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Abstract

Background: One forth whole-world population is infected with Mycobacterium tuberculosis (Mtb), but 90% of them
are asymptotic latent infection without any symptoms but positive result in IFN-γ release assay. There is lack of ideal
strategy to distinguish active tuberculosis (TB) and latent tuberculosis infection (LTBI). Some scientist had focused
on a set of cytokines as biomarkers besides interferon- gamma (IFN-γ) to distinguish active TB and LTBI, but with
considerable variance of results. This meta-analysis aimed to evaluate the overall discriminative ability of potential
immune molecules to distinguish active TB and LTBI.

Methods: PubMed, the Cochrane Library, and Web of Science databases were searched to identify studies
assessing diagnostic roles of cytokines for distinguishing active TB and LTBI published up to August 2018. The
quality of enrolled studies was assessed using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2).
The pooled diagnostic sensitivity and specificity of each cytokine was calculated by using Meta-DiSc software. Area
under the summary receiver operating characteristic curve (AUC) was used to summarize the overall diagnostic
performance of each biomarker.

Results: Fourteen studies with 982 subjects met the inclusion criteria, including 526 active TB and 456 LTBI patients.
Pooled sensitivity, specificity and AUC for discriminating between active TB and LTBI were analyzed for IL-2 (0.87,
0.61 and 0.9093), IP-10 (0.77, 0.73 and 0.8609), IL-5 (0.64, 0.75 and 0.8533), IL-13 (0.75, 0.71 and 0.8491), IFN-γ (0.67,
0.75 and 0.8031), IL-10 (0.68, 0.74 and 0.7957) and TNF-α (0.67, 0.64 and 0.7783). The heterogeneous subgroup
analysis showed that cytokine detection assays, TB incidence, and stimulator with Mtb antigens are main influence
factors for their diagnostic performance.

Conclusions: The meta-analysis showed cytokine production could assist the distinction between active TB and
LTBI, IL-2 with the highest overall accuracy. No single biomarker is likely to show sufficiently diagnostic performance
due to limited sensitivity and specificity. Further prospective studies are needed to identify the optimal
combination of biomarkers to enhanced diagnostic capacity in clinical practice.
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Background
Tuberculosis (TB) is still an urgent public health threat
and a leading cause of death in spite of worldwide
application of vaccination. It has been estimated that
approximately a fourth of the world’s population is
infected with Mycobacterium tuberculosis (Mtb) [1]. The
majority of infected individuals are able to control the
infection and remain asymptomatic, establishing a state
of latent TB infection (LTBI). But approximately 5 to
10% LTBI patients develop into active TB due to reacti-
vation and resuscitation of dormant bacilli indicating
that persons with LTBI are the largest reservoir of infec-
tious source after activation [2]. Thus, the development
of rapid and accurate new diagnostic methods that can
detect Mtb infection, especially distinguish between
active TB and LTBI, is essential for intensifying the fight
against TB and implementing the End TB Strategy [3, 4].
Diagnosis of TB status is challenging due to its diverse

clinical forms and outcomes [2, 5]. Current active TB
diagnosis relies on microbiologic detection of the pathogen,
radiological imaging or clinical manifestations. Measure-
ment of host immune responses, like the tuberculin skin
test (TST) that is the intracutaneous injection of purified
protein derivative (PPD) into the forearm, and interferon-
gamma (IFN-γ) release assays (IGRAs) including the Quan-
tiFERON®-TB Gold In-Tube (QFT) assay and T-SPOT.TB
test, remains the common diagnosis for TB infection [6].
However, the TST bears limited specificity due to fail in
identifying non-tuberculous mycobacteria (NTM) as well as
Bacille Calmette-Guérin (BCG) vaccination [7, 8]. Although
the T-cell-based IGRAs have higher specificity than the
traditional TST, they remain relatively insensitive and con-
siderable indetermining results especially in immunocom-
promised individuals and young children [9, 10]. Another
significant limitation of both TST and IGRAs is unable to
distinguish between active TB and LTBI, and this greatly
hampers the early treatment and control of TB [11]. Conse-
quently, an immunodiagnostic test to discriminate the
infection statues is urgent required and would be a major
advance for clinical care.
Mounting data showed that the numerous cytokines

