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Abstract

Background: To investigate whether, in patients hospitalized for COPD, the addition of social factors improves the
predictive ability for the risk of overall 30-day readmissions, early readmissions (within 7 days after discharge), and
late readmissions (8-30 days after discharge).

Methods: Patients (aged 240 years) hospitalized for COPD were identified in the Medicare Current Beneficiary
Survey from 2006 through 2012. With the use of 1000 bootstrap resampling from the original cohort (training-set),
two prediction models were derived: 1) the reference model including age, comorbidities, and mechanical
ventilation use, and 2) the optimized model including social factors (e.g., educational level, marital status) in
addition to the covariates in the reference model. Prediction performance was examined separately for 30-day,
early, and late readmissions.

Results: Following 905 index hospitalizations for COPD, 18.5% were readmitted within 30 days. In the test-set, for
overall 30-day readmissions, the discrimination ability between reference and optimized models did not change
materially (C-statistic, 0.57 vs. 0.58). By contrast, for early readmissions, the optimized model had significantly
improved discrimination (C-statistic, 0.57 vs. 0.63; integrated discrimination improvement [IDI], 0.018 [95%Cl, 0.003—
0.032]) and reclassification (continuous net reclassification index [NRI], 0.298 [95%C| 0.060-0.537]). Likewise, for late
readmissions, the optimized model also had significantly improved discrimination (C-statistic, 0.65 vs. 0.68; IDI, 0.026
[959%Cl 0.009-0.042]) and reclassification (continuous NRI, 0.243 [95%CI 0.028-0.459]).

Conclusions: In a nationally-representative sample of Medicare beneficiaries hospitalized for COPD, we found that
the addition of social factors improved the predictive ability for readmissions when early and late readmissions
were examined separately.
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Background

Chronic obstructive pulmonary disease (COPD) is a major
public health problem [1, 2]. In the US, there are approxi-
mately 700,000 hospitalizations each year [3] with one-
fifth resulting in readmission within 30 days [4]. To curb
the healthcare burden, the Hospital Readmissions Reduc-
tion Program (HRRP) has started penalizing hospitals for
higher than expected rate of 30-day readmission after
COPD hospitalization [5]. In addition to hospital-level
quality improvement efforts, identification of patients at
high risk for readmission and the development of inter-
ventions (e.g., care transition interventions) are of great
interest to many stakeholders [6-9].

As with claim-based models to predict 30-day readmission
after hospitalization for other HRRP-targeted conditions
(e.g., heart failure) [10-13], several studies have identified
predictors and developed prediction models for readmis-
sions in patients hospitalized for COPD [8, 9, 14—16]. These
models incorporated the basic demographics (e.g., age, sex),
comorbidities, and in-hospital management (e.g., medication
use), with reporting C-statistics of 0.63 to 0.72 [14, 16].
However, these prediction models have been criticized for
their lack of detailed social factors (e.g., educational level,
marital status) [13, 17-19], and for the assumption that 30-
day readmission is a homogeneous process [17, 18, 20]. In-
deed, the effects of inpatient management on the readmis-
sion risk diminishes rapidly after discharge, reaching a nadir
at post-discharge day 7 [18]. Despite the emerging
evidence suggesting the involvement of non-clinical
factors — such as social factors — in readmission
processes [21-23], little is known about whether
these factors improve prediction ability and how
their contribution varies by timing after COPD
hospitalization. In addition, while several studies
built prediction models using administrative datasets
(e.g., Nationwide Readmission Database [NRD]),
these datasets do not include the information on de-
tailed social factors [9, 13, 17-20].

To address this knowledge gap, we used nationally-
representative sample of Medicare beneficiaries to test the
hypothesis that the addition of social factors to prediction
models quantitively improves the predictive ability for 30-
day readmission risks in patients hospitalized for COPD.
We also examined separately the predictive ability for
early readmissions (within 7 days after discharge) and late
readmissions (8—30 days after discharge).

