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Abstract

Background: Pulmonary exacerbations in cystic fibrosis (CF) remain poorly understood and treatment is usually
targeted at Pseudomonas aeruginosa. Within Australia a predominant shared P. aeruginosa strain (AUST-02) is
associated with greater treatment needs. This single centre study assessed temporal shared strain population
dynamics during and after antibiotic treatment of exacerbations.

Methods: Sputum was collected from 12 adult patients with a history of chronic AUST-02 infection at four
time-points during and after treatment of an exacerbation. Forty-eight P. aeruginosa isolates within each
sample underwent AUST-02 allele-specific PCR and SNP-based strain genotyping.

Results: Various commonly shared Australian strains (AUST-01, 0.1%; AUST-02, 54.3%; AUST-06, 36.6%; AUST-07,
4.6%; AUST-11, 4.3%) and two unique strains (0.1%) were identified from 45 sputum samples (2160 isolates). Based
on within-patient relative abundance of strains, a “single-strain infection” (n = 7) or “mixed-strain infection” (n = 5)
was assigned to each patient. A significant temporal variation in the P. aeruginosa population composition was
found for those with mixed-strain infection (P < 0.001). Patients with mixed-strain infections had more long-term
treatment requirements than those with single-strain infection. Moreover, despite both groups having similar lung
function at study entry, patients with single-strain infection had greater improvement in FEV1% predicted following
their exacerbation treatment (P = 0.02).

Conclusion: Pulmonary exacerbations may reveal multiple, unrelated P. aeruginosa strains whose relative
abundance with one another may change rapidly, in a sustained and unpredictable manner.
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Background
Despite improved survival for people with cystic fibrosis
(CF) [1], most still die prematurely from chronic pulmon-
ary infections characterised by recurrent exacerbations,
progressive lung function decline, increased treatment
requirements and reduced quality of life [2–6]. The patho-
physiology of pulmonary exacerbations is nevertheless
poorly understood and a standardised definition of an
exacerbation remains elusive [7–9].

Pseudomonas aeruginosa is the most common pul-
monary pathogen in CF and antibiotic treatment of
exacerbations directed against this organism is pivotal to
patient management [10]. Once P. aeruginosa becomes
established within the airways of patients with chronic
lung disease, it is usually by a single strain that evolves
through micro-adaptation into multiple sub-lineages of
the original ancestral clone [11, 12]. There are however,
reports of co-infection with two or more distinct P.
aeruginosa genotypes in both CF [13–15] and, non-CF
bronchiectasis [12]. In Australia, a predominant shared
strain, AUST-02, was detected in 18% of all patients with
P. aeruginosa infection nationally and was associated
with increased centre visits and intravenous antibiotic
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courses [13]. Given the high-prevalence and clinical sig-
nificance of the AUST-02 strain within Australian cen-
tres, including its predominance in our own clinic, the
primary aim of this study was to assess AUST-02 popu-
lation stability and determine whether other P. aerugi-
nosa strains emerged during and after treating an
exacerbation.

Methods
Study patients and characteristics
Twelve CF patients (aged ≥18-years) with chronic AUST-
02 infection, defined according to the modified Leeds
Criteria [16, 17], were recruited over a 5-month period be-
tween February and June 2014 following admission to The
Prince Charles Hospital (Brisbane, Australia) for intraven-
ous antibiotic treatment of an exacerbation (as defined by
the Fuchs criteria [9]). While in hospital, CF patients with
P. aeruginosa were not managed exclusively in single
room accommodation with some admitted to shared
rooms [18]. The Prince Charles Hospital Human and
Research Ethics Committee, Metro North Hospital and
Health Service, Brisbane, Queensland, Australia approved
the study (HREC/13/QPCH/127) and all participants pro-
vided written, informed consent.
Baseline characteristics of age, gender, cystic fibrosis