and chemokines played an important role in cellular im-
mune responses to Mtb infection [12–14]. Only measur-
ing IFN-γ response by IGRAs may leave out other key
molecules in Mtb infection diagnosis [15]. Additional
biomarkers have been investigated to improve clinical
diagnosis of TB and assessment of disease status. Several
studies proved that interleukin (IL)-2, IFN-γ-inducible
protein of 10 kDa (IP-10), IL-5 and IL-10 had promising
diagnostic performance for TB infection (including both
active TB and LTBI) [16–19]. Importantly, some cytokines
were shown potential diagnostic value in distinguishing of
patients with active disease and LTBI, such as macrophage
inflammatory protein (MIP)-1β [18], or tumor necrosis

factor (TNF-α), IL-12 p40 and IL-17 [20]. It also suggested
that combination of biomarker could be more sensitive
than single markers for differentiating between the various
stages of TB infection [17, 19, 21]. Although several
markers have been suggested for diagnosing TB infection
as well as differentiate between active TB and LTBI, each
marker showed heterogeneity in specificity and sensitivity
in different studies. To verify the diagnostic values of each
biomarker in TB infection is critical for the economical
selection of proper item for clinical practice, especially to
provide better diagnosis performance in implying the
combination of biomarkers.
In the light of these limitations, we present a system-

atic review and meta-analysis of the literature according
to evidence-based highest-standard criteria on the accur-
acy of different biomarkers for differentiating active TB
and LTBI, to determine their diagnostic performance
and operational characteristics.

Methods
The systematic review was conducted following the guide-
lines of the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses statement (PRISMA) [22] checklist.

Literature search strategy
Medline (using PubMed as the search engine), the
Cochrane Library, and Web of Science databases were
searched by two independent researchers for relevant
articles published up to August 2018. The following
Medical Headings and/or text words were used as search
terms: “Mycobacterium tuberculosis or tuberculosis or
TB” AND “biomarker* or marker*or cytokine” AND
“sensitivity or specificity or accuracy”. We also checked
manually the reference lists in the original and review
articles to identify additional studies.

Study screening and selection
Candidate studies were assessed through the title and
abstract checking. Then the potentially relevant studies
were carefully read with the full-text to determine
whether could be included or not. Disagreements were
resolved by discussion between the two researchers.
Original studies were included that met the following

criteria: (1) Original studies were assessed the accuracy
of cytokine levels for distinguishing between active TB
and LTBI; (2) The reference standards were clearly
described and each individual were diagnosed by using
the reference tests; (3) Sufficient data were used to
calculate the true positive (TP), false positive (FP), true
negative (TN) and false negative (FN); (4) The studies
were published in English. Conference proceedings,
review articles, letters to the editor were excluded.
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Data extraction and quality assessment
The following data were extracted from the finally
included studies: author, country, publication year, diag-
nostic standard, HIV status, test methods, sensitivity and
specificity. For each study, 2 by 2 tables showing rates of
TP, FP, FN and TN. The quality of included studies was
evaluated by two researchers using the Quality Assess-
ment of Diagnostic Accuracy Studies-2 (QUADAS-2)
tool [23]. Disagreements were resolved by consensus. A
study that had no domain with a high risk of bias and
no domain with high applicability concerns was regarded
as a high-quality study.

Statistical analysis
Standard methods recommended for the diagnostic
accuracy of meta-analyses were used [24]. The following
measures of test accuracy were calculated each individ-
ual study: sensitivity, specificity, diagnostic odds ratio
(DOR), together with 95% confidence intervals (CIs).
Summary receiver operating characteristic (SROC) curve
was constructed for each cytokine in each study. Overall
diagnostic performance of that cytokine was assessed as
the area under the curve (AUC) [25].
Heterogeneity between included studies was evaluated

with the Chi-squared test and Inconsistency (I-squared)
statistic, p < 0.01 or I2 > 50% indicated significant heterogen-
eity, which was further analyzed through meta-analysis. We
chose the appropriate statistical analysis model (random-ef-
fects model or fixed-effects model) for meta-analysis accord-
ing to the result of heterogeneity analysis [26]. If there were
enough studies, subgroup analysis was used to analyze po-
tential heterogeneity between studies for a specific cytokine.

The potential publication bias of included studies was
assessed by Deeks’s funnel plot [27]. All statistical tests
were two-sided, with p < 0.05 taken as the threshold of
statistical significance. Data were analyzed by using the
software of STATA 12 (StataCorp, College Station, TX,
USA) and Meta-DiSc software (version 1.4).

