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Abstract 

Background:  Non-small cell lung cancer (NSCLC) was usually associated with poor prognosis and invalid therapeuti-
cal response to immunotherapy due to biological heterogeneity. It is urgent to screen reliable biomarkers, especially 
immunotherapy-associated biomarkers, that can predict outcomes of these patients.

Methods:  Gene expression profiles of 1026 NSCLC patients were collected from The Cancer Genome Atlas (TCGA) 
datasets with their corresponding clinical and somatic mutation data. Based on immune infiltration scores, molecu-
lar clustering classification was performed to identify immune subtypes in NSCLC. After the functional enrichment 
analysis of subtypes, hub genes were further screened using univariate Cox, Lasso, and multivariate Cox regression 
analysis, and the risk score was defined to construct the prognostic model. Other microarray data and corresponding 
clinical information of 603 NSCLC patients from the GEO datasets were applied to conduct random forest models for 
the prognosis of NSCLC with 100 runs of cross-validation. Finally, external datasets with immunotherapy and chemo-
therapy were further applied to explore the significance of risk-scores in clinical immunotherapy response for NSCLC 
patients.

Results:  Compared with Subtype-B, the Subtype-A, associated with better outcomes, was characterized by signifi-
cantly higher stromal and immune scores, T lymphocytes infiltration scores and up-regulation of immunotherapy 
markers. In addition, we found and validated an eleven -gene signatures for better application of distinguishing high- 
and low-risk NSCLC patients and predict patients’ prognosis and therapeutical response to immunotherapy. Further-
more, combined with other clinical characteristics based on multivariate Cox regression analysis, we successfully 
constructed and validated a nomogram to effectively predict the survival rate of NSCLC patients. External immuno-
therapy and chemotherapy cohorts validated the patients with higher risk-scores exhibited significant therapeutic 
response and clinical benefits.

Conclusion:  These results demonstrated the immunological and prognostic heterogeneity within NSCLC and pro-
vided a new clinical application in predicting the prognosis and benefits of immunotherapy for the disease.
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Background
As one of the most common tumors with high morbid-
ity and mortality, lung cancer leads to a poor prognosis 
and increases critical social burden [1]. Non-small cell 
lung cancer (NSCLC) is the most common histological 
subtype with its unique biological characteristics and 
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accounts for approximately 85% of all lung cancers [2]. 
More than 50% of diagnosed NSCLC patients were at 
advanced stages and the prognosis of NSCLC was rela-
tively poor with only 11%-15% overall 5-year survival 
rate [3]. Despite remarkable progress has been made 
for the treatment of NSCLC, including radiotherapy, 
chemotherapy and surgery according to different loca-
tions and clinical stages of NSCLC, there is still lack 
of effective strategies for the advanced NSCLC treat-
ment [4]. Recently, the rapid rise of immunotherapy has 
brought a new therapeutic landscape for the NSCLC 
patients who didn’t benefit from conventional chemo-
therapy, radiation or surgery [5]. However, in clinical 
practice, the majority of NSCLC patients were usually 
still lack effective therapeutical response to immuno-
therapy [6, 7]. Therefore, it is crucial to screen reliable 
biomarkers, especially immunotherapy-related bio-
markers, that can predict outcomes of NSCLC patients.