transmembrane conductance regulator (CFTR) geno-
type, and the best lung function (forced expiratory vol-
ume in the first second percentage predicted; FEV1%
predicted [19]) and body mass index (BMI) recorded in
the previous year were collected from hospital records.
Years chronically infected by P. aeruginosa, clinical care
requirements in the previous year (number of hospital
admissions, inpatient days and outpatient clinic visits),
types of treatments in the previous year (oral azithromy-
cin, inhaled tobramycin, inhaled colistin) and diagnoses
of diabetes and liver disease were also recorded. Clinical
data collected during their hospitalisation included
FEV1% predicted and BMI at the start-of-treatment and
end-of-treatment time-points. Serum C-reactive protein
(CRP) was measured on days 3 and 10 of inpatient stay,
according to a local treatment protocol (for consistency
hereafter referred to as start-of-treatment and end-of-
treatment). Types of antibiotics administered, antibiotic
duration, relapse (defined as readmission to hospital
with a further pulmonary exacerbation before outpatient
review occurred) and time-to-next hospitalisation for an
exacerbation were collated.

Sputum collection, culture and genotyping
Spontaneously expectorated sputum was collected at
study entry when commencing intravenous antibiotics
(‘start-of-treatment’), during the first-week of treatment
(‘during treatment’), at its completion (‘end-of-treat-
ment’) and during outpatient review following discharge

or if readmission to hospital before outpatient review oc-
curred (‘follow-up’).
Sputum samples were processed as described previ-

ously to isolate single colonies [20]. Quantitative cul-
tures were performed using standard techniques. A
sweep of colonies from the ‘start-of-treatment’ sputum
samples was tested for AUST-02 by an allele-specific
polymerase chain reaction (PCR; Additional file 1:
Supplementary Methods). In addition, 48 individual pre-
sumptive P. aeruginosa colonies were selected randomly
for genotyping from each sputum sample the 12 study
patients provided.
Bacterial DNA preparation was undertaken by heat-

denaturation [21]. Each isolate underwent testing by the
above AUST-02 allele-specific PCR (Fig. 1 and
Additional file 1: Supplementary Methods) with isolates
testing negative for AUST-02 subjected to single nucleo-
tide polymorphism (SNP)-based strain typing (Agena;
formerly Sequenom iPLEX) at the Australian Genome
Research Facility (AGRF, The University of Queensland,
Brisbane) based on a protocol described previously [22].

Phenotypic testing
The first recruited subject had a mixed-strain infection
and each P. aeruginosa isolate genotyped from this
patient underwent additional phenotypic testing to de-
termine the within-host diversity. This sub-analysis in-
volved 186 isolates with a total of 2790 phenotypic tests
completed. Susceptibility to 11 anti-pseudomonal antibi-
otics was determined by disc diffusion [23], auxotrophy
by growth on M9 minimal media [11] and alginate over-
production by the appearance of mucoid isolates on
Pseudomonas Isolation Agar after overnight aerobic
incubation at 36 °C [24]. Inactivating lasR mutant col-
onies were identified by their metallic iridescent sheen
on Luria Bertani agar following overnight incubation in
aerobic conditions at 36 °C [25], while pyocyanin pro-
duction was quantified by measuring the A695 value as
described previously [11].

Statistical analyses
A repeated measures analysis of variance (ANOVA) was
used to examine if the log-transformed P. aeruginosa
total viable count differed between time-points of spu-
tum collection. Clinical variables were compared be-
tween time-points or groups using a paired t-test (or
Wilcoxon signed-rank test), independent t-test (or
Mann-Whitney test) or Fisher’s exact test, as appropri-
ate. Variation in the number of strains detected and
phenotypic traits were assessed by chi-square tests. All
statistical analyses were generated using SPSS version
22. A two-tailed, P < 0.05 was considered statistically
significant.
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Results
Baseline patient characteristics are summarised in Table 1
(individual data, Additional file 2: Table S1 and
Additional file 3: Table S2). All patients had advanced lung
disease, had been chronically infected with P. aeruginosa
for several years, and with one exception were taking main-
tenance oral azithromycin with inhaled anti-pseudomonal
antibiotics prior to the exacerbation episode. Between-group

differences at baseline were not statistically significant. A
limited numbers of bacterial co-pathogens were isolated
from sputum samples patients at baseline and within prior
3 months (4 patients with methicillin-susceptible Staph.
aureus), During the period of exacerbation treatment, all pa-
tients received combination intravenous anti-pseudomonal
antibiotics and continued taking azithromycin. Inhaled anti-
biotics were ceased. The median (range) period from