Methods

Study design and setting

This is a retrospective cohort study of adults hospitalized
for COPD using the Medicare Current Beneficiary Sur-
vey (MCBS) Access to Care Files from January 2006
through December 2012, provided by the Centres for
Medicare & Medicaid Services (CMS) [24]. In brief, the
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MCBS is a panel survey of a nationally representative
sample of Medicare beneficiaries, supplemented with
Medicare enrolment and claims data. Each year, approxi-
mately 20,000 beneficiaries are inducted to the MCBS as
a panel and they are interviewed over a 2-year period
[24]. In contrast to Medicare claims data, the MCBS has
advantages that it contains the data on socioeconomic
characteristics. The unique MCBS data allowed us to de-
rive prediction models with and without social factors,
and to compare their performance on predicting read-
missions. Additional details of the MCBS may be found
elsewhere [24].

In the current study, to enable follow-up of specific
patients, inpatient claims for individual patients were
linked with the use of the Health Insurance Claim
Number-Beneficiary Identification Code. The beneficiary
identification code was then used to link beneficiary en-
rolment and demographics information from the Medi-
care Master Beneficiary Summary File. Patient
comorbidities are characterized using the International
Classification of Diseases, Ninth Revision, Clinical Modi-
fication (ICD-9-CM) diagnosis codes. This study was ap-
proved by the institutional review boards of
Massachusetts General Hospital with an informed con-
sent waiver due to the retrospective nature of this study.
We reported the study according to the TRIPOD
(Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) statement
for reporting multivariable prediction model develop-
ment and validation [25].

Study population

We identified all unplanned COPD hospitalizations
(index hospitalizations) made by patients aged =40 years.
We defined the unplanned hospitalization for COPD
using ICD-9-CM diagnostic codes (ICD-9-CM diagnosis
codes: 491.21, 491.22, 491.8, 491.9, 492.8, 493.20, 493.21,
493.22, and 496), or those with a primary diagnosis of
respiratory failure (/CD-9-CM diagnosis codes: 518.81,
518.82, 518.84, and 799.1) and secondary diagnosis of
COPD (Table S1) [16]. When a patient met any of the
following criteria according to the CMS publicly-
reported readmission measures [16], we excluded the pa-
tient from the analysis: patients who left the hospital
against medical advice, those who were transferred to
another acute care facility, those who died during the
index hospitalization, those without continuous enrol-
ment in Medicare fee-for-service for 1 year prior to the
date of the index hospitalization, and those without at
least 30 days post-discharge enrolment in Medicare fee-
for-service. When a patient had multiple readmissions
after the index hospitalization for COPD, we used only
the first readmission within 30 days of discharge as a re-
admission. Therefore, additional readmissions within the
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30-day period were not counted as readmissions or
index hospitalizations) [16]. To maintain the consistency
with the CMS publicly-reported readmission measures,
we considered subsequent hospitalizations occurring
after 30 days from discharge as index hospitalizations if
they met the inclusion criteria [16].

Outcome measures

The outcome measure was a readmission at any hospital
for any reason occurring within 30 days of discharge from
the index hospitalization for COPD, according to the
CMS definition [16]. Early readmissions (within 7 days
after discharge) and late readmissions (8—30 days after dis-
charge) were also examined separately [18, 26—28]. In the
primary analysis for late readmissions, we excluded pa-
tients who had an early readmission because these pa-
tients did not have a late readmission as we considered
only the first readmission within 30 days of discharge as a
readmission. We consolidated the principal discharge
diagnoses (> 14,000 ICD-9-CM diagnosis codes) at the re-
admission into 285 mutually exclusive diagnostic categor-
ies using the Agency for Healthcare Research Quality’s
Clinical Classifications Software (CCS) [29], according to
previous studies [30-32].

Candidate predictor variables and model derivation

To derive the prediction models with and without social
factors, we generated 1000 bootstrap samples (n =905)
from the original cohort (training set) and fitted two lo-
gistic regression models. The two prediction models
were 1) the reference model based on the CMS readmis-
sion measurements [16] and 2) the optimized model in-
cluding social factors in addition to the variables used in
the reference model. In the bootstrapping, the current
study created 1000 bootstrap samples (each bootstrap
sample has 7 =905) that are consisted of subsamples
from the original 905 patients with replacement. In each
bootstrap sample, we derived a model to estimate regres-
sion coefficients. We have repeated this procedure 1000
times (for each of 1000 bootstrap samples), and averaged
the regression coefficients across the 1000 models. These
averaged regression coefficients were then used to de-
velop the final prediction models. In the reference
model, according to the CMS readmission measure-
ments, we included patient’s age, comorbidities, and
mechanical ventilation use (Table S2). Because of the
limited sample size of the study (n = 905; readmissions =
167), we grouped 38 comorbidities into 10 categories ac-
cording to the organ system (i.e., cardiac, central ner-
vous system, endocrine, gastrointestinal, hematologic,
musculoskeletal, neoplasms, psychiatric, respiratory, and
others; Table S2). Respiratory comorbidities include
sleep apnea, respiratory arrest, cardio-respiratory failure
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and shock, fibrosis of lung and other chronic lung dis-
order, and pneumonia [16].