In clinical practice, the TNM stage system was 
acknowledged as the most frequently used tool to pre-
dict the prognosis of NSCLC patients, which majorly 
depended on the inherent anatomical abnormity, 
including tumor size, lymph node situation and distant 
metastatic status [8]. However, the existence of tumor 
genetic and biological heterogeneity made it inaccurate 
for the TNM system to predict disease progression and 
prognosis [9]. The growing researches focused on the 
biological heterogeneity for the different prognoses in 
NSCLC. Traditionally, it’s well-know that that histolog-
ical subtypes of NSCLC were significantly associated 
with the prognosis of the tumor [4]. In addition, the 
application of immunohistochemical technology had 
also identified a series of lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC) markers, 
such as EGFR and ALK mutation testing to refine par-
ticular subtypes of NSCLC classification [10]. Moreo-
ver, recent studies have demonstrated that genetic 
characteristics, including PD-L1 associated mRNA sig-
natures [11], immune infiltration-associated lncRNA 
signatures [12] and serum microRNA signatures [13], 
are emerging as critical prognostic elements in pre-
dicting the outcomes for NSCLC patients. Interactions 
between cancer cells and tumor-infiltrating immune 
cells in the tumor microenvironment (TME) have been 
reported essential to cancer progression and aggres-
siveness [14, 15]. In addition, there was evidence that 
various types of immune cells infiltrated in the TME 
of NSCLC were associated with different clinical out-
comes [16]. Hence, identification of molecular subtypes 
of NSCLC based on tumor-infiltrated immune cells and 
prognosis-related biomarkers is increasingly recog-
nized to facilitate personalized treatment selection and 
improve disease management.

This study aimed to identify clustering immune sub-
types of NSCLC and systematically assess the correlation 
between the characteristics of subtypes and prognosis, 
immunotherapy, and somatic mutation in NSCLC. Com-
bining the prognostic gene signatures and classical clini-
cal features, the risk model was established to improve 
predictive risk stratification and facilitate making a treat-
ment decision for NSCLC patients. We are convinced 
that our findings would help to gain a further insight into 
the prognostic signatures of NSCLC and provide promis-
ing strategies for NSCLC immunotherapy.

Methods
Data preparation
The publicly available RNA-seq transcriptome data of 1026 
NSCLC patients (including 522 LUAD and 504 LUSC) 
were collected from The Cancer Genome Atlas (TCGA) 
datasets (https://​portal.​gdc.​cancer.​gov/). The level 3 gene 
expression profile was integrated by the Illumina HiSeq 
2000 RNA Sequencing platform and normalized as the 
FPKM form. The corresponding clinical data and somatic 
mutation data of these patients were also downloaded from 
TCGA for subsequent analysis, including age, gender, sur-
vival status and time, pathological stages, and TNM stag-
ing. Moreover, the microarray data and corresponding 
clinical information of 603 NSCLC patients were down-
loaded from the Gene Expression Omnibus (GEO) datasets 
(https://​www.​ncbi.​nlm.​nih.​gov/​geo/) as the external test 
datasets, including GSE37745, GSE31210 and GSE50081. 
The baseline clinicopathological signatures of these cohorts 
were summarized in Additional file 4: Table 1. To further 
investigate the expression of hub genes at protein levels, the 
Human Protein Atlas (HPA) [17] was applied to display the 
results of immunohistochemical technique.

Identification of immune molecular subtypes 
and characteristics of subtypes
The ESTIMATE algorithm was applied to calculate the 
immune score for each patient using the R package “esti-
mate” [18] and the fraction of 22 immune cell types for 
each patient was further identified using the CIBERSORT 
algorithm [19] based on the RNA-seq data (https://​ciber​
sort.​stanf​ord.​edu/). Furthermore, based on the immune 
score, the “ConsensusClusterPlus” package [20] was used 
with 1000 iterations and 80% resample rate to classify the 
LUAD and LUSC patients into different subtypes, respec-
tively. To comprehensively elucidate the immune charac-
teristics of these subtypes, multiple comparisons between 
subgroups was performed including tumor microenviron-
ment analysis, immune checkpoint analysis, and clinical 
signatures comparison. Kaplan–Meier survival analysis of 
immune subtypes for overall survival in NSCLC was per-
formed using R packages “survival” [21] and “survminer” 
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[22]. In addition, comprehensive mutation analysis was 
conducted by R package “maftools” and mutational signa-
tures of the top 20 genes were further chosen subsequent 
comparison among immune subtypes in LUAD and LUSC.

