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Abstract 

Background:  Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease that seriously threatens 
people’s health, with high morbidity and mortality worldwide. At present, the clinical diagnosis methods of COPD are 
time-consuming, invasive, and radioactive. Therefore, it is urgent to develop a non-invasive and rapid COPD severity 
diagnosis technique suitable for daily screening in clinical practice.

Results:  This study established an effective model for the preliminary diagnosis of COPD severity using lung sounds 
with few channels. Firstly, the time-frequency-energy features of 12 channels lung sounds were extracted by Hilbert–
Huang transform. And then, channels and features were screened by the reliefF algorithm. Finally, the feature sets 
were input into a support vector machine to diagnose COPD severity, and the performance with Bayes, decision tree, 
and deep belief network was compared. Experimental results show that high classification performance using only 
4-channel lung sounds of L1, L2, L3, and L4 channels can be achieved by the proposed model. The accuracy, sensitiv-
ity, and specificity of mild COPD and moderate + severe COPD were 89.13%, 87.72%, and 91.01%, respectively. The 
classification performance rates of moderate COPD and severe COPD were 94.26%, 97.32%, and 89.93% for accuracy, 
sensitivity, and specificity, respectively.

Conclusion:  This model provides a standardized evaluation with high classification performance rates, which 
can assist doctors to complete the preliminary diagnosis of COPD severity immediately, and has important clinical 
significance.
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Background
COPD is a common preventable and treatable dis-
ease characterized by continuous airflow restriction. 
Airflow restriction develops progressively, related to 
the increased chronic inflammatory response to toxic 

particles or gases in the airway and lungs. COPD has high 
morbidity and mortality worldwide and has become the 
fourth leading cause of death in China and the third lead-
ing cause of death globally [1]. According to the global 
initiative for chronic obstructive lung disease (GOLD), in 
2020, the prevalence of COPD was 11.7%, and there were 
approximately 3 million deaths each year. As populations 
age in high-income countries and the increase of smok-
ers in developing countries, it is roughly calculated that 
by 2060, over 5.4 million people will die each year from 
COPD and related diseases [2].
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The severity of COPD is graded according to FEV1/
FVC, FEV1%, and symptoms [3]. FEV1 refers to the 
forced expiratory volume in one second, FVC refers to 
the forced vital capacity. FEV1/FVC is a sensitive index 
to evaluate airflow limitation, and FEV1% is a good indi-
cator to evaluate COPD severity. The severity of COPD 
is classified into five grades by GOLD. Patients with 
COPD0 have FEV1% higher than 85%, COPD1 have 
FEV1% higher than 80%, COPD2 have FEV1% between 
50% and 80%, COPD3 have FEV1% between 30% and 
50%, COPD4 have FEV1% less than 30%, or less than 50% 
but suffer from chronic respiratory failure. In addition, 
FEV1/FVC is less than 70% in all patients except patients 
with COPD0.

However, studies have shown that the association 
between patients’ health status, symptoms, and FEV1 
is weak [4, 5]. In addition, the number of classifications 
obtained by this way is excessive, which is rarely used in 
clinical practice. Through communication with doctors, 
it is known that the severity of COPD is often classified 
into three grades of mild, moderate, and severe in clinical 
practice, and then the specific diagnosis and treatment 
plan was determined according to specific symptoms. 
Generally speaking, mild patients will get better after 
taking tracheal relaxants, moderate patients will decide 
outpatient or hospitalization according to specific symp-
toms, and severe patients should be hospitalized imme-
diately or even need ICU rescue. At present, the clinical 
diagnosis of COPD includes pulmonary function exami-
nation, chest X-ray examination, chest CT examination, 
blood gas examination, and other diagnostic methods 
[6–8]. These methods are time-consuming, invasive, and 
radioactive, unsuitable for daily screening. Hence, it is 
urgent to develop a non-invasive and rapid COPD sever-
ity diagnosis technique suitable for daily screening.

Lung sound, as a physiological sound signal produced 
in the process of gas exchange between the human body 
and the outside world, contains a lot of physiological and 
pathological information, representing the health status 
of the human respiratory system. Pulmonary ausculta-
tion plays an essential role in the diagnosis of respiratory 
diseases and their severity. Previous studies have shown 
that pulmonary auscultation can be used as an index for 
preliminary diagnosis of COPD and its severity, worthy 
of clinical promotion and application [9–15]. The tradi-
tional artificial auscultation method requires experienced 
respiratory doctors and is limited by environmental fac-
tors. Therefore, the diagnosis technology of COPD based 
on lung sounds is of great significance to clinical practice 
and research, provides basic theory and experience for 
further development of diagnostic equipment for COPD.

