CORRECTION Open Access

Correction to: Severe but not moderate hyperoxia of newborn mice causes an emphysematous lung phenotype in adulthood without persisting oxidative stress and inflammation

Anke Kindermann¹, Leonore Binder¹, Jan Baier², Beate Gündel¹, Andreas Simm¹, Roland Haase² and Babett Bartling^{1*}

Correction to: BMC Pulm Med

https://doi.org/10.1186/s12890-019-0993-5

Following publication of the original article [1], the authors flagged that the article had published with an error in 'Table 1'.

The error was that in the row **PND60-survival**^a the value '80' was erroneously repeated, and the special symbol (*) contained in the value '68*' was erroneously repeated after the value.

Table 1 has now been corrected in the published article. Please find the corrected Table 1 below for reference.

Author details

¹Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany. ²Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.

Published online: 21 January 2020

Reference

 Kindermann, et al. Severe but not moderate hyperoxia of newborn mice causes an emphysematous lung phenotype in adulthood without persisting oxidative stress and inflammation. BMC Pulm Med. 2019;19:245. https://doi. org/10.1186/s12890-019-0993-5.

The original article can be found online at https://doi.org/10.1186/s12890-019-0993-5

¹Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany Full list of author information is available at the end of the article

^{*} Correspondence: babett.bartling@uk-halle.de

Table 1 General parameters of PND60 mice treated with neonatal hyperoxia

Parameter		Normoxia		mH moderate Hyperoxia		sH severe Hyperoxia	
PND60-survival ^a	(%)	80		68 [*]		72	
Physical status							
body weight ^b	(g)	19.3	± 2.80	19.4	± 2.40	19.2	± 2.90
wheel-running activity ^c	$(km\cdot d^{-1})$	7.32	± 1.71	7.68	± 2.23	7.62	± 2.38
Blood values							
erythrocytes ^b	$(n\cdot10^{3}\cdot mm^{-3})$	6.93	± 1.05	8.03	± 0.57	7.22	± 0.91
platelets ^b	$(n\cdot10^{5}\cdot mm^{-3})$	1.59	± 0.88	4.41	± 3.83*	2.31	± 2.11
leukocytes ^b	$(n\cdot10^{3}\cdot mm^{-3})$	9.78	± 2.53	9.65	± 3.79	9.68	± 2.78
Lung values							
lung-to-body weight ^b	$(.10^{-3})$	1.29	± 0.28	1.28	± 0.26	1.37	± 0.28
lung wet-to-dry weight b		8.32	± 1.43	7.84	± 1.66	8.80	± 1.38
BAL cells b, d	$(n \cdot 10^3)$	52.6	± 32.9	101	± 59.1*	58.2	± 40.7
BAL protein ^b	$(\mu g \cdot ml^{-1})$	88.9	± 35.4	80.5	± 36.6	96.2	± 38.7
BAL IgM ^b	(ng·ml ⁻¹)	15.1	± 13.1	16.0	± 9.50	18.9	± 14.7
BAL sRAGE ^b	$(\mu g \cdot ml^{-1})$	5.46	± 1.49	5.39	± 1.65	5.94	± 2.62

Data are means \pm SD with *P < 0.05 vs. N group

 $^{^{}a}n = 80$ in N group, n = 50 in mH group, n = 40 in sH group

 $^{^{\}rm b}n \ge 28$ each group

n = 25 each group. The respiratory function is more challenged by faster than slower running speeds. As female mice run faster and reach higher running distances than male mice [20], we only studied females $^{\rm d}$ Cytological investigations showed alveolar monocyte-like cells as major cell type (80%) followed by differentiated macrophages (19%), granulocytes (0.8%) and

lung epithelial cells (0.2%). The relative quantity of these cell types was not altered in the mH or sH group