Functional enrichment analysis
To functionally elucidate the biological characteristics 
of subtypes of LUAD and LUSC, the differential expres-
sion analysis was performed using the “limma” R pack-
age [23] and Gene Ontology (GO) enrichment analysis 
was applied to conduct functional annotation of differen-
tial genes between groups [24]. The different expression 
genes (DEGs) were identified according to the following 
criteria: adjusted p-value < 0.05 and absolute value of log2 
fold change (FC) > 1. These DEGs were visualized in the 
volcano plots using “ggplot2” package [25] and the com-
mon DEGs exhibited by the Venn diagram using the 
“jvenn” online tool [26]. The Gene set enrichment anal-
ysis (GSEA) was performed in the gene set “c2.cp.kegg.
v7.2.symbols.gmt” of MSigDB by using the GSEA v4.0 
software with the 1,000 permutations random sampling 
[27]. The significant enrichment pathway was identified 
by utilizing the false discovery rate (FDR) < 0.05 and the 
normalized enrichment score (NES).

Identification of hub genes and Risk scores
To further screen the prognosis-related genes of NSCLC, 
we conducted univariate Cox proportional-hazards 
regression analysis to preliminarily filter significant 
genes through using “coxph” function in “survival” R 
package. Subsequently, to remove the multicollinear-
ity among these candidate genes, the LASSO regression 
was applied to screen independent prognosis-related 
genes with the optimal penalty parameter and the mini-
mum 10-fold Cross-Validation [28]. After further adjust-
ment, multivariate Cox regression (stepwise model) was 
conducted to identify hub genes, and the coefficients 
obtained from the regression algorithm were used to 
acquire the risk score based on the following formula: 
riskscore = val(Gene1) ∗ β1+ val(Gene2) ∗ β2+ · · ·+

val(Genen) ∗ βn Moreover, according to the above for-
mula, the risk scores of NSCLC patients were separately 
calculated and patients were divided into high- and low-
subgroups according to the median value as the cut-off 
value [29].

Prognostic model construction and evaluation
To further clarify the characteristic of risk scores, we also 
performed multiple analyses based on high- and low- risk 
groups for 1001 NSCLC patients including Kaplan–Meier 
survival analysis, immune checkpoint analysis, clinical 
signatures comparison and immune infiltration analysis. 
Next, the multivariate Cox regression (stepwise model) 

was applied to construct the predictive model for NSCLC 
combined risk scores and other clinical features, including 
age, gender, immune subtypes, clinical stages, and TNM 
stages. Variables with p values < 0.05 were included into 
the Cox regression model and the nomogram was further 
constructed to predict the probability of one-, three- and 
five-year survival in NSCLC patients using “rms” package 
[30]. To validate the prediction capability of the nomo-
gram, we plotted the calibration curves of the nomogram 
in its 3-year and 5-year survival through a bootstrapping 
method with 1000 resamples. Subsequently, the clini-
cal utility of the risk score in the prognostic nomogram 
model was determined by the decision curve analysis 
(DCA) after calculating the net benefits for patients at dif-
ferent risk threshold probabilities [31].

Development and Validation of the prognostic model 
for NSCLC
To validate the prognostic value of risk scores in NSCLC 
patients, we re-performed Kaplan–Meier survival analy-
sis and drew time-dependent receiver operating char-
acteristic (ROC) curves using “timeROC” package [32] 
based on external validation set from three GEO datasets. 
In addition, we also compared the difference of clinical 
signatures between high- and low-risk subgroups in the 
validation set. Finally, the “randomForest” package was 
used to conduct random forest (RF) models for the prog-
nosis of NSCLC with 100 runs of cross-validation, which 
predicted the prognosis of NSCLC based on risk scores, 
age, gender and TNM stage. Moreover, the ggplot2 pack-
age was applied to present the mean decrease accuracy 
and the mean decrease Gini index to assess the impact of 
each variable in RF.