Previously, most studies have used multi-dimen-
sional features in the diagnosis of COPD. For example, 

QianWang et  al. used the transfer learning algorithm 
based on balanced probability distribution and instances 
to diagnose COPD, and the accuracy rate reached 95.2% 
[16]; Jun Ying et  al. utilized DBN to predict the exacer-
bation frequency of COPD, and the accuracy reached 
91.99% [17]. Some studies diagnose COPD based on lung 
sounds, extract features through the short-time Fourier 
transform, wavelet transforms, or HHT, and then use an 
artificial neural network or deep learning algorithm for 
recognition and classification, achieving high accuracy. 
For instance, Morillo et al. inputted the features of lung 
sounds extracted by short-time Fourier transform into 
an artificial neural network classifier to identify COPD, 
and an accuracy of 81.8% has been achieved [18]. Altan 
et al. used the 3D mapping technique to extract features 
and the DBN classifier model to separate the severity of 
two COPD, which is utilized for preliminary diagnosis 
of COPD, with an accuracy of 95.84% [19]. Based on the 
statistical characteristics of HHT of lung sounds, Altan 
et al. used DBN to separate COPD patients from healthy 
subjects with an accuracy of 93.67% [20]. Altan et al. used 
the 3D second-order difference plot to extract charac-
teristic abnormalities on lung sounds and then used the 
deep extreme learning machines classifier to classify 
the severity of COPD, with an accuracy of 94.31% [21]. 
Ahmet extracted the features of lung sounds through 
empirical wavelet transform and then input them into 
many models to distinguish COPD patients from healthy 
subjects [22]. Altan et  al. used HHT to extract the fea-
tures of lung sounds and fed the feature set into the 
proposed Deep ELM with HessELM-AE to distinguish 
COPD patients from healthy subjects, achieving an accu-
racy rate of 92.22% [23].

However, there are still some problems in the current 
research. These methods using multi-dimensional fea-
tures require much information, including lung function, 
health status, BODE index, and risk assessment based on 
the GOLD. The process of collecting information is time-
consuming and requires experienced respiratory doc-
tors, making it difficult to make a preliminary diagnosis 
of COPD quickly. Due to doctors’ experience, human ear 
resolution, and environmental factors, it is challenging 
to diagnose the severity of COPD quickly and accurately. 
The current diagnosis based on lung sounds primar-
ily focuses on separating COPD patients from healthy 
subjects and classifying COPD0 and COPD4, ignoring 
the clinical needs. Although few studies have completed 
five classifications of COPD severity, this classification 
method is rarely used in clinical practice. In addition, 
these researches adopt full-channel lung sounds, which 
increases the difficulty of collection and calculation. 
Moreover, it will lead to over-fitting the model [24] and 
be challenging to achieve a rapid and real-time diagnosis, 
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reducing the practicability and portability of future diag-
nosis equipment and limiting the development of online 
diagnosis tools.

In this paper, firstly, the time-frequency-energy fea-
tures of 12-channel lung sounds were extracted by HHT. 
Then, channels and features were selected by the reli-
efF algorithm to simplify the collection process and the 
number of features. Finally, the feature sets were input 
into SVM, Bayes, decision tree, and DBN to separate 
the auscultation records of mild, moderate, and severe 
COPD patients. This model can complete the preliminary 
diagnosis of COPD severity in a short time through the 
4-channel lung sounds, considerably shortening the diag-
nosis time and saving the cost by canceling some addi-
tional diagnostic tools, which have important clinical 
significance.

The main contributions of this paper are as follows: 

1.	 This study focuses on diagnosing COPD severity, 
categorizing it into clinically common grades: mild 
COPD, moderate COPD, and severe COPD. The 
model proposed in this study is able to reduce the 
diagnosis time, save medical resources, and assist 
doctors in completing the preliminary diagnosis of 
COPD severity. This model has been recognized by 
respiratory doctors in Chest Hospital of Tianjin Uni-
versity and Tianjin Medical University General Hos-
pital in China.

2.	 The channel selection model based on the reliefF 
algorithm is used to determine the optimal channels 
for diagnosing the severity of COPD, which proves 
that use only 4-channel lung sounds of L1, L2, L3, 
and L4 channels that can undertake the diagnosis 
of COPD severity without 12-channels. It reduces 
acquisition difficulty and calculating pressure, con-
tributing to developing portable diagnostic equip-
ment for COPD.

The rest of this paper is structured as follows: The mate-
rials and methods are briefly introduced in “Materials 
and methods” section. “Experimental results” section 
provides the experimental process and results in detail. 
“Discussion” section presents the discussion. The conclu-
sions of this paper and the following work are described 
in “Conclusion” section.