Results
After database searching and selection criterial, our
systematic review and meta-analysis enrolled 14 studies
examining the ability of cytokine production to distin-
guish between active TB and LTBI [16, 28–40]. Specific-
ally, 8 studies with 11 independent data detected IL-2
levels [29, 31–34, 38–40], 8 studies for IP-10 represent-
ing 10 independent data [28, 30, 35–40], 6 studies for
IFN-γ representing 8 independent data [28, 29, 33, 38–
40], 3 studies for IL-13 representing 4 independent data
[28, 29, 38]. The detection of IL-5, IL-10 and TNF-α
were available from 3 independent studies. Other cyto-
kines were excluded for our meta-analysis because rele-
vant data resource was less than 3. The study search and
selection flow chart was shown in Fig. 1.

Characteristics and quality of included studies
Overall, the selected 14 studies included 982 subjects,
comprising 526 active TB and 456 LTBI patients for
this meta-analysis. Diagnosis of active TB and LTBI in
all studies was based upon bacteriology, clinical and
radiology evidence, IGRAs and/or TST, which are consid-
ered “clinical diagnosis standard”. The cytokine detection
methods included enzyme-linked immunosorbent assay
(ELISA), Luminex, enzyme-linked immunospot (ELISPOT)
and Real Time Polymerase Chain Reaction (RT-PCR).

Fig. 1 The study search and selection flow chart
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Among these studies, 4 were performed in high TB inci-
dence countries. The cytokine production was stimulated
with different antigens, 2 studies with L-alanine dehydro-
genase (AlaDH) in addition to Mtb-specific antigens (early
secretory antigenic target-6 (ESAT-6), culture filtrate
protein 10 (CFP-10), and TB7.7 antigens), 1 study with
either Mtb-specific antigens or purified protein derivative
(PPD), and the other one by AlaDH only. The rest of
studies used Mtb-specific antigens only. The summary of
included studies was shown in Table 1. Further, on the
basis of patient selection, index test, reference standard,
flow and timing, the risk of bias and applicability concerns
were assessed by the QUADAS-2 tool. It was found that
most studies had low risk of bias and an acceptable level of
applicability. The result was presented in Fig. 2.

Meta-analysis results
The forest plots of sensitivity and specificity for IL-2,
IP-10, IL-5, IL-13, IFN-γ, IL-10 and TNF-α in dis-
criminating between active TB and LTBI were shown
in Fig. 3a-g. None of them showed less sensitivity
compare to IFN-γ, even the top specificity in IFN-γ.
The I-square statistic was used to detect potential
heterogeneity among studies. The I2 values for both
sensitivity and specificity were above 50% for the
seven cytokines, indicating that significant heterogen-
eity existed among the various studies for each cyto-
kine. It is necessary to analyze the possible interfering
factors for such heterogeneity.
The diagnostic accuracy values of cytokines were

assessed in a SROC curve, in which the summary op-
erating point represents the maximum polymerization
spot of sensitivity and specificity. The SROC curves
for IL-2, IP-10, IL-5, IL-13, IFN-γ, IL-10 and TNF-α
were present in Fig. 4a-g. The AUCs of IL-2, IP-10,
IL-5, IL-13, IFN-γ, IL-10, and TNF-α were 0.9093,
0.8609, 0.8533, 0.8491, 0.8031, 0.7957 and 0.7783,
respectively. Among all cytokines, IL-2 showed the
highest diagnostic accuracy. IP-10, IL-5, IL-13 and
IFN-γ showed an acceptable high diagnostic accuracy.
The overall diagnostic indexes of IL-2, IP-10, IL-5, IL-

13, IFN-γ, IL-10 and TNF-α for discriminating between
active TB and LTBI were summarized in Table 2.