Fig. 1 Number of isolates randomly selected from 45 sequential sputum samples provided by 12 patients with cystic fibrosis and results of
subsequent strain identification by molecular typing methods. All isolates identified to the strain-level were included in the final
analyses (n = 2055)

Table 1 Characteristics of the 12 patients with single-strain and mixed-strain infections

Variable Single-strain infection (n = 7) Mixed-strain infection (n = 5) All a (n = 12)

Age, mean years (SD) 33.1 (11.2) 30.4 (6.1) 32.0 (9.2)

Gender, Male, number (%) 5 (71.4) 4 (80.0) 9 (75.0)

P.Phe508del heterozygous, number (%) 5 (71.4) 1 (20.0) 6 (50.0)

P.Phe508del homozygous, number (%) 2 (28.6) 4 (80.0) 6 (50.0)

FEV1% predicted, mean (SD) 45.9 (20.8) 45.6 (15.3) 45.8 (17.9)

BMI, mean kg/m2 (SD) 23.7 (6.7) 21.6 (3.3) 22.9 (5.4)

Chronic Pseudomonas aeruginosa infection
>10-years, number (%)

6 (85.7) 5 (100) 11 (91.7)

Clinical care in previous year, mean (SD)

Number of hospital admissions 2.1 (2.0) 4.8 (2.9) 3.3 (2.7)

Number of inpatient days 29.1 (30.0) 69.0 (37.1) 45.8 (37.6)

Number of outpatient clinic visits 11.6 (8.7) 16.2 (3.0) 13.6 (7.1)

Regular treatments prescribed in previous
year, number (%)

Oral azithromycin 7 (100) 5 (100) 12 (100)

Inhaled colistin 3 (42.9) 3 (60.0) 6 (50.0)

Inhaled tobramycin 6 (85.7) 4 (80.0) 10 (83.3)

Diabetes, number (%) 1 (14.3) 1 (20.0) 2 (16.7)

Abbreviations: BMI body mass index, FEV1% predicted, forced expiratory volume in the first second percentage predicted; SD standard deviation
aNo patients were diagnosed with CF-related liver disease
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completion of intravenous antibiotics and follow-up visit
was 42 (13 – 119) days.

Pseudomonas aeruginosa total viable count
For all patients, the geometric mean P. aeruginosa total
viable count was similar across the four consecutive
time-points of sputum collection (start-of-treatment,
6.3 × 107 colony-forming units (CFU)/mL; during treat-
ment, 1.8 × 107 CFU/mL; end-of-treatment, 1.4 × 108

CFU/mL; follow-up, 1.0 × 108 CFU/mL) with no statisti-
cally significant change over time (P = 0.1, repeated
measures ANOVA; Fig. 2).

Genotyping
The 12 study participants provided 45 sputum samples
(Additional file 4: Figure S1), from which 2160 isolates
were selected for genotyping (Fig. 1). Of the 2055 iso-
lates genotyped successfully, 1117 (54.4%) were AUST-
02 strains, while the remaining isolates comprised other
commonly shared Australian strains (AUST-01, n = 2,
0.1%; AUST-06, n = 752, 36.6%; AUST-07, n = 94, 4.6%;
AUST-11, n = 88, 4.3%) [13, 22], with only two isolates
(0.1%) representing unique strains (Fig. 1). Although
allele-specific PCR of a sweep of colonies confirmed all
12 patients harboured AUST-02 at study entry, this

strain was not detected amongst any of the individual
isolates selected from two patients at each of the four
separate time-points; one patient (P12) was positive for
AUST-06 only and another (P7) for AUST-01 and
AUST-06 (Fig. 3).