Materials and methods
Database
As a public multimedia respiratory database, Respira-
toryDatabase@TR contains 12-channel lung sounds, 
4-channel heart sounds, spirometry metrics, and chest 
X-rays for each subject [25]. The respiratory data were 

obtained by two pulmonologist clinicians using a Litt-
mann3200 digital stethoscope to record the left (L) and 
right (R) channels in each lung region simultaneously. 
The sampling frequency is 4000Hz, and lung auscultation 
areas are shown in Fig. 1.

The database contains lung sounds of 42 COPD 
patients with varying degrees of severity, ranging in age 
from 38 to 68, including 34 males and 8 females. The 
distribution of COPD patients by gender is shown in 
Table  1. Subjects had never used cigarettes or tobacco 
products, and none of their close relatives had asthma 
or COPD [25]. At the start of each recording, subjects 
were required to cough for the signal synchronization of 
each lung region’s left and right channels. The duration 
of each recording was at least 17s. The labeling of res-
piratory data was determined by two pulmonologist cli-
nicians based on the COPD severity rating given by the 
GOLD. RespiratoryDatabase@TR has an ethical com-
mittee approval confirmed by Mustafa Kemal University, 
Turkey.

Technical architecture
The proposed model in this paper contains four main 
parts: data preprocessing, feature extraction, channel 
selection, and COPD severity diagnosis. The technical 
architecture of our model is shown in Fig. 2. Firstly, the 
12-channel lung sounds are preprocessed by segmenta-
tion and denoising, and the data is enhanced by adding 
noise. Then, the multi-dimensional features are extracted 
by HHT based on ensemble empirical mode decomposi-
tion (EEMD). Next, the channels and features are filtered 
based on the reliefF algorithm. Finally, SVM is used to 

Table 1  The distribution of COPD patients by gender

COPD0 COPD1 COPD2 COPD3 COPD4

Male 4 4 7 6 13

Female 2 1 0 1 4

Fig. 1  Lung auscultation areas
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diagnose the severity of COPD, which is classified into 
mild COPD, moderate COPD, and severe COPD.

Data preprocessing
31 COPD patients with different severity were randomly 
selected from RespiratoryDatabase@TR (6 patients with 
COPD0, 5 patients with COPD1, 5 patients with COPD2, 
5 patients with COPD3, 10 patients with COPD4). Com-
bined with the professional advice of clinicians, it is nec-
essary to auscultation two or three respiratory cycles in 
each auscultation site for pathological significance to 
realize the objective diagnosis. Hence, lung sounds were 
divided into 15 seconds with 60000 sample points in 
each segment for subsequent analysis, and the start point 
of segmentation was set as the first inhalation after the 
coughing peak [20]. Patients with COPD usually produce 
continuous and persistent abnormal lung sounds with 
a frequency above 400Hz [26]. The low-pass filter was 
abandoned to avoid losing important information, and 
only a 7.5Hz first-order Butterworth high-pass filter was 
used to eliminate DC offset.

According to the classification of COPD severity in 
clinical practice, COPD0 and COPD1 are called mild 
COPD, COPD2 and COPD3 are combined as moder-
ate COPD, and COPD4 is severe COPD. The unbal-
anced sample size will lead to the poor training effect 
of the model and can not truly reflect the accuracy and 

recall rate of positive and negative samples. Therefore, to 
ensure a balanced sample size and facilitate subsequent 
classification, the respiratory data of COPD0 patients 
were increased to 10 groups by adding noise. The noise 
was Gaussian white noise with a mean of 0 and a stand-
ard deviation of 1; the noise factor was set at 0.06.

Hilbert–Huang transform
HHT is a new nonstationary and nonlinear signal analy-
sis method proposed by Huang E after an in-depth study 
and summary of previous signal analysis methods [27], 
which has been widely used in the model research of 
disease diagnosis, such as chronic respiratory diseases 
[20, 22, 28] and heart diseases [29]. The method mainly 
includes empirical mode decomposition (EMD), Hilbert 
transform (HT), and its spectral analysis, among which 
EMD is the core part of the algorithm [30].

EMD is a method of adaptively decomposing the sig-
nal into a series of intrinsic mode functions (IMFs) based 
on its characteristics. The implementation steps are as 
follows: 

1.	 Calculate all local extremum points (including maxi-
mum and minimum points) of this signal, and fit 
them respectively to get the upper ( fmax(t) ) and 
lower ( fmin(t) ) envelopes with the cubic spline inter-
polation algorithm.

Fig. 2  The technical architecture of our model
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2.	 The average values of the upper and lower envelopes 
are calculated and used as the mean envelope n(t) of 
the original signal: 

3.	 Subtract the mean envelope n(t) from the unpro-
cessed signal s(t): 

4.	 Determine whether m1(t) is an IMF. If so, 
c1(t) = m1(t) . If not, re-do the analysis of 1) ∼ 3) 
based on this signal until m1(t) is an IMF.