Subgroup analysis
To explore the factors behind the heterogeneity of
sensitivity and specificity in Fig. 3, stratified (subgroup)
analysis was performed using Meta-DiSc 1.4 software. In
the enrolled tests, there were 11, 10 and 8 independent
data for IL-2, IP-10 and IFN-γ detection, respectively. It
is adequate for subgroup analysis. The rest markers
under-investigated were short in the data collection
which is insufficient for the subgroup analysis. So,

subgroup analysis was performed for these three cyto-
kines based on the factors of cytokine detection assays,
TB incidence, and stimulator with Mtb antigens. As
shown in Table 3, there are variabilities in sensitivity
and specificity in each subgroup. When stratified by
cytokine detection assays, ELISA showed better accuracy
in IL-2 and higher sensitivity for IFN-γ detection (sensi-
tivity 84%) for distinguishing between active TB and
LTBI compared to other detection assays. In IP-10 de-
tection, Luminex showed an acceptable high sensitivity
(82%) and specificity (80%). However, the poor specifi-
city of the RT-PCR assay was found in both IL-2 (14%)
and IP-10 detection (18%). As well as low sensitivity of
ELISPOT was found in IFN-γ detection (44%).
Considering the population with different incidence of

tuberculosis, we performed stratified basing on TB inci-
dence. IP-10 and IFN-γ detection were less sensitive for
distinguishing between active TB and LTBI in areas with
high incidence of tuberculosis. However, IFN-γ detection
showed high specificity (81%) in areas with high TB inci-
dence. Compared with the high prevalence area of TB,
the detection sensitivity of IL-2, IP-10 and IFN-γin the
low prevalence area of TB was higher (90% vs 75, 82% vs
53, and 86% vs 45%, respectively). Moreover, when
stratified by stimulator of Mtb antigens, AlaDH antigen
showed the better accuracy in IL-2 detection for distin-
guishing between active TB and LTBI (sensitivity of
92%, specificity of 92%) compared to Mtb -specific anti-
gens and PPD. However, IFN-γ detection was found
poor sensitivity and specificity with response to AlaDH
antigen, as well as acceptable sensitivity and specificity
with response to Mtb-specific antigens.

Publication bias assessment
The Deeks’ test indicated no evidence of bias among the
studies for any cytokines meta-analyzed (Table 4). The
funnel plots also showed low risk of publication bias
(Supplementary Material: Figure S1).

Discussion
There is a great need for profiling biomarkers, even
biomarker panels, in addition to IFN-γto improve TB
diagnosis to facilitate quick and correct treatment imple-
mentation. However, there are few studies to work on it.
We identified the diagnostic performance of each cyto-
kine with the hope that our study will pave a road to
certain which variables as critically essential for TB
diagnosis in several settings elsewhere. In current meta-
analysis, IL-2 had the highest diagnostic accuracy with
total 90% AUC. And IP-10, IL-5, IL-13 and IFN-γ
showed an acceptable diagnostic accuracy. Our system-
atic analysis data added the confidence to distinguish
active TB and LTBI through fully assessment of the host
immune response and combined biomarkers provided
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Table 1 The summary of included studies

Cytokines Author (year) Country
(incidence)

Subjects (ATB/
LTBI: n)

Detection
methods

HIV
status

Stimulator with Mtb
antigens

TP
(n)

FP
(n)

FN
(n)

TN
(n)

IL-2 Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 30 22 1 7

Wu, J 2016 [39] China (high) Adults (25/36) Luminex NA PPD 21 15 4 21

Kamakia, R 2017 [29] Kenya (high) Adults (19/16) Luminex NA Mtb-specific antigens 14 1 5 15

Movahedi, B 2017 [33] Iranian (high) Adults (33/33) ELISPOT negative Mtb-specific antigens 23 19 10 14

Movahedi, B 2017 [33] Iranian (high) Adults (33/33) ELISPOT negative AlaDH 25 7 8 26

Biselli, R 2010 [31] Italy (low) Adults (20/20) ELISA negative Mtb-specific antigens 18 1 2 19

Chiappini, E 2012 [32] Italy (low) Children (25/21) ELISPOT NA AlaDH 25 4 0 17

Della Bella, C 2018 [34] Italy (low) Adults (73/88) ELISPOT NA ESAT-6 63 56 10 32

Della Bella, C 2018 [34] Italy (low) Adults (73/88) ELISPOT NA CFP-10 59 40 14 48

Della Bella, C 2018 [34] Italy (low) Adults (73/88) ELISPOT NA Ala-DH 70 0 3 88

Kim, S 2015 [40] Korea (low) Adults (28/22) RT-PCR negative Mtb-specific antigens 27 19 1 3