Exploration of the significance of risk‑scores in clinical 
chemotherapy and immunotherapy response
Other two independent datasets, GSE135222 and 
GSE126044, were used to estimate the curative response 
to immunotherapy, including 27 and 16 NSCLC patients 
receiving immunotherapy respectively. According to cur-
rent clinical guidelines, some anti-tumor drugs have been 
recommended for NSCLC treatment including Cisplatin, 
Docetaxel, Etoposide, Gemcitabine, Paclitaxel, Peme-
trexed, and Vinorelbine. To evaluate the therapeutic value 
of risk-scores in the chemotherapy treatment for NSCLC, 
we calculated the half maximal inhibitory concentration 
(IC50) value of above chemotherapeutic drugs based on 
Genomics of Drug Sensitivity in Cancer (GDSC) data-
bases. Difference of IC50 value between high and low 
risk-score subgroups was compared using Wilcoxon test 
and the results were exhibited in box diagrams using the 
“ggpubr” package.
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Statistical analysis
All relevant statistical analyses were performed in R 
software (version 3.6.1, https://​www.r-​proje​ct.​org/). The 
continuous and categorical variables were presented as 
Mean ± Standard Deviation and number (percentages) 
respectively. Wilcox test was used to compare continuous 
variables and the Kaplan–Meier method was used to plot 
survival curves. The two-tailed p-value less than 0.05 was 
considered statistical significant.

Results
Significant correlation of consensus clustering for immune 
molecular subtypes and the clinical characteristics 
of NSCLC patients
Additional file 1: Fig. 1 exhibited the whole workflow of 
our study. In this study, the RNA-seq data of 522 LUAD 
and 504 LUSC patients from TCGA datasets and micro-
array sequencing data of 603 NSCLC patients from GEO 

datasets were included with corresponding clinicopatho-
logical signatures. Clinicopathological characteristics 
of patients in the TCGA datasets and GEO datasets are 
shown in Table 1 and Additional file 4: Table 1, respec-
tively. Based on the tumor-infiltrating immune scores and 
the percentage of fuzzy clustering measures, the k = 2 
was identified as the optimum clustering model from 
k = 2 to k = 9 in both LUAD and LUSC groups. To fur-
ther clarify the intra-patient heterogeneity of NSCLC, we 
distinguished these patients into two subtypes, namely, 
SubA (n = 261 in LUSC and 290 in LUAD) and SubB 
(n = 243 in LUSC and 232 in LUAD) based on the clus-
tering immune infiltration scores (Figs. 1A, 2A). In terms 
of the immune infiltration scores, B lymphocytes (includ-
ing naive B cells and plasma cells) were significantly 
increased in SubB than that of SubA. However, T lym-
phocytes were significantly infiltrated in SubA cohorts 
including memory CD4 + T cells, follicular helper T cells 

Table 1  Clinical information of LUAD and LUSC in TCGA datasets

Variables LUAD (522) LUSC (504)

Number Percentage (%) Number Percentage (%)