5.	 After obtaining the first IMF using the above method, 
subtract c1(t) from the original signal s(t) to get the 
residual component r1(t) :

6.	 Let r1(t) as the new original signal, IMF2 can be 
obtained through the analysis of 1) ∼ 5) , and so on 
until the predetermined stop criterion is met. The 
EMD decomposition is completed.

Finally, the original signal s(t) is broken down the sum of 
a residual component and a series of IMFs:

EMD has good properties, including adaptability, com-
pleteness, and approximate orthogonality, but it also 
has some shortcomings, the most important of which is 
the mode-mixing problem. In order to avoid this phe-
nomenon, EEMD was used to decompose lung sounds. 
EEMD is essentially a multiple EMD with Gaussian white 
noise. Gaussian white noise has the characteristic of uni-
form spectrum distribution, so adding it to the signal will 
automatically separate the signals of different time scales 
into the corresponding reference scale. The white noise is 
canceled by averaging the corresponding IMFs obtained 
by multiple EMDs [31].

The HT of the signal is the output response xh(t) , 
which is of a continuous-time signal x(t) through a linear 
system with the impulse response h(t) = 1

π t
 . The physical 

meaning of HT is to postpone all frequency components’ 
phrases by 90 degrees.

The analytic function of x (t) ’s HT:

(1)n(t) =
fmax(t)+ fmin(t)

2

(2)m1(t) = s(t)− n(t)

(3)r1(t) = s(t)− c1(t)

(4)s(t) =

n
∑

i=1

ci(t)+ rn(t)

(5)

H(ω, t) = Re

n
∑

i=1

ci(t)e
jθ(t) = Re

n
∑

i=1

ci(t)e
j
∫

ωi(t)dt

Re indicates the real part, ci(t) indicates the instantane-
ous amplitude, and ωi(t) indicates the instantaneous 
frequency. By integrating the time, the Hilbert marginal 
spectrum was obtained:

It accumulates the amplitudes of each frequency, show-
ing the global contribution of each frequency.

By squaring the amplitude of the Hilbert marginal 
spectrum and integrating the frequency, the instantane-
ous energy density IE (t) was obtained:

ReliefF feature selection
Since scale differences among features will affect the 
selection of valuable features, and the subsequent clas-
sification algorithm also requires data normalization, the 
feature sets of samples were normalized. This paper used 
the Mapminmax function in Matlab to normalize the fea-
ture sets to [0,1].

The relief algorithm is a feature weight algorithm, first 
proposed by Kira, which gives different weights to each 
feature, referring to the statistical correlation principle. The 
advantage of the algorithm is simplicity and high accuracy, 
while the disadvantage is that it can only deal with binary 
classification problems [32]. In order to solve the limitation 
of relief, Kononenko proposed the reliefF algorithm. The 
steps of the reliefF algorithm are as shown below: 

1.	 Sample set:S, Sampling times:m, Feature set:F, Near-
est neighbor sample number: k, Category set:L.

2.	 Set the output value as the feature weight vector W 
of each feature.

3.	 Set the initial values of all feature weights as zero and 
the feature weight vector W as an empty set.

4.	 Loop search
	 For i=1 to m, do
	 Select a sample R from the sample set S randomly;
	 For N ∈ L and N  = Label(R) , do
	 Select k nearest neighbor samples Hj (j=1,2, ......, k) 

from the same kind of samples of R and k nearest 
neighbor samples j (j=1,2, ......, k) from the different 
kind of samples of R;

	 End
	 End
5.	 For A=1 to the number of features in feature set F, do
	 Update the weights according to the weight formula;
	 End

(6)h(ω) =

∫ T

0
H(ω, t)dt

(7)IE(t) =

∫ ω2

ω1

H(ω, t)2dω
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Weight formula:

Support vector machine
SVM is an extensively used machine learning algorithm 
that refers to statistical learning theory, suitable for small 
samples, which can account for model complexity and 
learning ability. The core idea of SVM is to use nonlin-
ear kernel functions to map nonlinear problems, which 
can not be separated in low-dimensional feature space, to 
higher-dimensional feature space, and then find a hyper-
plane in high-dimensional feature space to separate dif-
ferent kinds of samples. Thus, the nonlinear problems 
that can not be separated in low-dimensional feature 
space are transformed into the linear problems that can 
be separated in high-dimensional feature space [33]. The 
hyperplane requires to separate different kinds of sam-
ples and maximize the distance of the target point from 
the plane, which can be defined as follows:

In the process of SVM classification, the choice of ker-
nel function is of capital importance. In this paper, radial 
basis kernel function (RBF) was selected:

Experimental setup
The hardware environment is Intel Core i7-9700 
CPU@3.60GHz processor, DDR4 32G memory, NVIDIA 
GeForce RTX 2080Ti 11G graphics card. The Python ver-
sion is 3.7.3, and the Matlab version is R2020a.