In the optimized model, based on a priori knowledge
and clinical plausibility [33-38], we included social fac-
tor variables that are available in the MCBS, in addition
to the variables used in the reference model above (ie.,
the optimized model included patient’s age, comorbidi-
ties, mechanical ventilation use, and all of the following
variables). As the use of arbitrary statistical cutoffs for
variable selection (e.g., univariate screening) has been
criticized [39, 40], we have selected the predictors in the
final model based on a priori knowledge. The included
social factors were educational level (8th grade or less,
some high school education, high school graduate, and
others), marital status (current spouse), number of chil-
dren (0, 1, and >2), limitations on activities and social
life, poverty status (annual household income less than
$25,000), and patient residence (urban vs. rural). The
poverty threshold of <$25,000 was used based on the
Supplemental Poverty Measure published by the U.S.
Census Bureau [41]. The urban—rural status of the pa-
tient residence was defined according to the National
Center for Health Statistics guidelines [42]. We have en-
sured no multicollinearity by calculating variance infla-
tion factors (all, < 1.5). Additionally, to examine whether
social factors improve prediction ability, we did not add
variables other than social factors.”

Prediction model performance

Next, to examine the performance of each prediction
model, we fit the prediction models to the original co-
hort (test set). We examined the discrimination ability
using C-statistic and integrated discrimination improve-
ment (IDI) [43] and compared the reclassification ability
using the continuous net reclassification index (NRI)
[43]. We also measured the prediction performance of
each model by using decision curve analysis. The deci-
sion curve analysis is a measure that takes into account
the different weights of different misclassification types
with a direct clinical interpretation (e.g., trade-offs be-
tween under-estimation and over-estimation of the risk
of readmission in each model) [44, 45]. Specifically, the
relative impact of false-negative (under-estimation of the
readmission risk) and false-positive (over-estimation of
the readmission risk) results given a threshold probabil-
ity (or clinical preference) was accounted to yield the net
benefit of each model. The net benefit of each model
over a specified range of threshold probabilities of out-
come is graphically displayed as a decision curve. We
used bootstrapped samples to yield bias-corrected (over-
fitting-corrected) estimates of predicted vs. observed
values based on subsetting predictions on nonparametric
smoothers by using R rms package [46]. For logistic
models, a nonparametric calibration curve was estimated
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over a sequence of predicted values, and error referred
to the difference between the predicted values and the
corresponding bias-corrected calibrated values. In the
sensitivity analysis, for late readmissions, we repeated
the analysis including patients with early readmissions
(ie, including patients who already had an outcome
event). A two-tailed P <0.05 was considered statistically
significant. We analysed data using STATA 15.0 (Stata-
Corp, College Station, TX) and R 3.4.1 (R Foundation).
We used pROC package for plotting the receiver oper-
ator curves [47], and Hmisc package for calculating IDI
and NRI [48].