IP-10 Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 23 14 8 15

Wu, J 2016 [39] China (high) Adults (25/36) Luminex NA PPD 19 12 6 24

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) Luminex NA Mtb-specific antigens 23 0 10 20

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) Luminex NA Mtb-specific antigens 31 2 2 18

Petrone, L 2018 [35] Italy (low) Adults (36/31) ELISA negative Mtb-specific antigens 21 12 15 19

Wergeland, I 2015 [36] Norway (low) Adults (65/34) Luminex positive Mtb-specific antigens 65 0 0 34

Wergeland, I 2015 [36] Norway (low) Adults (65/34) Luminex negative Mtb-specific antigens 46 6 19 28

Amanatidou, V 2012 [30] Athens (low) Children (54/53) ELISA negative Mtb-specific antigens 45 11 9 42

Nonghanphithak, D
2017 [37]

Thailand (high) Adults (48/38) ELISA negative Mtb-specific antigens 20 11 28 27

Kim, S 2015 [40] Korea (low) Adults (28/22) RT-PCR negative Mtb-specific antigens 28 18 0 4

IL-5 Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 27 14 4 15

Kamakia, R 2017 [29] Kenya (high) Adults (19/16) Luminex negative Mtb-specific antigens 14 1 5 15

Won, E. J 2016 [16] Korea (low) Adults(36/15) Luminex negative Mtb-specific antigens 14 0 22 15

IL-13 Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 17 13 14 16

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) Luminex NA Mtb-specific antigens 33 8 0 12

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) Luminex NA Mtb-specific antigens 26 3 7 17

Kamakia, R 2017 [29] Kenya (high) Adults (19/16) Luminex negative Mtb-specific antigens 11 1 8 15

IFN-γ Suzukawa, M 2016 [38] Japan (low) Adults (31/29) ELISA negative Mtb-specific antigens 28 12 3 17

Wu, J 2016 [39] China (high) Adults (25/36) ELISPOT NA Mtb-specific antigens 13 4 12 23

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) ELISA NA Mtb-specific antigens 31 8 2 12

Jeong, Y. H 2014 [28] Korea (low) Adults (33/20) ELISA NA Mtb-specific antigens 29 5 4 15

Kamakia, R 2017 [29] Kenya (high) Adults (19/16) ELISA NA Mtb-specific antigens 10 1 9 15

Movahedi, B 2017 [33] Iranian (high) Adults (33/33) ELISPOT negative Mtb-specific antigens 11 5 22 28

Movahedi, B 2017 [33] Iranian (high) Adults (33/33) ELISPOT negative AlaDH 16 12 17 21

Kim, S 2015 [40] Korea (low) Adults (28/22) RT-PCR negative Mtb-specific antigens 20 6 8 16

IL-10 Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 20 3 11 26

Wu, J 2016 [39] China (high) Adults (25/36) Luminex NA PPD 20 15 5 21

Won, E. J 2016 [16] Korea (low) Adults(36/15) Luminex negative Mtb-specific antigens 23 3 13 12

TNF-α Wu, J 2016 [39] China (high) Adults (25/36) Luminex NA PPD 20 17 5 19

Suzukawa, M 2016 [38] Japan (low) Adults (31/29) Luminex negative Mtb-specific antigens 9 2 22 27

Kim, S 2015 [40] Korea (low) Adults (28/22) RT-PCR negative Mtb-specific antigens 27 12 1 10

ATB Active tuberculosis, LTBI Latent tuberculosis infection, Mtb-specific antigens Combination of 3 antigens, including early secretory antigenic target-6
(ESAT-6), culture filtrate protein 10 (CFP-10), TB7.7, AlaDH L-alanine dehydrogenase, PPD Purified protein derivative, TP True positive, FP False positive,
FN False negative, TN True negative, NA Not available
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enhanced diagnostic capacity in clinical practice. To our
knowledge, this is the first systematic review and meta-
analysis for assessment of immune molecules’ diagnostic
accuracy in the distinction of active TB and LTBI.
It is well known that Th1-type immune response and