Age

 < 65 223 42.72 170 33.73

 ≥ 65 280 53.64 325 64.48

 Unknow 19 3.64 9 1.79

Gender

 Male 242 46.36 373 74.01

 Female 280 53.64 131 25.99

Survival status 242 46.36

 Alive 334 63.98 286 56.75

 Dead 188 36.02 218 43.25

Survival time/days 902.51 ± 891.28 968.42 ± 957.61

Clinical stage

 Stage I–II 403 77.20 408 80.95

 Stage III–IV 111 21.26 92 18.25

 Unknow 8 1.53 4 0.79

T stage

 I–II 453 86.78 409 81.15

 III–IV 66 12.64 95 18.85

 TX 3 0.57

N stage

 N0 335 64.18 320 63.49

 NX 11 2.11 6 1.19

 N1–3 175 33.52 178 35.32

 Unknow 1 0.19

M stage

 M0 353 67.62 414 82.14

 M1 25 4.79 7 1.39

 MX 140 26.82 79 15.67

 Unknow 4 0.77 4 0.79

https://www.r-project.org/
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and CD8 + T cells. Higher stromal scores and immune 
scores were also detected in SubA patients than SubB 
groups in the tumor microenvironment of LUAD and 
LUSC (Figs.  1B, 2B). Subsequently, we also compared 
the clinicopathologic characteristics of NSCLC between 
the two subtypes and found that there was no significant 
difference in clinical features in both LUAD and LUSC 
patients (Additional file 3: Fig. 3A, B). Furthermore, the 
survival analysis showed that SubA had a longer median 
survival time than SubB groups regardless of LUAD or 
LUSC indicating the SubA patients might have a better 
prognosis for NSCLC (Figs.  1D, 2D). Higher expression 
levels of immune check points including PD-L1, CTLA-
4, LAG-3 and TIM-3 was also validated in the SubA 
cohorts, suggesting those patients might be more sensi-
tive to the immunotherapy of NSCLC (Figs. 1E, 2E).

Somatic variations analysis between subtypes of NSCLC
To investigate the difference of somatic variations 
between two subtypes in LUAD and LUSC patients, we 
performed mutation analysis based the corresponding 
somatic variations data from TCGA database. For LUSC 
patients, regardless of SubA and SubB, tumor samples 
with somatic variations occupied a high proportion in 
all patients (95.79% in SubA and 98.35% in SubB) and 
various mutation patterns were identified including mis-
sense mutation, nonsense mutation, nonstop mutation, 
translation start site, splice site and multi hit (Additional 
file 2: Fig. 2A, B). Massive mutations were also observed 
in LUAD patients (86.83% in SubA and 89.95% in SubB) 
and the types of mutations were more abundant in 
LUAD than LUSC cohorts including “Frame Shifts Del”, 
“In Frame Del” and “Frame Shift Ins” (Additional file 2: 
Fig. 2C, D). In addition, Additional file 2: Fig. 2 showed 
the top 20 genes according the rank of mutation numbers 
and TTN was the most mutable gene for LUSC patients 
while TP53 was the most common on LUAD subgroups. 
Interestingly, there was no significant difference on the 
frequency of mutations between two subtypes both in 
LUSC and LUAD patients.

Identification of DEGs of subtypes and functional 
enrichment analysis
Considering the biological characteristics of immune sub-
types in NSCLC, we conducted different expression anal-
ysis between the two subtypes. Through comparing SubA 
with SubB groups, a total of 1013 DEGs (including 603 
up-regulated and 410 down-regulated genes) in LUSC and 
1283 DEGs (including 559 up-regulated and 724 down-
regulated genes) in LUAD patients were identified respec-
tively and 252 common DEGs were chosen for subsequent 
analysis (Fig. 3A, D). In order to further interpret biologi-
cal processes and pathways of immune subtypes, these 

different expression genes were chosen to performed GO 
and GSEA analysis. It turned out that SubA cohorts were 
significantly enriched in immunoregulation and metabo-
lism associated pathways such as “Positive regulation of 
leukocyte activation”, “Organic acid metabolic process”, 
and “Peptide metabolic process” while Sub B groups were 
enriched in B cells associated biological processes includ-
ing “B cell mediated immunity”, “Immunoglobulin medi-
ated immune response” and “Cell activation involved 
in immune response” (Fig.  3B). Moreover, the results 
of GSEA also displayed the accordant pathways for two 
subtypes including “TGF-β signaling pathway” “PPAR 
signaling pathway”, “Pyrimiding metabolism”, “oxidative 
phosphorylation” for SubA and “B cell receptor signaling 
pathways”, “MAPK signaling pathways” “Fc_Gamma_R_
mediated_phagocytosis” for Sub B cohorts (Fig. 3C).