Results

Characteristics of the cohort

From 2006 to 2012, there were a total of 136,024 sub-
jects recorded in the MCBS data. Of these, 2049 subjects
had at least one hospitalization for COPD, correspond-
ing to 1034 hospitalizations for COPD as the primary
discharge diagnosis. Among the 1034 hospitalizations,
905 hospitalizations (640 subjects) met the criteria for
index hospitalization (28% were made by multiple hospi-
talizations). At the index hospitalization, the median age
was 76 vyears, 54% were women, and 85% were non-
Hispanic white (Table 1). As for the socioeconomic
characteristics, approximately 50% had an education
level of high school graduate or higher, one-third were
currently married, and 90% had >1 child. Additionally,
approximately two-thirds reported limitations on activ-
ities and social life and were living in metropolitan area.
Within 30 days after hospital discharge, 18.5% (95%ClI,
16.1-21.1%; n =167) of these patients were readmitted;
7.9% (95%CI, 6.4—9.9%; n =72) were readmitted within
7 days after discharge (early readmissions) and 10.5%
(95%CI 8.7-12.7%; n = 95) were readmitted during 8-30
days after discharge (late readmissions). The most fre-
quent reason of the 30-day readmission was COPD
(22%), followed by pneumonia (13%) and congestive
heart failure (11%) (Table S3). Respiratory-related read-
missions (e.g., acute exacerbation of COPD, pneumonia)
accounted for approximately 50% of readmissions.

Predictive models and their performance on overall 30-
day readmissions
In the training set, the derived models predicting the
overall 30-day readmissions with corresponding odds ra-
tios (ORs) are shown in Table 2. In the reference model,
cardiac disease comorbidity was the only significant pre-
dictor for 30-day readmission. In the test set, the C-
statistic of the derived reference model was 0.57 (95%CI,
0.52-0.62; Fig. 1a).

In the optimized model including the social factors,
cardiac disease comorbidity was also significant pre-
dictor for 30-day readmissions. The C-statistic of the
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optimized model was 0.58 (95%CI, 0.54-0.63; Fig. 1a).
Compared with the reference model, there were no sig-
nificant differences in discrimination (IDI, 0.009 [95%CI,
-0.001 to 0.020]) and reclassification (NRI, 0.135
[95%CI, - 0.031 to 0.302]) (Table 3). The model calibra-
tion curves for each model are shown in Figure S1.

Predictive models and their performance on early
readmissions

In the reference model predicting early readmissions (re-
admission within 7 days after discharge), the use of
mechanical ventilation was the only significant predictor
(Table 2). By contrast, in the optimized model, poverty
status was significant predictor for lower risks of early
readmissions. In the test set, the C-statistic of the de-
rived reference model was 0.57 (95%CI, 0.50—0.64; Fig.
1b) and that of the optimized model was 0.63 (95%ClI,
0.56-0.70). The IDI and NRI indicated that, compared
to the reference model, the optimized model had signifi-
cantly higher discrimination (IDI, 0.018 [95%ClI, 0.003 to
0.032]) and reclassification (continuous NRI, 0.298
[95%CI, 0.060 to 0.537]) (Table 3). The model calibra-
tion curves for each model are shown in Figure S2.

Predictive models and their performance on late
readmissions

After excluding 72 index hospitalizations who had early
readmissions, in the both models predicting late readmis-
sions (readmission during 8—30 days after discharge), car-
diac disease comorbidity and respiratory comorbidity
were significant predictors. Additionally, in the optimized
model (Table 2), poverty status was a predictor for higher
risks of late readmission. In the test set, the C-statistic of
the derived reference model was 0.65 (95%CI, 0.60-0.71;
Fig. 1c) and that of the optimized model was 0.68 (95%ClI,
0.62-0.73). The IDI and NRI indicated that, compared
with the reference model, the optimized model had sig-
nificantly higher discrimination (IDI, 0.026 [95%CI, 0.009
to 0.042]) and reclassification (continuous NRI, 0.243
[95%CI, 0.028 to 0.459]) (Table 3). The model calibration
curves for each model are shown in Figure S3. In the sen-
sitivity analysis including early readmissions, these find-
ings did not change materially (Table S4 and Figure S4).

Decision curve analysis

In the decision curve analysis, compared with the refer-
ence model, the optimized model had a greater net
benefit in the 15-20% range of probability of overall 30-
day readmission (Figure S5 A). Additionally, the opti-
mized models also had a greater net benefit in predicting
both early and late readmissions in a plausible range of
readmission probabilities (Figure S5 B and C).