Mixed-strain dynamics
Based on relative abundances of P. aeruginosa strains in
each sample, patients were categorised into two groups:
those with a (1) “single strain infection” (P3, P7, P8, P9,
P10, P11, P12) since a single strain comprised >90%
relative abundance in all samples tested, and (2) “mixed-
strain infection” (P1, P2, P4, P5, P6) where various mix-
tures of strains (at <90% relative abundance) were
observed (Fig. 3).
A significant temporal variation in the P. aeruginosa

population composition was found for the five patients
with mixed-strain infections (χ2 = 56.3, P < 0.001). A
gradual reduction in the mean relative abundance (95%
confidence interval) of AUST-02 was detected in
sequential sputum samples compared to the start-of-
treatment sample [during treatment, −20.7% (−58.4 to
17.0%); end-of-treatment, −25.4% (−46.7 to −4.1%);
follow-up, −34.6% (−77.2 to 8.1%)]. Concurrently, the
increased relative abundance of ‘other’ strains detected

Fig. 2 Geometric means (with 95% confidence intervals) of total viable counts expressed as colony-forming units (CFU)/mL of Pseudomonas
aeruginosa in sputum samples collected from adult patients with cystic fibrosis at start-of-treatment, during treatment and end-of-treatment time-
points for intravenous antibiotic therapy of a pulmonary exacerbation, and at follow-up. Single-strain infection, black circle; mixed-strain infection,
grey circle. There was no statistically significant difference between time-points of sputum collection and total viable counts (P = 0.1, repeated
measures ANOVA; based on log-transformed CFU/mL from 10 patients, who each provided four sputum samples). There was also no statistically
significant difference between time-points of sputum collection and total viable counts of those with single-strain infections (P = 0.5, repeated
measures ANOVA; based on log-transformed CFU/mL from 5 patients, who each provided four sputum samples) or mixed-strain infections
(P = 0.2, repeated measures ANOVA; based on log-transformed CFU/mL from 5 patients)
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compared to the start-of-treatment was primarily due to
a surge in AUST-06 richness at all time-points [during
treatment, +9.1% (−16.7 to 34.9%); end-of-treatment,
+26.9% (5.7 to 48.1%); follow-up, +23.4% (−6.0 to
52.8%)]. AUST-02 and AUST-06 temporal dynamics are
summarised in Additional file 6: Figure S2.

Phenotypic traits
Overall, 186 isolates from patient P1 (6/192 isolates were
excluded as they were not genotyped successfully) under-
went in-vitro assessment of adaptive phenotypic traits
(Additional file 5: Table S3). A statistical association was
detected between strain (AUST-02, AUST-06, AUST-07)
and susceptibility category for 7/11 antibiotics with an
equal or higher proportion of AUST-02 isolates cate-
gorised as non-susceptible to these seven antibiotics com-
pared to AUST-06 or AUST-07 (χ2 [range] = 26.0-108.9;
P < 0.001, Additional file 7: Figure S3a). AUST-02 was also
more often auxotrophic (92% isolates) compared to
AUST-06 (35% isolates) and AUST-07 (2% isolates)
(χ2 = 131.7; P < 0.001, Additional file 7: Figure S3b).
Defining phenotypic traits of AUST-06 and AUST-07 were
mucoidy (87% of isolates; χ2 = 134.9; P < 0.001,
Additional file 7: Figure S3b) and colony surface iridescent
sheen (86% of isolates; χ2 = 108.0; P < 0.001,
Additional file 7: Figure S3b), respectively. Pyocyanin pro-
duction was similar between all strains (Additional file 7:
Figure S3b).

Clinical response to antibiotic treatment
Despite similar baseline FEV1% values and other
between-group variables not being significantly different,
patients harbouring mixed strains had more long-term
treatment requirements than those with single strain in-
fection (Table 1). During treatment of the exacerbation,
there was a greater improvement in FEV1% predicted in
patients with single-strain infection [median change
(range): 7.2% (3.1 to 15.8%); P = 0.02; Wilcoxon signed-
rank test; Table 2a] compared to those with a mixed-
strain infection [median change (range): 2.4% (0 to
14.5%); P = 0.07; Wilcoxon signed-rank test; Table 2a),
despite the median FEV1% predicted being similar
between both groups at start-of-treatment [single-strain
infection: 31.2% (range: 20.2 to 84.0%); mixed-strain
infection: 41.7% (Range: 30.3 to 63.1%); P = 0.5, Man-
n-Whitney U test]. Furthermore, mean CRP was higher
in those with single-strain (33.2 mmol/L) compared to
mixed-strain infection (10.3 mmol/L) at start-of-
treatment, albeit not significantly (P = 0.08, Welch’s
t-test). After their exacerbation was treated, patients
with mixed-strain infections had a shorter time to next
admission for exacerbation treatment compared to those
with single-strains, but this also did not reach statistical
significance (Table 2b).