relevant cytokines play a critical protective role in the host
defense against Mtb infection, especially IFN-γ, IL-2 and
TNF-α [39, 41, 42]. However, IFN-γdetection is not ideal
in our data with sensitivity of 0.67, and specificity of 0.75.
In contrast, IL-2 levels had greater sensitivity, but with
comparable lower specificity in the discrimination of active
TB and LTBI (Fig. 3a). With their diagnosis strength, we
believed that IL-2 + IFNγ combination may be an idea
strategy due to the compensation of each other. Several
studies have supported that IL-2/IFN-γ ratio has the
potential to be a useful value to distinguish between active
TB and LTBI [17, 31, 43]. The diagnostic value of the IL-2/
IFN-γ ratio was based on the dynamics of functional T-cell
signatures that antigen clearance are typically associated

with IL-2-dominant T-cell responses, while high antigen
loads are associated with IFN-γ-dominant T-cell responses
[44]. The diagnostic value of the IFN-γ and IL-2 in
discrimination of active TB and LTBI need further
investigation. We proposed that a panel with additional
molecules might be optimal besides the combination of
IFN-γ and IL-2.
In our meta-analysis, other biomarkers were also eval-

uated for their sensitivity and specificity in distinguishing
between active TB and LTBI. IL-10 can suppress T-cell
proliferation and IFN-γproduction, which maybe initiate
the activation of LTBI. Decreased IL-10 expression was
found to release the suppression to Th1 immunity in ac-
tive TB patients [39]. Further, in chronic mycobacterial
infections, a higher proportion of IL-10+ CD4+ T cell
subsets are found [39, 45]. In our analysis, IL-2 and IL-
10 pattern was suggested to discriminate active TB and
LTBI [39]. However, IL-10 detection was only found in
3 studies, with low sensitivity and specificity. The

Fig. 2 Summary of QUADAS-2 assessments of included studies. QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2
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Fig. 3 Forest plots of sensitivity and specificity of each cytokine for discriminating between active TB and LTBI. a IL-2, b IP-10, c IL-5, d IL-13,
e IFN-γ, f IL-10, g TNF-α. The point estimates of sensitivity and specificity from each study are shown as solid circles. Error bars indicate 95%
confidence intervals (CIs). Circles are proportional to study size. The pooled estimate is denoted by the diamond at the bottom
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potential of IL-10 alone or in combination with other
biomarkers for discriminating active TB and LTBI needs
to be further evaluated. IP-10 is a chemokine that
promotes Th1-type CD4+ T cells responses and IFN-γ
upregulation, attracts monocytes and activated lympho-
cytes to inflammatory foci. Current studies reported that
IP-10 contributes to the necrosis of tuberculous granu-
lomas by recruiting the immune cells and inhibiting
angiogenesis [46–48]. A number of studies have pre-
viously highlighted the diagnostic potential of IP-10 in
distinguishing between active TB and LTBI [28, 35, 36].
Our data showed IP-10 identified active TB and LTBI with
sensitivity of 77 and 73% specificity, indicating IP-10 has
potential in differential diagnosis between TB diseases.

Previous studies have mentioned that the combination
panel of fractalkine, IFN-γ, IL-4, IL-10 and TNF-α could
distinguish active TB and LTBI [38, 49]. Another study
found that the combination of TNF-α, IL-2 and IP-10
had the strongest diagnostic potential to differentiate
active TB and LTBI [40]. These results all indicated that
multiple cytokine pattern may improve the ability to de-
tect various TB disease stages. More prospective studies
are still necessary to identify the ideal combination.
Among our candidate cytokines, a few studies have

been conducted on IL-5 and IL-13 detection. Based on
the results obtained from our analysis, we reported that
the sensitivity of two cytokines were 64 and 75%, and
the specificity were 75 and 71%, respectively, in

Fig. 4 Summary Receiver Operating Characteristic curves of each cytokine for discriminating between active TB and LTBI. a IL-2, b IP-10, c IL-5, d
IL-13, e IFN-γ, f IL-10, g TNF-α. Each solid circle represents each study in the meta-analysis. The curve is the regression line that summarizes the
overall diagnostic accuracy. SROC = summary receiver operating characteristic; AUC = area under the curve; SE (AUC) = standard error of AUC;
Q* = an index defined by the point on the SROC curve where the sensitivity and specificity are equal, which is the point closest to the top-left
corner of the ROC space; SE (Q*) = standard error of Q* index

Table 2 Pooled means of sensitivity and specificity, diagnostic odds ratio (DOR), area under the curve (AUC) for each cytokine