Goto et al. BMC Pulmonary Medicine (2020) 20:107

Table 1 Baseline characteristics of the original cohort
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Overall Readmitted Not readmitted
Characteristics n =905 n =167 n=738
Age (year) median (interquartile range) 76 (68-82) 74 (68-82) 76 (68-82)
Sex
Male 415 (46%) 71 (43%) 344 (46%)
Female 490 (54%) 96 (57%) 394 (53%)
Non-Hispanic white race 770 (85%) 152 (20%) 618 (84%)
Smoking status
Current smoker 194 (21%) 31 (16%) 163 (22%)
Former smoker 524 (58%) 89 (17%) 435 (59%)
Never smoker 187 (21%) 47 (25%) 140 (19%)
Comorbidities*
Cardiac diseases 561 (62%) 115 (21%) 446 (60%)
Central nervous system diseases 50 (6%) 11 (22%) 39 (5%)
Endocrine diseases 293 (32%) 45 (15%) 248 (34%)
Gastrointestinal diseases 246 (27%) 46 (19%) 200 (27%)
Hematologic diseases 130 (14%) 22 (17%) 108 (15%)
Musculoskeletal diseases 36 (4%) 10 (28%) 26 (4%)
Neoplasms 34 (4%) 3 (9%) 31 (4%)
Psychiatric diseases 270 (30%) 50 (19%) 220 (30%)
Respiratory diseases 275 (30%) 45 (16%) 230 (31%)
Other diseases 52 (6%) 10 (19%) 42 (6%)
Mechanical ventilation use during the index hospitalization 56 (6%) 13 (23%) 43 (6%)
Socioeconomic factors
Educational level
8th grade or less 157 (17%) 36 (23%) 121 (16%)
Some high school education 232 (26%) 46 (20%) 186 (25%)
High school graduate 491 (54%) 79 (16%) 412 (56%)
Not responded 25 (3%) 6 (24%) 19 (3%)
Marital status (currently married) 313 (35%) 52 (17%) 261 (35%)
Number of children
0 99 (11%) 22 (22%) 77 (10%)
1 317 (35%) 23 (17%) 294 (40%)
22 489 (54%) 122 (18%) 367 (50%)
Limitations on activities and social life 584 (65%) 108 (19%) 476 (64%)
Poverty (annual household income <$25,000) 531 (59%) 103 (19%) 428 (58%)
Living in metropolitan area 564 (62%) 97 (17%) 467 (63%)

* 38 chronic conditions (defined by the Centres for Medicare and Medicaid Services Readmission Measurements; Table S2) categorized into 10 categories

according to the organ systems

Discussion

By using nationally-representative sample of US Medi-
care beneficiaries, we found a potential benefit of adding
social factors to the CMS-based reference model to im-
prove the predictive ability for readmission within 30
days after COPD hospitalization. When we examined
early and late readmissions separately, the predictive

ability of optimized models were also significantly higher
than that of the corresponding reference model. The de-
cision curve analysis indicates the greater net benefit of
optimized model over the reference model for thresholds
between 15 and 20% of probability of 30-day readmis-
sion. Additionally, the contribution of predictive factors
(e.g., cardiac comorbidity, poverty status) to the
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Table 2 Prediction model derivations, according to readmission outcomes in the training set using 1000 bootstrap samples

Predictors

Late readmission

Overall 30-day readmission

Early readmission
(within 7 days after discharge)

(8-30 days after discharge)

