HIV cohort
An overview of the clinical characteristics of the study
subjects showed that all individuals were between 40
and 75 years of age with a majority on highly active anti-
retroviral therapy (HAART) at the time of assessment
[Table 1]. The total 16S concentration in each subject
following background negative control subtraction was
0.42 ± 1.39 16S/ng of DNA (mean ± standard deviation).
The Shannon Diversity was 2.13 ± 0.54, OTU richness
was 37.52 ± 11.83, and evenness was 0.59 ± 0.13 for this
patient population (mean ± standard deviation). The

distribution of Shannon Diversity, OTU richness, and
evenness can be found in the Additional file 1: Table S1.
On a cursory overview, the phyla distribution seems to
be quite different than the experimental background
negative controls. However, there was only a significant
difference in the relative abundance of the Acti-
nobacteria phylum, following Bonferroni correction, be-
tween the HIV group and background negative controls
(p = 0.003) [Fig. 1a]. This would suggest that apart from
the Actinobacteria phylum the other phyla distributions
are similar to the background negative controls. A total
of 23.8 % of HIV subjects contained OTUs that aligned
to Tropheryma.

Airway microbiome comparisons between those with and
without COPD by spirometry
There was no difference in Shannon Diversity, evenness,
and OTU richness between HIV patients with and
without COPD (p > 0.05). The diagnosis of COPD had
no influence on the phyla observed (p > 0.05) [Fig. 1b].
However, in COPD, there was a trend towards greater
abundance of the Actinobacteria and Proteobacteria
phyla. Using a Bray-Curtis dissimilarity matrix and
Non-Metric Multidimensional Scaling (NMDS) with
PERMANOVA, we found no significant difference in the
bacterial community composition between those with
and without COPD (PERMANOVA = 0.10) [Fig. 2a].
However, analysis of specific OTUs in relation to COPD
status revealed 3 OTUs that were able to discriminate
HIV patients with and without COPD [Fig. 2b]: OTU4
(Pasteurellaceae), OTU15 (Brachybacterium), and
OTU38 (Yersinia). In COPD samples, there was a pau-
city of OTU4 and OTU15, and a slight enrichment of
OTU38 [Fig. 2b]. Ribosomal database classifier [24, 25]
revealed that OTU4 contained sequences of bacteria in
the genus for Haemophilus

Airway microbiome comparisons based on CT presence of
emphysema or bronchiectasis
We did not detect a significant difference in the bacterial
community composition based on severe emphysema
status that was detected on CT scans (PERMANOVA =
0.06) [Fig. 2c]. However, there were two OTUs that
discriminated samples from those with and without
emphysema: OTU4 (Pasteurellaceae-Haemophilus) and
OTU30 (Pedobacter). There was no difference in bacter-
ial community composition in relation to emphysema
distribution (whether centrilobular or paraseptal) or
across respiratory bronchiolitis severity (both PERMA-
NOVA > 0.10) (data not shown).
In those with bronchiectasis on CT, the bacterial commu-

nity composition was also not significantly different from
those without any bronchiectasis (PERMANOVA= 0.04)
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[Fig. 2e]. Two OTUs were important for this discrimin-
ation: OTU1 (Prevotella), and OTU38 (Yersinia).

The impact of acute lung infection on airway microbiome
and host responses
We found no significant difference in the bacterial com-
munity composition between those with and without
pneumonia (PERMANOVA = 0.30) probably because the
bronchoscopic samples were obtained from the lung
contralateral to the site of active infection. We also
found no significant differences in bacterial community
composition between those with CD4 counts above or
below 200 (PERMANOVA = 0.84), across smoking status
(current, past, or never smokers; PERMANOVA = 0.37),
or whether Tropheryma was detected or not (PERMA-
NOVA = 0.16) [Additional file 1: Figure S1–S5].