Experimental results
The EEMD was used to decompose the pretreated lung 
sounds. The standard of noise deviation is generally set 
as 0.2 times the signal standard deviation [31]. Mean-
while, in the case of an appropriate noise level, when 
the noise number of EEMD is several hundred times, 
the error caused by residual noise will be less than 1%. 
Hence, the standard of noise deviation was set as 0.015 
and the noise number was 100. In this study, lung 
sounds were first processed with EMD. It was found 
that the number of IMFs generated was between 8 and 
10. Besides, 80% of lung sounds had 10 IMFs. In EEMD, 

(8)

cW(A) = W(A)−

∑k
j=1 diff

(

A, R,Hj

)

mk

+

∑

c/∈class(R)

[

p(C)
1−P(class(R))

∑k
j=1 diff

(

A, R,Hj(C)
)

]

mk

(9)H : ωTx + b = 0

(10)K
(

xi, xj
)

= exp

(

−

∥

∥xi − xj
∥

∥

2

2σ 2

)

the number of IMFs is allowed to be specified. Therefore, 
the IMFs’ number was set to 10, and the remaining IMFs 
were added to form the residual signal.  Figure 3 shows 
the decomposition result of EEMD. Lung sound is the 
original signal, IMF1-IMF10 are the 10 IMFs obtained by 
decomposition, IMF11 is the residual signal.

The Hilbert marginal spectrum of each of IMFs was 
calculated, and then the HHT-based statistical charac-
teristics were calculated for each IMF, including stand-
ard deviation, variance, kurtosis, maximum, median, 
mode, mean, minimum, energy, and skewness. Figure 4 
is the Hilbert marginal spectrum of 10 IMFs for a lung 
sound signal. The statistical features, a total of 1200, 
were collected as a dataset.

Standard deviation:

Variance:

Energy:

Kurtosis:

(11)σ =

√

√

√

√

1

N

N
∑

i=1

(xi − µ)2

(12)s
2 =

1

N

N
∑

i=1

(xi − µ)2

(13)E(t) =

∫ T

0
H(ω, t)2dω

Fig. 3  The IMFs obtained by using EEMD to a lung sound with COPD
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Skewness:

The reliefF algorithm was applied to the feature set of 
lung sounds. The features with weights less than 0 were 
eliminated. Then, the weights of respective features were 
added up to get the total weight of each channel, which 
was arranged from big to small. Table 2 shows the sorting 
results of channels under different categories. According 
to Table 2 in the classification of mild COPD and moder-
ate + severe COPD, the most weighted channels were the 
2, 4, 1, and 9, namely L2, L4, L1, and R3 channels. The 
most weighted channels were 4, 3, 12, and 7 to classify 
moderate COPD and severe COPD, namely L4, L3, R6, 
and R1 channels.

By comparing the classification results of SVM using 
different kernel functions, RBF with strong nonlin-
ear mapping ability was selected, and grid-search was 
used to optimize penalty factor C and RBF parameter γ 

(14)Kurt(X) = E

[

(

X − µ

σ

)4
]

(15)Skew(X) = E

[

(

X − µ

σ

)3
]

on the training samples. Finally, C= 10 and γ=0.2 were 
selected in the classification of mild COPD and moderate 
+ severe COPD, C=3 and γ=1.0 in the classification of 
moderate COPD and severe COPD.

Mild COPD/moderate + severe COPD
A total of 15 COPD0 and COPD1 samples were taken, 
labeled as 0. A total of 15 COPD2, COPD3, and COPD4 
samples were taken, marked as 1. Features of the differ-
ent number of optimal channels were selected to form 
feature sets, and the top 50 optimal features of each fea-
ture set were input into SVM, respectively. The train_
test_split function of python was used to randomly select 
30% of the samples as the test set and 70% samples as the 
training set. Due to the small amount of data, the test 
results varied greatly. The average accuracy was obtained 
by repeated calculations 1000 times to ensure the stabil-
ity of the results. The results are shown in Fig. 5A.

As shown in Fig. 5A, when the characteristic quantity 
was set to 50 and the optimal three channels, L2, L4, and 
L1 channels, were selected, we can already get a high 
accuracy rate.

The feature set composed of different quantitative fea-
tures of L2, L4, and L1 channels was input into SVM to 
test the accuracy, and Fig. 5B was obtained. As shown in 
the figure, when the number of features is 25, the accu-
racy rate reaches the highest, 89.13%.