Discussion
Shared P. aeruginosa strain dynamics during and after
antibiotic treatment of a pulmonary exacerbation in

Fig. 3 Relative abundance of Pseudomonas aeruginosa strains from the 12 patients with cystic fibrosis during intravenous antibiotic treatment of
a pulmonary exacerbation and subsequent follow-up. End-of-treatment and/or follow-up sputum samples were unable to be provided by patients
P8 and P11
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chronically infected CF patients were investigated by
combining in-depth culture and genotyping techniques.
Interestingly, this Australian study found that a substan-
tial number of CF patients showed mixed-strain infec-
tion, which contrasts with the extensive experience in
the UK where similar studies of the Liverpool Epidemic
Strain (LES) consistently demonstrated that CF patients
have chronic infection with a single strain, which has
diverged into multiple co-existing sublineages in the air-
ways [11, 26]. This disparity is possibly related to differ-
ences in patient segregation practices between study
centres.
Patients with mixed-strain infection showed significant

changes in strain composition throughout the entire
exacerbation episode and follow-up period, with others
typically maintaining the same strain. Almost all other
non-AUST-02 isolates (>99%) identified comprised pre-
viously recognised Australian shared strains, suggesting
that people infected with one shared strain are more
likely to be co-infected with other shared strains than
unique strains. Alternatively, it can be argued that
patients with advanced lung disease spending greater
time in hospital are more likely to be exposed to one or
more shared strains [18].
Single-strain infection with LES was previously shown

to be associated with increased treatment requirements
[27]. Our current study provides some evidence that
infection with multiple shared strains is associated with
greater morbidity than single-strain infection in
Australia. In the year before recruitment and the months
following their exacerbation episodes, those with mixed-
strain infections had more treatment requirements than
those with predominant single-strain infection, although
this difference did not reach statistical significance.
Further studies involving larger patient numbers and
multiple centres are needed to confirm this observation.
The data also potentially suggest that short-term intra-
venous antibiotic courses might not be a driver of the
evolution of single strains dominating infection in CF
patients. However, given that seven patients harboured a
single-strain infection throughout the study period, lon-
gitudinal studies are required to determine if one shared
strain displaces other(s) in mixed-strain infections as
suggested by our observations and reported occasionally
by others [15, 28, 29].
Patients with single-strain infections had a higher

start-of-treatment CRP with improved lung function ob-
served during treatment of the exacerbation. In contrast,
although numbers were limited, those with mixed-strain
infection had less evidence of an acute inflammatory
response at the start-of-treatment and no significant
change in lung function was observed. This further high-
lights the complexity of defining CF exacerbations and
determining the timing and duration of antibiotic

therapy, particularly in those with advanced lung disease,
who now live longer than previously [30].
Although not statistically significant, we observed a

transient decrease in the total P. aeruginosa load during
the first 6-9 days of intravenous antibiotic treatment,
which was reversed by the end of treatment. Similar
transient effects have been previously described [31].
However, selection and clonal expansion of a P. aerugi-
nosa population with a specific genotype or particular
phenotypic traits may underpin pulmonary exacerba-
tions [11, 15, 32, 33]. Whilst we cannot assign causality
of exacerbation here, our in-depth sampling approach
enabled the first characterisation of the relative abun-
dance and dynamic nature of mixed strains, which can-
not be determined if only a few isolates per sample are
genotyped [13–15]. We found that the relative abun-
dance of AUST-02 declined during anti-pseudomonal
treatment [34]. At the same time, the relative abundance
of other shared strains increased, suggesting they were
under positive selection pressure. This was true espe-
cially for AUST-06, which was identified almost exclu-
sively in Queensland previously and was the second
most common shared strain identified here [13]. Whilst
previous studies have shown within-host microevolution
leads to co-existing sublineages of single P. aeruginosa
strains emerging over months-to-years [26, 35–37], this
study demonstrates rapid multi-strain turnover in
mixed-strain infections within-host during antibiotic
treatment of pulmonary exacerbations.
It is difficult to explain the observed temporal dynam-