Significant pathways in WGCNA modules that correlated
with the bacterial microbiome
The power measurement of 6 was used to create the
gene co-expression network and a single sample was
excluded since it was an extreme outlier [21, 22]
[Additional file 1: Figures S6 and S7]. This sample was
considered an outlier since on the hierarchical clustering
of the gene expression data it formed its own unique

branch on the tree versus all other samples [Additional
file 1: Figure S7]. DAVID was used to assess the most
relevant pathways involved in the WGCNA modules
that correlated with the bacterial microbiome. In total
there were 14/23 (60.8 %) gene expression modules that
correlated with at least one measure of the bacterial
microbiome [Table 2]. Most interesting were the
immune pathways identified by the Tan, Red, Pink, and
Green Yellow modules and the cilia pathways repre-
sented by the Green module [Table 2].

WGCNA of alpha diversity and phyla with gene
expression
Our analysis revealed a number of gene expression mod-
ules that correlated with the Firmicutes phylum. It was
the only group that had significant correlations with any
modules after FDR correction (two negative and two
positive correlations). The negatively correlated modules
were Green (FDR = 0.037, p = 4 × 10-4), Midnight Blue
(FDR = 0.037, p = 8 × 10-4). The positively correlated
modules were, Brown (FDR = 0.037, p = 8 × 10-4), and
Blue (FDR = 0.037, p = 5 × 10-4) [Fig. 3 and Additional
file 1: Figure S9].
When looking at those that had a p value under 0.05

but not an FDR under 0.05 there were additional

Table 1 An overview of clinical traits of HIV infected patients sampled in this study

Age Vital
Status

Current VL Current CD4 Bronchoscopy
Indication

Smoking
Status

Pack-
Years

Current
HAART

CT
Emphysema

CT
Bronchiectasis

FEV1 (L) FEV1/FVC
(%)

60-69 Alive <40 400–499 Cancer Current 30 Yes Yes Yes 1.53 33.04

50–59 Alive 1000–9999 100–199 Pneumonia Current 39 No Yes No 1.11 90.00

70–79 Alive <40 500–599 Cancer Current 130 Yes Yes No 2.99 70.55

50–59 Alive <40 600–699 Cancer Current 12.5 Yes Yes No 3.35 56.63

50–59 Alive 40–1000 500–599 Cancer Current 37.5 Yes Yes No 2.71 64.18

70–79 Alive 10000–99999 200–299 Cancer Current 30 No No No N/A N/A

50–59 Alive <40 900–999 Cancer Current 15 Yes No No 3.33 70.95

50–59 Alive 10000–99999 200–299 Pneumonia Current 19.5 No Yes No N/A N/A

60–69 Alive <40 700–799 Cancer Past 20 Yes Yes No 2.54 59.86

60–69 Alive <40 800–899 Cancer Past 3 Yes Yes No 2.87 71.44

60–69 Alive 40–999 200–299 Cancer Past 45 Yes No No 2.41 76.80

60–69 Alive <40 ≥1000 Bronchiectasis Past 12 Yes No Yes 3.06 70.57

60–69 Alive <40 300–399 Pneumonia Past 75 Yes No Yes 2.47 85

40–49 Alive <40 100–199 Cancer Current 30 Yes Yes No 2.41 51.56

40–49 Alive 10000–99999 100–199 Pneumonia Current 115 Yes Yes Yes 2 78.28

50–59 Alive <40 400–499 Cancer Past 90 Yes Yes No 3.33 75.76

70–79 Deceased <40 400–499 Cancer Past 20 Yes Yes Yes 2.75 69.09

60–69 Deceased <40 100–199 Cancer Past 4 Yes No Yes 2.45 72.86

60–69 Deceased <40 100–199 Cancer None 0 Yes Yes No N/A N/A

50–59 Deceased <40 100–199 Pneumonia Current N/A Yes Yes No N/A N/A

40–49 Deceased ≥100000 <100 Cancer None 0 No Yes No N/A N/A
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correlations that have been summarized in Fig. 3. Briefly,
the Tan module may be negatively correlated with both
Shannon Diversity and evenness (FDR = 0.283, p = 0.02
and FDR = 0.368, p = 0.03 respectively) [Fig. 3a]. Even-
ness may also be correlated with the Midnight Blue
module (FDR = 0.184, p = 0.009) [Fig. 3a]. The Proteo-
bacteria phylum may also be positively correlated with
the Magenta module (FDR = 0.283, p = 0.02) and the
Turquoise module (FDR = 0.368, p = 0.03) [Fig. 3b].