Reference Optimized Reference Optimized Reference Optimized

model® model® model® model® model® model®

OR (95%Cl) OR (95%Cl) OR (95%Cl) OR (95%Cl) OR (95%Cl) OR (95%Cl)
Age (continuous variable), year 0.99 (0.98-1.01) 0.99 (0.98-1.01) 1.00 (0.98-1.03) 1.00 (0.98-1.02) 0.99 (0.97-1.01) 0.99 (0.97-1.01)
Respiratory diseases 1 (0.55-1.1 0.80 (0.54-1.16) 144 (0.86-2.39) 140 (0.83-2.32) 048 (0.27-0.83) 047 (0.26-0.81)
Cardiac diseases 149 (1.03-2.19) 152 (1.04-2.24) 0.83 (0.50-1.39)  0.81 (0.48-1.37) 239 (144-4.13) 262 (1.56-4.57)
Neoplasms 042 (0.10-1.21) 042 (0.10-1.21) 0.70 (0.11-2.40)  0.71 (0.11-2.48) 0.24 (0.01-1.19)  0.25 (0.01-1.23)
Endocrine diseases 1(048-1.04) 0.70 (0.47-1.02) 0.77 (044-131) 0.74 (041-1.26) 0.67 (0.40-1.08) 069 (041-1.13)
Gastrointestinal diseases 1.04 (0.70-1.51)  1.04 (0.70-1.53) 0.86 (048-149) 0.86 (047-1.51) 1.17 (0.71-1.88)  1.12 (0.67-1.84)
Hematologic diseases 095 (0.57-1.54) 090 (0.53-1.47) 1.02 (048-1.98) 0.96 (0.44-1.88) 0.88 (044-1.63) 0.89 (044-1.67)
Psychiatric diseases 0.99 (0.67-143) 0.95 (0.64-1.39) 132 (0.77-2.20) 1.17 (0.68-1.99) 0.78 (047-1.27) 0.80 (048-1.32)
Central nervous system diseases 1.39 (0.66-2.72) 144 (0.68-2.85) 1.37 (046-3.31) 9 (0.46-3.42) 1.31 (047-3.06) 147 (0.52-3.50)
Musculoskeletal diseases 1.85(0.83-3.87) 1.80 (0.79-3.79) 1.99 (0.65-4.99) 7 (0.57-4.58) 1.68 (0.54-4.35)  1.90 (0.60-5.09)
Other diseases 1.03 (047-2.04)  1.09 (0.50-2.20) 1.05 (0.30-2.74) 3(035-331) 101 (037-2.33) 097 (035-2.29)
Mechanical ventilation use 1.38 (0.69-2.59)  1.38 (0.69-2.62) 232 (1.01-4.83) 229 (0.98-4.88) 0.73 (0.21-1.91)  0.69 (0.20-1.83)

Socioeconomic factors
Educational level
8th grade or less
Some high school education
High school graduate
Not responded
Marital status (currently married)
Number of children
0
1
22

Limitations on activities and
social life

Poverty status

(Annual household income <$25,000)

Living in metropolitan area

1 (reference)
0.82 (049-1.38)
067 (042-1.10)
1.15 (0.38-3.10)
0.85 (0.56-1.26)
1 (reference)

0.72 (0.37-142)

0.81 (048-141)
1.00 (0.69-1.46)

0.95 (0.63-1.42)

0.79 (0.55-1.13)

1 (reference)

1 (reference)

0.94 (0.45-1.99) 0.66 (0.35-1.25)
0.59 (0.30-1.20) 1.22 (047-3.00)
1.03 (021-3.72) 0.89 (046-1.75)
0.59 (0.32-1.06) 1.22 (0.73-2.03)

1 (reference)

1.10 (047-2.66)
062 (0.31-1.37)
0.97 (0.58-1.66)

047 (0.26-0.82)

0.71 (042-1.19)

1 (reference)

045 (0.16-1.22)
0.99 (049-2.13)
1.03 (0.63-1.70)

1.78 (1.03-3.13)

081 (0.51-1.31)

Abbreviations: OR Odds ratio, C/ Confidence interval
*The reference model includes the variables derived from the Centres for Medicare and Medicaid Services Readmission Measurements

PThe optimized model includes socioeconomic factors in addition to the variables in the reference model. Details of comorbidities are shown in Table 52

readmission risk differed between early and late read-
missions. To the best of our knowledge, this is the
first study that has investigated the incremental bene-
fit of social factors on predicting the risk of readmis-
sions — including early and late readmissions — in
patients hospitalized for COPD. Given that the
current one-size-fits-all approach (i.e., HRRP) has not
been successful at lowering numbers of 30-day COPD
readmissions [49, 50], our findings demonstrating the
heterogeneity of the 30-day readmission should help
identify patients at high risk for readmission and in-
form the development of more targeted preventive
interventions.