ics of mixed-strain infection, particularly when consider-
ing the antibiotic susceptibility profiles of strains from a
single patient treated with meropenem, aztreonam and
tobramycin. Even though the AUST-02 relative abun-
dance decreased between start-of-treatment and end-of-
treatment, this strain exhibited greater or equal in-vitro
resistance to these antibiotics than the AUST-06 and
AUST-07 strains that emerged in sputum during treat-
ment. These unexpected results emphasise the poor cor-
relation between in-vitro susceptibility testing and in-vivo
response [38–40] and suggest some strains harbour alter-
native mechanisms, such as alginate overproduction and
adaptive resistance that enable persistence despite aggres-
sive antibiotic treatment of exacerbations [11, 41–45]. In
addition, other virulence determinants may impact the
host inflammatory response and co-infection with other
CF pathogens [46–48]. Such factors could potentially
favor the selection of AUST-06 during intravenous anti-
biotic treatment. Furthermore, phenotypic traits could
generally be assigned to a particular strain type, but more
isolates are required to confirm this observation and relate
findings to the clinical course [11, 49].
While more than 2000 P. aeruginosa isolates were

genotyped, the results must be interpreted with caution
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given the small number of patients attending a single
centre involved. A further limitation is that sputum was
not collected during clinical stability, before the onset of
the exacerbation. Therefore, the proportions of strains at
clinical stability before and after an exacerbation could
not be compared. Sputum may also not be ideal for infer-
ring the overall airway P. aeruginosa load or population
composition as it may not represent all lung compart-
ments, and whilst bronchoscopic sampling enables collec-
tion of regional P. aeruginosa populations, this method is
too invasive for routine use [50]. Fluctuations in the popu-
lation composition might represent regional changes in P.
aeruginosa airway density and local micro-environmental
conditions, altered mucus volume or variations in sputum
sampling within the lung [37]. The patients had advanced
lung disease and were treated with different antibiotic
regimens, which may also affect the dynamics and evolu-
tion of mixed-strain infections. Furthermore, despite con-
firming AUST-02 by culture sweep at study entry, using a
random culture approach, in two patients who had previ-
ously had chronic AUST-02 infection, AUST-02 was not
subsequently identified in the genotyping of 48 randomly
selected colonies, and only AUST-06 and AUST-01 were
detected. It is possible AUST-02 might have constituted a
minority of the P. aeruginosa population in these cases at
the time of study recruitment, and therefore, were not
selected because of limitations in sampling.
Further work will now be conducted to assess the rela-

tive abundance of shared strains directly in sputum
using high-resolution molecular approaches and with
larger study populations across a range of disease sever-
ities and other CF centres to validate the findings. This
will extend to investigating intra-strain diversity and
temporal dynamics, including an AUST-02 strain sub-
type (M3 L7) that we described recently [51].
This exploratory study provides novel data characteris-

ing the temporal dynamics of a P. aeruginosa mixed-
strain population during and after intravenous antibiotic
treatment of exacerbations. Various commonly shared
strains from throughout Australia, alone or in combin-
ation, were identified in individual patients. Together,
the data show the rapidly changing strain heterogeneity
of pulmonary exacerbations, raising further questions
over whether acquiring shared P. aeruginosa strains is a
marker or cause of more advanced CF lung disease.
Ultimately, the much-needed answers to these questions
will assist with refining treatments and existing infection
control policies within CF centres.

Conclusions
Within CF airways, multiple co-existing sublineages
evolve gradually from a single dominant P. aeruginosa
strain overtime. Combining in-depth sputum culture
and genotyping techniques, we now also show that

patients harbouring the AUST-02 strain may have other
unrelated, but commonly shared, P. aeruginosa strains
whose relative abundance with one another may change
rapidly in a sustained and unpredictable manner during
antibiotic treatment.
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