WGCNA of the important OTUs and gene expression
No modules and OTUs found to be predictive by
random forest for COPD, severe emphysema, or
bronchiectasis were found above an FDR of 0.05. are de-
scribed in the Additional file 1: Figure S10. However,
some correlations between modules and these OTUs oc-
curred with a p-value under 0.05. This included OTU4
[Fig. 3c] which was negatively correlated with the Grey

(FDR = 0.941, p = 0.04), Green (FDR = 0.941, p = 0.04),
and Green Yellow (FDR = p = 0.03) modules. It was also
positively correlated with the Blue (p = 0.004) and Dark
Green (p = 0.04) modules.

Discussion
The interplay between the microbiome and host gene
expression is increasingly recognized as a key element of
health and disease. Our study extensively examined the
relationship between the bacterial microbiome and host
gene expression from bronchial epithelial cells taken
from the same small airways of patients infected with
HIV. We found that the small airway microbiome of
HIV-infected patients demonstrated only modest differ-
ences in the global bacterial community composition
compared with background negative controls [Fig. 1].
However, we did not find any significant differences in
the global airway bacterial composition between those

Fig. 1 Breakdown of major phyla. a Comparison between HIV patient samples (n = 21) and background negative controls (n = 4). There was a
significant difference in the Actinobacteria phylum between HIV and background negative controls (p = 0.003). There were also slightly more
Proteobacteria in the HIV group than in the background negative controls (p > 0.05). b Comparison between HIV patients with (n = 6) and
without COPD (n = 10). No difference between the different phyla was observed (p > 0.05)

Sze et al. BMC Pulmonary Medicine  (2016) 16:142 Page 5 of 10



with and without COPD, between those with elevated or
reduced CD4 counts, between those with bronchiectasis,
or between those with and without emphysema on CT
scans [Fig. 2]. However, when we investigated individual
OTUs using an unocrrected PERMANOVA threshold of
0.10 or below, we discovered OTU signatures that were
distinct for those with COPD (measured by spirometry),
severe emphysema (detected on CT), and bronchiectasis.
Spirometry-based COPD was associated with OTU4,
OTU15, and OTU38, severe emphysema was associated
with OTU4 and OTU30, while bronchiectasis was

associated with OTU1 and OTU38. More importantly,
we found that measures of the airway microbiome in-
cluding alpha diversity measures, phyla, and OTUs, were
significantly related to distinct host response in the same
airway as captured by gene expression modules. Many of
these modules involved immune and inflammatory
responses, cell signaling, and cilia pathways suggesting
immunomodulatory role of the airway microbiota in the
host’s ability to process and remove irritants and aero-
pathogens. Additional work will be needed to validate
this hypothesis.

Fig. 2 Bacterial community composition and COPD status, severe emphysema, and bronchiectasis. a Non-metric multidimensional scaling analysis of
individuals with and without COPD, PERMANOVA = 0.10. b Boxplot of the relative abundance of each of the discriminative OTUs for COPD status.
c Non-metric multidimensional scaling analysis of individuals with and without severe emphysema, PERMANOVA = 0.06. d Boxplot of the relative
abundance of each of the discriminative OTUs for severe emphysema. e Non-metric multidimensional scaling analysis of individuals with and without
bronchiectasis, PERMANOVA = 0.04. f Boxplot of the relative abundance of each of the discriminative OTUs for bronchiectasis

Table 2 An overview of significant gene expression module pathways

Gene Expression Module Number of Genes Pathway Identified FDR

Tan 201 Lysosome, Immune Response, Plasma Membrane <5.0 × 10-4

Red 554 Immune Response, Defense Response, Inflammatory
Response, Response to Wounding