Despite the evidence suggesting the associations be-
tween social factors and readmission risks in various dis-
ease conditions (e.g., heart failure) [33-37], most studies
in the COPD population have focused on patient and hos-
pital factors as predictor for readmission [8, 9, 14—16]. Of
these, few studies have used other factors to develop
models predicting readmissions [7, 14]. For example, in an
US-based study of patients with COPD (age 40—64 years)
using a commercial insurance database, Sharif et al. re-
ported that the C-statistic of prediction model for 30-day
readmissions improved to 0.72 after adding provider-level
(e.g., medication prescriptions) and system-level (e.g., hos-
pital length-of-stay) factors to their reference model that



Goto et al. BMC Pulmonary Medicine (2020) 20:107 Page 7 of 10
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Fig. 1 Prediction performance of the reference and optimized models on readmission within 30 days after hospitalization for COPD, according to
readmission outcomes. a The receiver operating characteristic (ROC) curves for predicting overall 30-day readmissions after hospitalization for
COPD. There were no material differences in the area-under-curve (AUC) between reference model (AUC, 0.57) and optimized model (AUC, 0.58).
b The ROC curves for predicting early readmissions within 7 days after hospitalization for COPD. The addition of social factors to the reference
model improved the AUC from 0.57 to 0.63. ¢ The ROC curves for predicting late readmissions during 8-30 days after hospitalization for COPD.
The addition of social factors to the reference model improved the AUC from 0.65 to 0.68

had the C-statistic of 0.68 [14]. Studies using large datasets ~ 40-65 years with COPD [55]. While the previous study
(e.g., NRD, Medicare data) have shown that some proxy had the different design and outcomes (COPD exacerba-
social factors (i.e., quartiles of household income that are  tion vs. 30-day readmission), the importance of social fac-
estimated by ZIP code, insurance status) were related to  tors (e.g., poverty) in the association of and prediction for
COPD readmissions [13, 51]. However, the NRD and the COPD morbidity risk is consistent. Consequently, our
Medicare data do not include detailed social factors (e.g.,  study corroborates these prior studies, and extends them
marital status, actual income, number of children). In an- by demonstrating, in a nationally-representative sample of
other single-centre retrospective study of 109 Canadian = Medicare beneficiaries, the incremental benefit of social
patients, while the prediction performance was not exam-  factors on the CMS models to predict readmissions in pa-
ined, Wong et al. reported that marital status (single) was  tients with COPD.

a significant predictive factor for readmission following While we found the additional benefit of social factors
hospitalization for COPD [52]. In non-COPD populations,  on predicting both early and late readmission, our find-
(e.g., acute myocardial infarction, heart failure, pneumo- ings also support the heterogeneity of the “30-day re-
nia), the emerging evidence has suggested the importance  admission” outcome. For example, mechanical
of social factors to improve the prediction ability for re-  ventilation use was a predictor for early readmissions
admission risks [22, 37, 53, 54]. In addition, an earlier =~ but not for overall 30-day readmissions or late readmis-
study examined the association of the lower income with  sions. By contrast, cardiac comorbidity and poverty sta-
the risk of acute exacerbation of COPD in patients aged  tus were significant predictors for late readmissions. The

Table 3 Prediction model performance in the test set, according to readmission outcomes

Model performance Overall 30-day readmission Early readmission Late readmission
measures (within 7 days after discharge) (8-30 days after discharge)
Reference Optimized Reference Optimized Reference Optimized
model model model model model model
C statistic (95%Cl) 057 0.58 057 0.63 0.65 0.68
(0.52 to 0.62) (0.54 to 0.63) (0.50 to 0.64) (0.56 to 0.70) (0.60 to 0.71) (062 to 0.73)
Integrated discrimination - 0.009 - 0018 - 0.026
improvement (95%Cl) (—0.001 to 0.020) (0.003 to 0.032) (0.009 to 0.042)
Continuous net reclassification - 0.135 - 0.298 - 0.243
improvement, (95%Cl) (=0.031 to 0.302) (0.060 to 0.537) (0.028 to 0.459)