Cytokine Sensitivity (95% CI) Specificity (95% CI) DOR (95% CI) AUC

IL-2 0.87 (0.83–0.90) 0.61 (0.57–0.66) 13.62 (5.34–34.73) 0.9093

IP-10 0.77 (0.72–0.81) 0.73 (0.68–0.78) 12.07 (4.453–32.73) 0.8609

IL-5 0.64 (0.53–0.74) 0.75 (0.62–0.85) 11.93 (4.22–33.72) 0.8533

IL-13 0.75 (0.66–0.83) 0.71 (0.60–0.80) 12.56 (1.82–86.82) 0.8491

IFN-γ 0.67 (0.61–0.73) 0.75 (0.68–0.80) 7.44 (3.57–15.51) 0.8031

IL-10 0.68 (0.58–0.78) 0.74 (0.63–0.83) 8.20 (3.75–17.94) 0.7957

TNF-α 0.67 (0.56–0.77) 0.64 (0.53–0.74) 6.18 (2.58–14.81) 0.7783
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discriminating active TB and LTBI. Thus, these cyto-
kines may also be a good candidate for differential diag-
nosis of active TB and LTBI.
The I2 test for the pooled sensitivity and specificity

indicated that there is heterogeneity during the data
analysis in our study. Stratified (subgroup) analysis for
IL-2, IP-10 and IFN-γ based on cytokine detection assay,
population with different TB incidence, stimulator with
Mtb antigens. Surprisingly, we found that the accuracy
of cytokine detection assays varied in different cytokine
measurement. ELISA is good for IL-2 and IFN-γ detec-
tion, while IP-10 preferred Luminex detection with higher
sensitivity and specificity. In contrast, both RT-PCR and
ELISPOT did not reach the expectation regarding to the
diagnostic performance in certain cytokines (Table 3).
The results indicated that detection method is critical for
different biomarkers in their diagnostic capacity.
Our results displayed the diagnostic value of certain

cytokine varied at different area with different TB inci-
dence. IP-10 and IFN-γ detection were less sensitive for
distinguishing between active TB and LTBI in areas with
high incidence of tuberculosis than low ones, even IFN-
γdetection showed higher specificity. However, the distin-
guishing sensitivity of IL-2, IP-10 and IFN-γwere better in
the low prevalence area of TB. Therefore, proper selection
of cytokines or panels according to areas with different
incidence of tuberculosis is necessary in help to improve
the ability to distinguish between active TB and LTBI.
The Mtb-antigens were used as stimulators for cytokine

detection. In our subgroup analysis, our data supported that
AlaDH antigen is better compared to other Mtb-specific
antigens and PPD, especially in IL-2 production. AlaDH
antigen had different modified conformation in latent and
active TB [50]. Since this antigen is missing in M. bovis and
in BCG, it is highly specific to Mtb. Thus Mtb AlaDH
might be a better candidate as a stimulator in cytokine
production to discriminate between active TB and LTBI.
Of course, our subgroup analysis did not fully cover the
variability found in cytokine assay results across studies.
Other factors, such as background TB disease, technician
skill and experience or ethnic background could account
for the heterogeneity.

Several limitations should be considered when interpret-
ing the results. First, our literature search was limited to
published studies that had probably missed some of the
conference literature. Second, subgroup analysis of IL-5, IL-
13, IL-10 and TNF-α was restricted by limited original data.
The third limitation was stemmed from the study design of
each original study. The non-prospective study designs may
impair the quality of a study for diagnostic test accuracy.

Conclusions
In conclusion, our systematic review and meta-analysis
shows that a number of Mtb-specific cytokine responses,
including IL-2, IP-10, IL-5, IL-13, IFN-γ, IL-10 and
TNF-α, allow the distinction between individuals with
active TB and LTBI. Importantly, IL-2 showed the high-
est overall accuracy. Single cytokine is hard to achieve a
sufficient diagnostic performance to be considered as a
diagnostic biomarker due to limited sensitivity and spe-
cificity. Larger, prospective studies are needed to identify
the optimal combinations of cytokines before confirming
the clinical utility of them as diagnostic markers to
differentiate active TB and LTBI. Our findings can fur-
ther help to elucidate the differences in pathogenesis
and immunology between active and latent infections.
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Additional file 1: Figure S1. The Deeks’ funnel plots for the
assessment of potential publication bias in each interleukin. The plot
shows the symmetric distribution of the log of diagnostic odds ratios
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