<1.0 × 10-12

Midnight Blue 82 Magnesium Ion Binding <0.05

Green 791 Cilia <2 × 10-4

Turquoise 6050 Intracellular Organelle, Membrane-Enclosed Lumen <2 × 10-7

Dark Green 43 None Identified N/A

Black 452 Cell to Cell Signaling, Cell Membrane <1.0 × 10-5

Magenta 365 Oxidation/Reduction, Microsomes <2.0 × 10-2

Pink 427 Immune Response, Immunoglobulion, Antigen Presentation <1.0 × 10-3

Brown 1274 Glycoprotein, Plasma Membrane, Immune Response <1.0 × 10-6

Blue 5675 Nucleus, Transcription Regulation, Nuclear Lumen <2 × 10-4

Grey 5861 Olfactory Transduction <4.9 × 10-42

Green Yellow 245 Immunoglobulin, Antigen Processing and Presentation <1 × 10-4

Light Green 63 None Identified N/A
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Fig. 3 (See legend on next page.)
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Our findings may be consistent with previous studies on
the lung microbiome in HIV, which found Tropheryma
whipplei as a discriminative bacterium in bronchoalveolar
lavage fluid (BALF), occurring in 13.4 % of HIV subjects
versus only 1.3 % of HIV-uninfected subjects [4]. In our
study, which used bronchial brushes rather than BALF, we
demonstrated the presence of Tropheryma in 23.4 % of
the samples. Although these data are in line with the
previous literature, additional molecular studies such as a
qPCR assay targeting a gene specific for the species would
be needed to confirm that the Tropheryma we identified
was indeed T.whipplei. We extend the previous findings
by characterizing the host gene expression response to the
bacterial microbiome. For instance, we found that Shan-
non Diversity and evenness were negatively correlated
with genes involved with lysosome formation and immune
response. This finding is consistent with the evolving con-
cept that reduction in bacterial diversity is associated with
an elevated risk of clinical infection and increased inflam-
matory response by the host [26, 27]. It should be noted
that certain organisms independent of their numbers, are
more likely to elicit an inflammatory response compared
with others that are less “pathogenic”. For instance, al-
though in our study we found that bacteria in the Actino-
bacteria phylum were significantly more abundant in HIV
lungs than in the background negative environmental
controls, these bacteria were not significantly associated
with gene expression modules. In contrast, bacteria in the
Firmicutes phyla (though less abundant compared with
Actinobacteria) were significantly associated with several
different gene expression modules. Firmicutes were nega-
tively related to pathways governing cilium and positively
associated with gene expression modules associated with
immune response and transcription regulation. When we
explored all correlations that had a p-value under 0.05
[Fig. 3] the Proteobacteria phylum was positively associ-
ated with gene expression pathways related to oxidation/
reduction and intracellular orgnaelles, whereas the Firmi-
cutes phylum was negatively associated with these path-
ways. This data is consistent with a previous study which
reported a natural antagonism between the Firmicutes
and Proteobacteria phyla in the oropharynx [28]. These
data are also consistent with the evolving concept that the
lung microbiome is propagated by upper airway seeding
[29, 30]. We speculate that the host immune response is
regulated in the HIV lung by the seeding of certain organ-
isms from the upper airways into the lower airway tract.
We posit that the predominance of Firmicutes phylum

leads to a heightened inflammatory state. Additional stud-
ies into the host interactions with the bacterial micro-
biome within the lung will need to be completed to
confirm this hypothesis.
Most intriguingly, we found that OTU4 (Pasteurella-