Establishment and assessment of the risk prognosis 
signature
The 252 common DEGs were included in univariate 
Cox, LASSO and multivariate Cox regression analy-
sis as candidate prognosis-associated genes and even-
tually 11 hub genes (including ZNF750, DNASE2, 
IGLV4 − 60, POU2AF1, HPCAL1, CDKN1A, MAP7D1, 
ARHGDIA, CCDC85B, MMP9 and DEF6) were identi-
fied in the risk signature based on their β coefficients 
(Table  2; Fig.  4C). In addition, based on the immuno-
histochemical data from the HPA database, the expres-
sion of these risk genes at protein levels were further 
validated in LUAD and LUSC patients, especially for 
ARHGDIA, CDKN1A and CCDC85B with high expres-
sion levels (Fig.  7A, Additional file  3: Fig.  3D). Based 
on the expression of these genes and their correspond-
ing β coefficients, the risk score was defined by the fol-
lowing formula: Risk score =​ ​8.5​9e-​4*​MMP9 +​ ​2.6​1e-​3*​
IGL​V4-60 + 7.36e-3*CDKN1A + 4.13e-3*ARHGDIA-
9e-3*Z NF750-0.011*M AP7D1-0.019*P OU2AF1-
0.023*DEF6 + 0.014*CCDC85B + 0.016*HPCAL1-8.8e-3-
*DNASE2. Subsequently, NSCLC patients were divided 
into the high- and low-risk subgroups with the median 
risk score as the cut-off value and the high-risk cohorts 
exhibited a worse prognosis than that of low-risk patients 
in the TCGA datasets (Fig. 4D). Moreover, ROC analysis 
showed the one-year, three-year, and five-year AUC val-
ues of the risk model were 0.617, 0.653 and 0.653, respec-
tively in the TCGA sets (Fig. 4E) and the scatter diagram 
showed that the number of dead patients increased along 
with the increase of the risk score (Fig. 4F).

Correlation between prognosis signatures with clinical 
and immune characteristics
To investigate the interactions between risk scores and 
the clinical phenotype of NSCLC, we separated NSCLC 
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Fig. 1  Identification of immune molecular subtypes and characteristics of subtypes in LUSC. A Consensus clustering matrix for k = 2 in LUSC 
patients. B Heatmap of immune cells infiltration and clinicopathologic features of the two subtypes. C The box plots showing the difference of 
immune cells infiltration between SubA and SubB. D Kaplan–Meier curves of overall survival (OS) for the NSCLC patients in two subtypes. E The 
expression of immune check points between SubA and SubB groups. *p < 0.05; **p < 0.01; ***p < 0.001
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Fig. 2  Identification of immune molecular subtypes and characteristics of subtypes in LUAD. A Consensus clustering matrix for k = 2 in LUAD 
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patients into different subgroups based on the pheno-
typic terms and found that the levels of the risk score 
were higher in female patients and cohorts with severe 
conditions than their control groups, including III-IV 
clinical stages, T3-T4 stages and N1-N3 stages (Fig. 4G). 

Furthermore, immune infiltration analysis revealed that 
substantial immune cells were significantly inhibited 
in high-risk groups including CD8 + T cells, follicular 
helper T (Tfh) cells, activated CD4 + memory T cells 
and memory B cells. In addition, the transform from 
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macrophage1 to macrophage2 was also observed in high-
risk NSCLC patients and there was no significant differ-
ence in other immune cells (Fig.  4H; Additional file  3: 
Fig. 3C). Moreover, higher expression levels of potential 
immune check points were detected in high-risk groups 
including PD-L1, CTLA-4, LAG-3 and Tim-3 (Fig. 4I). All 
these results showed that high risk scores were closely 
associated with severe manifestations, immunologic 
suppression and immunotherapeutic susceptibility of 
NSCLC, indicating that the risk signatures might serve as 
potential tools for the prognosis of NSCLC.

Evaluation and validation of the prognostic model 
for NSCLC
Based on the risk prognostic signatures and some pri-
mary clinical characteristics, multivariate Cox regres-
sion analysis was conducted to construct a nomogram 
that could accurately predict the probability of one/
three/five-year survival for NSCLC patients. The risk 
score, age, gender and TNM stages were considered 

as related predictors for the prognosis of NSCLC and 
incorporated into the nomogram (Fig.  5A). From the 
nomogram, we could observe that the risk score con-
tributed the most to the total score with the 0.74 con-
cordance index (Fig.  5B). Calibration curves exhibited 
that the nomogram had a good prediction capacity 
in both three-year and five-year overall survival for 
NSCLC (Fig.  5C, D) and the clinical decision analy-
sis showed that when the threshold probability was 
between 0.22 and 0.62, the net benefit of using the 
applied model with risk score was better than the 
model without risk score (Fig. 5E).