Figure 6A, B show the box plots of IMFs and features 
for mild COPD and moderate + severe COPD classifi-
cation. According to these figures, we can see that when 
the 25 features were used to achieve the highest recogni-
tion performance, the most responsible feature sets were 
IMF3 and IMF6, while IMF7, IMF9, and IMF10 did not 
appear in the feature set at all. For features, the degree 
of responsibility for standard deviation, kurtosis, maxi-
mum, mean, energy, and skewness was similar, while the 
other features were less responsible. Further observation 
revealed that the energy, kurtosis, maximum, and stand-
ard deviation of IMF3 were the most responsible features.

Moderate COPD/severe COPD
The analysis focused on 20 subjects. 5 patients with 
COPD2 and 5 patients with COPD3 were labeled as 0, 
and 10 patients with COPD4 samples were labeled as 1. 
Same as the above analysis method, features of the dif-
ferent number of optimal channels were selected to form 
feature sets, and the top 50 optimal features of each 
feature set were input into SVM, respectively. The cal-
culations were repeated 1000 times to get the average 
accuracy, and Fig. 5C showed these results.

Table 2  The sorting results of channels

Classification mode Channel sort

Mild/Moderate + Severe 2,4,1,9,10,5,6,3,7,11,12,8

Moderate/Severe 4,3,12,7,11,10,8,1,6,5,2,9

Fig. 4  The Hilbert marginal spectrum of IMFs



Page 8 of 13Yu et al. BMC Pulm Med          (2021) 21:321 

As shown in Fig.  5C, when the feature quantity is 50 
and the optimal two channels, namely L4 and L3 chan-
nels, were selected, we can already get a high accuracy 
rate. Therefore, we input feature sets composed of L4 and 
L3 channels into SVM and obtained Fig. 5D by control-
ling the input feature quantity. It can be seen that when 
the optimal 33 features of L4 and L3 channels were input, 
the accuracy rate was the highest, reaching 94.26%.

Figure 6C, D show the box plots of IMFs and features 
for moderate COPD and severe COPD classification. 
According to these figures, we can see that when the 33 
features were used to achieve the highest recognition per-
formance, the most responsible feature sets were IMF3, 
IMF2, and IMF1, IMF7, and IMF8 were less responsible, 
while IMF4, IMF5, and IMF10 did not appear in the fea-
ture set at all. For features, the degree of responsibility 
was similar except that the median value was less respon-
sible, and the mode and minimum value did not appear 
in the feature set. After further observation, it was found 
that the most responsible features were the kurtosis of 
IMF1, the variance and energy of IMF3, and the variance 
and maximum value of IMF2.

In summary, COPD can be diagnosed only by collect-
ing lung sounds of L1, L2, L3, and L4 channels. The clas-
sification of mild COPD and moderate + severe COPD 
required the optimal 25 features of L2, L4, and L1 chan-
nels, with accuracy, sensitivity, and specificity of 89.13%, 

87.72%, and 91.01%, respectively. The classification of 
moderate COPD and severe COPD required the opti-
mal 33 features of L3 and L4 channels, and the accuracy, 
sensitivity, and specificity were 94.26%, 97.32%, 89.93%, 
respectively.

Discussion
In order to evaluate the classification effect of SVM, we 
compared the performance of SVM with Bayes, decision 
tree, and DBN, calculated the confusion matrix of SVM 
under the two classifications, as shown in Tables  3, 4 
and Fig. 7. The classification principle of Bayes is to use 
the Bayes formula to calculate the posterior probability 
through the prior probability of an object, and the class 
with the maximum posterior probability is select as the 
class to which the object belongs. The decision tree is a 
tree-like prediction model in machine learning. Internal 
nodes represent tests on an attribute, each branch rep-
resents a test output, and each leaf node represents a 
category. DBN network is a deep learning network that 
consists of several unsupervised restricted Boltzmann 
machines and a supervised backpropagation network. 
DBN had achieved good results in disease diagnosis by 
using physiological signals such as electrocardiogram 
[34], electroencephalogram [35], and lung sounds [19, 20, 
28].

Fig. 5  Channels and features selection results. A Accuracy of mild COPD and moderate + severe COPD classification using the different number of 
channels. B Accuracy trend of mild COPD and moderate + severe COPD classification using the different feature quantities. C Accuracy of moderate 
COPD and severe COPD classification using the different number of channels. D Accuracy trend of moderate COPD and severe COPD classification 
using the different feature quantities
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Bayes and decision tree used the same feature set 
as SVM, and DBN worked poorly on this feature 
set. The feature set composed of the optimal 200 fea-
tures of 12-channel lung sounds worked best through 
repeated tests. The Bayes model adopted naive Bayes 
with a prior polynomial distribution, alpha=1.0, and 
the prior probability was considered. The decision tree 
model adopted the gradient promotion decision tree, 

the maximum number of iterations was set as 100, and 
the learning rate was 1. The DBN iterated 50 cycles, 
the number of samples for each training was 5, and the 
learning rate was 0.001. In addition, the output func-
tion of DBN was selected as sigmoid. DBN includes an 
input layer, an output layer, and several hidden layers. 
In this paper, two hidden layers were used, of which 
the first layer had 10 neurons and the second layer had 