ceae-Haemophilus) was predictive of both COPD (by
spirometry) and severe emphysema (by CT). Previous
studies suggest that Haemophilus influenzae is an im-
portant pathogen in COPD [31] and a recent study using
whole lung tissue has shown that this organism is found
in control subjects but not in patients with GOLD 4 se-
verity [7]. Consistent with this observation, in our study
Haemophilus spp was found in airways of patients with-
out COPD by spirometry and without significant emphy-
sema on CT scan [Figs. 2 and 3], although there were no
correlations under and FDR < 0.05 when exploring OTU
correlations with gene expression modules. Intriguingly,
those correlations that were under a p value of 0.05
showed that OTU4 negatively correlated with both path-
ways involved with cilia and antigen processing and
presentation [Fig. 3]. This raises the tantalizing hypoth-
esis that up-regulation of immune genes which activate
the adaptive immune processes may enable processing
and removal of Haemophilus spp in the airways. How-
ever, this result would need to be validated in a study
with more power to asses this relationship. Up-
regulation of genes involved in cilia may have a similar
effect. We speculate that COPD airways have altered im-
mune and/or cilia function that may prevent effective
clearance of Haemophilus spp. Additional work will be
needed to validate this hypothesis.
There are several limitations to this study. First, the

findings pertain exclusively to HIV-infected patients. Thus
it is possible that these OTUs may not help to distinguish
COPD, severe emphysema, or bronchiectasis in HIV-
uninfected patients. However, a recent study suggests that
the bacterial microbiome between HIV-uninfected
patients and HIV patients on successful antiretroviral
therapy may be similar [5]. Second, no oral wash was
performed prior to the bronchoscopy. This could have led
to minor contaminations of the bronchial brush samples.
However, it was reassuring that the findings of the present
study were consistent with others that used mouth rinsing
procedures [6, 29, 32]. Thirdly, all patients enrolled in this
study had a clinical indication for bronchoscopy. While
great care was taken to sample epithelial cells from un-
infected regions of the lung, and far away from nodules or
masses, our results could be confounded by these

(See figure on previous page.)
Fig. 3 Network of the module correlations with bacterial microbiome measures. a Gene expression modules and alpha diversity measures. b Gene
expression modules and bacterial phyla. c Gene expression modules and important OTUs for COPD, severe emphysema, and bronchiectasis. In
brackets under each module is a brief description of pathways identified by DAVID for genes in the module. Red represents significant positive
correlations while black represents significant negative correlations
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underlying conditions. However, we did not find the bac-
terial species identified by routine clinical culture in those
patients with a diagnosis of pneumonia in the analysis of
16S, which would support that sampling was indeed from
the unaffected portions of the lung. This would explain
the fact that there was no difference in the bacterial com-
munity composition between those with and without
pneumonia. Another limitation is that we were unable to
validate the microarray expression results with RT-PCR
due to the large size of many of the modules. Thus it is
possible that some of the genes within the modules are
not accurate. However, a module is based on more than
one gene and in order for a module to be wrong the ma-
jority of gene expression values within it would have to be
incorrect. Finally, it is possible that some of the gene ex-
pression could be accounted for by infiltrating immune
cells that were taken along with the epithelial cells during
sampling. We cannot conclusively rule this possibility out
but samples in this study were obtained away from loca-
tions with signs of clear inflammation. Future studies in
which the bronchial epithelial cell microbiome is assessed
in asymptomatic HIV-infected individuals would help to
clarify the relationships between the microbiome and host
response, and in certain pulmonary phenotypes.
Overall, this study provides a preliminary investigation

into the host gene expression interaction with the bac-
terial microbiome in the small airways of HIV infected
individuals. It supports the hypothesis that diversity and
evenness of the community are important in modulating
inflammatory responses of the host. This study also
shows how bacteria in some phyla and OTUs may be
important in disease pathogenesis by modifying either
the host response and/or ecological niche areas. Our
work supports the possibility that specific interactions
between the bacterial microbiome and host cells within
the airways of the lung occur and may be associated
with distinct disease phenotypes; these findings would
require additional studies for validation.

Conclusions
In summary this study demonstrates that the bacterial
microbiome and host gene expression may interact with
one another in individuals with HIV infection. It identifies
pathways, such as the mucocillary transport system, as
important in the interaction between host and bacterial
microbiome. However, more research into this specific
area needs to be accomplished to confirm these results
and observations.
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