To further validate the predictive capacity of the risk 
model in external datasets, we recalculated the risk score 
based on the expression of 11 risk genes from three 
GEO datasets and performed corresponding analysis. It 
revealed that low-risk groups had a better prognosis and 
risk score could predict the overall survival for NSCLC 
in all datasets (one-year/three-year/five-year AUC value: 
0.681/0.576/0.591 in GSE58001; 0.636/0.567/0.515 in 

Table 2  Results of univariate and multivariate cox regression

Gene symbol Univariate Cox regression Multivariate Cox regression

HR HR.95% CI p value HR HR.95% CI p value

CDKN1A 1.01 1.00–1.01 2.21E−06 1.00 1.00–1.01 7.06E−02

CAV1 1.00 1.00–1.00 1.42E−03

HYAL1 1.02 1.01–1.04 3.78E−03

CCDC85B 1.02 1.01–1.03 4.27E−03 1.01 1.00–1.03 7.19E−02

GPR153 1.02 1.00–1.03 7.71E−03 1.01 1.00–1.01 8.62E−05

HPCAL1 1.02 1.01–1.03 8.33E−03 0.98 0.96–1.00 3.76E−02

ATL2 0.99 0.97–1.00 1.83E−02 0.99 0.98–1.00 2.83E−02

IGLV4-60 1.00 1.00–1.00 2.04E−02

RFX5 0.98 0.96–1.00 2.07E−02 1.02 1.00–1.03 4.17E−02

DNASE2 0.99 0.98–1.00 2.08E−02

DEF6 0.98 0.96–1.00 2.66E−02 1.00 1.00–1.00 2.52E−04

MAP7D1 1.01 1.00–1.02 3.27E−02 0.99 0.98–1.00 1.34E−01

ZNF750 0.99 0.98–1.00 3.66E−02 1.00 1.00–1.00 7.12E−02

MMP9 1.00 1.00–1.00 3.99E−02 0.98 0.96–1.00 9.62E−02

ARHGDIA 1.00 1.00–1.01 4.19E−02

POU2AF1 0.98 0.96–1.00 4.24E−02 0.99 0.98–1.00 1.37E−01

Fig. 4  Establishment and assessment of the risk prognosis signatures through LASSO and multivariate Cox regression analysis; Correlation between 
risk prognosis signatures with clinical and immune characteristics. A LASSO coefficient profiles of 16 prognostic immune-related genes. B 10-times 
cross-validation for tuning parameter selection in the LASSO model. C Heatmap of the expression of 11 risk genes after multivariate Cox regression 
analysis. D Kaplan–Meier curves of overall survival (OS) for the NSCLC patients in high- and low-risk groups. E Time-dependent receiver operating 
curves of 1/3/5-years survival for NSCLC patients using risk scores. F The distribution of risk scores and the relationship between risk scores and 
survival times. G The different levels of risk scores between different phenotypic terms. H The discriminative levels of immune cells infiltration 
between high- and low-risk groups. I The distinguishing expression levels of immune check points between high- and low-risk groups in NSCLC 
patients. *p < 0.05; **p < 0.01; ***p < 0.001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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GSE37745 and 0.640/0.612/0.638 in GSE31210) (Fig. 6A–
C). In addition, higher risk scores were also found in the 
female and severe patients with senior TNM stages and 
the risk of death was also elevated with the increase of 
the risk score in the scatter diagram (Fig. 6D, E). Further-
more, the RF model was constructed with 100 runs of 
cross-validation and ROC analysis showed the risk score 
could be applied to predict the prognosis for NSCLC 
combined with age, gender and TNM stages with a high 
mean AUC value of 0.784 (Fig.  6F). To further evaluate 
the contribution of each parameter in the risk model to 
the prognosis of NSCLC, the RF model was assessed by 
ranking methods. It revealed that the risk score was the 
most significant index for the prognosis of NSCLC, with 
a higher mean decrease of Gini and Accuracy index than 
other clinical indexes (Fig.  6G). These results suggested 
the established nomogram possessed a good clinical 
practicability to predict the prognosis of NSCLC.