Abbreviation: Cl Confidence interval

Models were derived from 1000 bootstrap resamples

For the model comparisons, the integrated discrimination improvement and net reclassification improvement values of > 0 indicate that, compared to the
reference model, the optimized model has better discrimination and reclassification performance
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relative decrease in the effect of acute clinical factors
and in-hospital factors (such as the use of mechanical
ventilation) over time is clinically plausible. Indeed, the
effects of inpatient care on the risk for readmissions di-
minish rapidly within a week after discharge [18], with a
recovery from symptoms of COPD exacerbation [28]. In
contrast, as a patient returns to the community, the rela-
tive importance of social factors (e.g., poverty) and
chronic conditions (e.g., comorbid cardiac diseases) in-
creases over time. While poverty status was associated
with a lower risk of early readmission in this study, it is
possible that poverty functioned as a barrier to accessing
health care due to the costs of seeking health care, which
include not only out-of-pocket spending on care but also
transportation costs [56]. Consequently, patients with
poverty may have avoided having ambulatory health care
and/or presenting to hospitals until the later period, which
would reduce the rate of early readmission but increase
the rate of late readmission. The latter finding can also be
explained by the observations from earlier studies. For ex-
ample, the literature has suggested that poverty is associ-
ated with the lack of health literacy affecting adherence to
post-discharge instructions [54, 57]. Without social sup-
port, some patients would not be able to cope with the
post-hospital syndrome, a transient condition of general-
ized risk after hospitalization [58, 59]. By contrast, positive
social support provided by family members has been asso-
ciated with improved quality of life [60] and better pul-
monary rehabilitation adherence [61], resulting in reduced
late readmissions. While marital status and number of
children may be indicators for social support, living status
(e.g., living alone) has been reported as an important prog-
nostic factor. Indeed, an observational study reported that,
patients with COPD who lived alone had lower levels of
physical activity and lower rates of pulmonary re-
habilitation participation compared with patients who
live with other family members [62]. Taken together,
hospital readmission is a complex construct involving
multiple factors, such as patient factors, inpatient and
outpatient care, and social factors. Accordingly, to re-
duce readmissions and improve outcomes in patients
with COPD, it is imperative to developing multifa-
ceted strategies targeting each of underlying con-
structs — e.g., provision of high quality of inpatient,
transition, and outpatient care, improvement in access
to ambulatory care after hospital discharge, and social
support in the community [63, 64].

Potential limitations

Our study has several potential limitations. First, as with
other studies using claims data, misclassification of hos-
pitalizations is possible. However, the definitions using
the CMS publicly-reported readmission measure [11]
have a high specificity and positive predictive value (both
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>90%) [65]. Furthermore, the Medicare data are widely
used for clinical research because the data are rigorously
tested and considered accurate. Second, we did not ac-
count for several clinical information including the
chronic severity of COPD since the MCBS and Medicare
data do not contain such clinical information. Third,
while the predictive ability of the optimized model was
not high, the study objective was not to develop clinical
prediction models but, rather, to examine the incremen-
tal benefit of social factors on predicting the readmission
risk in the population. Fourth, because of the relatively
limited sample size and unavailability of unique dataset
that has social factors, we used bootstrap samples to de-
velop the model (rather than the use of an external sam-
ple). In addition, the limited sample size precluded us
from estimating the detailed predictive contribution
(e.g., the predictive contribution of specific cancers for
the risk of readmission). Yet, formal validation of our
study in separate populations is necessary. In addition,
the grouping of 38 comorbidities into 10 categories ac-
cording to the organ system may not yield the same pre-
dictive ability with the original model. Fifth, as we
excluded patients who left the hospital against medical
advice according to the CMS readmission measurement.
This might cause selection bias. Lastly, the study sample
comprised Medicare beneficiaries, and, therefore, our in-
ference may not be generalizable to non-Medicare indi-
viduals with COPD or other non-US settings where
social factors and their effects may differ [66]. Nonethe-
less, our study population accounts for 70% of hospitali-
zations for COPD in the US [4].

Conclusions

Based on nationally-representative sample of Medicare
beneficiaries hospitalized for COPD, we found that the
addition of social factors to the prediction model quanti-
tatively improves the predictive ability for early and late
readmissions. We also found that inpatient care factor
(e.g., the use of mechanical ventilation) was a predictor
for early readmissions while comorbidity and social fac-
tors (e.g., poverty) were predictors for late readmissions,
suggesting that the readmission is a complex and hetero-
geneous construct. Despite the modest predictive ability
for the clinical use, the improvement of predictive ability
has important implications for researchers and policy
makers. For researchers, our observations should facili-
tate further investigations into better identification of
patients with COPD at high risk for readmissions. For
policy-makers, our findings underscore the importance
of continued efforts to develop and implement prevent-
ive strategies (e.g., high quality inpatient, transition, and
outpatient management, as well as optimization of post-
discharge environment) to reduce readmissions in this
high-risk population.
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