Table 3  Performance of different machine learning algorithms in the classification of mild COPD and moderate + severe COPD

Model Accuracy Sensitivity Specificity AUC​ F1-Score Kappa

SVM 89.13 87.72 91.01 96.27 89.13 78.66

(87.49–91.05) (85.12–90.48) (89.64–92.54) (95.56–96.98) (87.29–91.03) (74.99–82.09)

Bayes 84.97 82.61 87.34 93.29 84.65 69.94

(83.48–86.47) (80.94–84.29) (85.32–89.37) (92.11–94.46) (83.04–86.26) (68.33–70.16)

Decision Tree 69.25 66.32 72.24 67.88 68.39 38.52

(68.33–70.16) (62.63–70.01) (67.24–77.23) (64.69–71.06) (67.02–69.76) (36.60–40.46)

DBN 71.74 70.08 73.53 77.75 71.27 43.52

(66.42–77.06) (62.99–77.16) (63.54–83.52) (73.52–81.98) (65.92–76.62) (32.90–54.14)

Fig. 6  The box plots of IMFs and features under two classification. A The box plots of IMFs for mild COPD and moderate + severe COPD 
classification. B The box plots of features for mild COPD and moderate + severe COPD classification. C The box plots of IMFs for moderate COPD 
and severe COPD classification. D The box plots of features for moderate COPD and severe COPD classification
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Table 4  Performance of different machine learning algorithms in the classification of moderate COPD and severe COPD

Model Accuracy Sensitivity Specificity AUC​ F1-Score Kappa

SVM 94.26 97.32 89.93 97.54 94.25 88.16

(92.70–95.85) (96.83–98.01) (87.79–92.16) (96.96–98.62) (93.16–95.03) (85.85–90.42)

Bayes 89.37 99.17 79.61 97.75 90.30 78.74

(87.70–91.04) (98.74–99.61) (76.48–82.73) (97.06–98.44) (88.68–91.92) (75.52–81.96)

Decision Tree 70.63 72.69 68.56 68.04 71.20 41.24

(69.07–72.18) (70.13–75.25) (65.09–72.04) (66.56–69.52) (70.17–72.22) (37.79–44.69)

DBN 83.75 87.80 79.66 85.01 84.42 67.45

(80.71–86.78) (83.72–91.87) (74.25–85.06) (82.01–88.01) (81.27–87.57) (61.40–73.49)

Fig. 7  The confusion matrix of SVM under two classifications. A The confusion matrix for mild COPD and moderate + severe COPD classification. B 
The confusion matrix for moderate COPD and severe COPD classification

Fig. 8  The classification performances of multiple machine learning algorithms. A ROC curve under the classification of mild COPD and moderate 
+ severe COPD. B ROC curve under the classification of moderate COPD and severe COPD
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100 neurons, to achieve the highest classification per-
formance. Figure 8 depicts four machine learning algo-
rithms’ receiver operating characteristic (ROC) curves 
under two classifications.

For small samples, it is not liable to exploit the advan-
tage of the model relied on self-learning. Furthermore, 
the traditional machine learning algorithm fully reflects 
that the decision information has more advantages 
in robustness and expansibility. By comparison, it is 
observed that although DBN had achieved good results 
in classifying healthy subjects and COPD patients[18], in 
this study, the performance of DBN even with the use of 
full-channel feature sets was far lower than that of SVM. 
In the two classifications, the classification effect of SVM 
was superior to Bayes, decision tree, and DBN in terms 
of accuracy, sensitivity, specificity, Area Under Curve 
(AUC), F1-score, and Kappa Score. It can also be seen 
from the confusion matrix that SVM had a good classifi-
cation effect under the two classifications.

In this study, the weight of each channel was deter-
mined by the reliefF channel selection model, and COPD 
severity was classified by SVM. The study found that the 
model could obtain a good classification effect by using 
the 4-channel lung sounds of L1, L2, L3, and L4 chan-
nels. The auscultation areas of these 4 channels were 
all located in the back and the left lung region. For this 
reason, we consulted much literature and consulted doc-
tors. Although lung auscultation can be performed in 
both the front chest and back, lung sounds from the back 
are usually clearer due to the influence of the heart. For 
the phenomenon that left-side lung sounds can provide 
more information than right-side lung sounds in COPD 
patients, no reasonable explanation has been found, and 
further research is needed.

Previous studies primarily focused on the recognition 
and classification of abnormal lung sounds. For exam-
ple, wavelet analysis combined with BP neural network 
was used to realize automatic recognition of wheezing, 
crackles, and other abnormal lung sounds [36], and EMD 
decomposition was used to identify crackles [37]. How-
ever, considering that different respiratory diseases may 
have the same abnormal lung sounds, abnormal lung 
sounds cannot be used to diagnose COPD severity. For 
example, COPD is a common cause of wheezing, but 
asthma, bronchitis, laryngitis may also occur wheezing. 
Using multi-dimensional features to diagnose COPD 
has high accuracy and can save diagnosis and treatment 
costs to some extent [16, 17]. Nevertheless, it is difficult 
to quickly diagnose the severity of COPD due to a large 
amount of information required and the need for experi-
enced doctors.

Few studies on COPD diagnosis based on lung sounds 
focus on separating the digital auscultation records of 

COPD patients from healthy subjects [18, 20]. Altan et al. 
investigated how lung sounds could be used to diagnose 
COPD severity. First, they combined the three-dimen-
sional feature-extraction technique with DBN to classify 
COPD0 and COPD4 [19]. After that, they used 3D sec-
ond-order difference plot to extract characteristic abnor-
malities on lung sounds and then used the deep extreme 
learning machines classifier to complete the five clas-
sifications of COPD severity [21]. Compared with them, 
our research has the advantage of being more suitable for 
clinical needs and establishing a channel selection model 
based on the reliefF algorithm. It reduces the number of 
features and the calculating pressure, more importantly, 
reduces the number of channels and simplifies the acqui-
sition process, thus completing the diagnosis of COPD 
severity more quickly, which helps to improve the porta-
bility and practicability of future diagnostic devices, pro-
vides a theoretical basis for the advancement of online 
COPD diagnosis and treatment tools.

It should be noted that despite the rapid development 
of the application of artificial intelligence in the medical 
field, due to the lack of standardized datasets, limited by 
the quantity and quality of data, the models proposed by 
the current research focus on the innovation of methods. 
It is not remarkable significant to make a detailed com-
parison of the quantitative results of these studies from 
the different sample datasets. It is hoped that a sizeable 
standardized dataset of lung sounds can be established as 
soon as possible to accelerate the application of artificial 
intelligence in the diagnosis of COPD and verify the clin-
ical feasibility of the model.

The clinical diagnosis of COPD is very complicated, 
which is time-consuming, invasive, and radioactive. Pul-
monary auscultation, as an essential part of the diagno-
sis process, requires experienced respiratory doctors to 
complete. The proposed model can diagnose the severity 
of COPD quickly through the 4-channel lung sounds of 
L1, L2, L3, and L4 channels, which eliminates the long-
term clinical examination and saves medical resources.

Conclusion
In this study, firstly, the time-frequency-energy features 
of 12 channels lung sounds were extracted by HHT; 
secondly, channels and features were screened by the 
reliefF algorithm; finally, the feature sets were input 
into SVM to diagnose COPD severity and compared 
the performance of SVM with Bayes, decision tree, and 
DBN. As the experimental results demonstrate, COPD 
severity can be effectively diagnosed within 5 minutes 
only by feature extraction, feature selection, and SVM 
classification of 4-channel lung sounds collected. In 
the classification of mild COPD and moderate + severe 
COPD, feature extraction based on HHT took 297.81 
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s, feature selection based on reliefF algorithm took 
0.246s, and SVM classification took 0.836s. In the clas-
sification of mild COPD and moderate + severe COPD, 
feature extraction, feature selection, and SVM classi-
fication took 201.97s, 0.238s, and 0.801s, respectively. 
The noise number of EEMD was set as 100 to reduce 
the error caused by residual noise, which increased the 
time. If EMD is used instead of EEMD, only 4.70s and 
3.01s are needed for feature extraction under the two 
categories.

Compared with previous studies on COPD, on the one 
hand, this model uses the channel selection algorithm, 
which not only reduces the calculating pressure and 
prevents over-fitting, more importantly, reduces the dif-
ficulty of acquisition and speeds up the diagnosis speed, 
which is conducive to improving the portability and 
practicability of future diagnostic devices and promot-
ing the advancement of online diagnosis tools. On the 
other hand, this study aims to help doctors quickly com-
plete the preliminary diagnosis of mild COPD, moderate 
COPD, and severe COPD, which is more consistent with 
the clinical needs and has important clinical significance. 
The weakest aspect of this research is the quantity and 
quality of the data, which is currently available exclu-
sively from the RespiratoryDatabase@TR. To better eval-
uate the reliability of this model in clinical application, we 
are using a large amount of clinical data in the following 
research and improving the generalization performance 
of the model through transfer learning.
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