NSCLC patients with higher risk‑scores manifested better 
curative responses to Chemotherapy and immunotherapy
To further explore the role of risk-scores in predicting 
the therapeutic benefit in the NSCLC disease, the gene 
profiles of patients who accepted anti-PD-L1 immuno-
therapy from two GEO datasets were used to calculate 
risk-scores and assigned into high- and low-risk scores 
groups. Notably, the effective response rate of immu-
notherapy was significantly higher in the high-risk 
score group than in low-risk cohorts and the responder 
also exhibited higher risk-scores than non-responders 
(Fig.  7B). Besides immune-checkpoint blockers ther-
apy, we also attempted to investigate the potential asso-
ciations between risk-scores and the curative efficacy of 
common chemotherapy drugs in treating NSCLC. Inter-
estingly, except Paclitaxel and Pemetrexed, other five 
drugs, including Cisplatin, Docetaxel, Etoposide, Gem-
citabine, and Vinorelbine, all exhibited lower IC50 value 
in high risk-score groups indicating the patients with 
high risk-scores might obtain better curative efficacy 
from common chemotherapy (Fig. 7C, Additional file 3: 
Fig.  3E). Collectively, all these outcomes indicated that 
risk-scores could be regarded as a potential element asso-
ciated with the response to immunotherapy and common 
chemotherapy in NSCLC patients.

Discussion
As a malignant tumor with high mortality, the prognosis 
of NSCLC remains poor without an effective therapeu-
tical response to immunotherapy due to tumor biologi-
cal heterogeneity. In the past decade, identification of 
histological and molecular subtypes for NSCLC has 
resulted in dramatic improvements in disease outcomes 
[4]. Particularly, substantial molecularly targeted agents 
(such as EGFR or ALK inhibitors) have been approved 
to treat NSCLC patients with genetic alterations in cor-
responding protein-encoding genes [33]. However, even 
if the NSCLC patients were at the same clinical stage, 
their prognosis and therapeutical response to the same 
treatment might still be different in clinical practice. 
Skoulidis’s study has also reported this phenomenon and 
attributed it to genomic heterogeneity [34]. Therefore, 
identification of a novel subtype and reliable prognostic 
risk model for NSCLC is urgently needed.

In this study, we first proposed an immune molecular 
subtype based on clustering immune infiltration scores 
with distinct clinical and immunological signatures in 
LUAD and LUSC respectively. Interestingly, regardless of 
LUAD or LUSC, the characteristics of the two molecu-
lar subtypes manifested significant homogeneity. TME 
analysis revealed higher stromal and immune scores in 
SubA than that of SubB, indicating anti-tumor immune 
response was significantly activated in SubA of NSCLC 
[35]. Moreover, higher infiltration scores of T cells, espe-
cially CD8+ T cells which have been regarded as the 
major immune cells for anti-tumor efficacy [36], were 
demonstrated in the subtype A, and SubA also presented 
longer median survival time than SubB through Kaplan–
Meier survival analysis (Figs.  2D, 3D). Immune exhaus-
tion marker genes (such as PD-L1, CTLA-4, LAG-3 and 
HAVCR2) have been demonstrated to play significant 
role in immune suppression in multiple tumors and sev-
eral target inhibitors have also been widely applied to 
immunotherapy for cancers [37]. It was worth mention-
ing that the expression levels of these immune exhaus-
tion marker genes were significantly increased in SubA 
subgroups suggesting a higher level of immune exhaus-
tion and potential better therapeutical response in these 
tumors [38]. In addition, there was no significant differ-
ence between immune-subtypes in clinical signatures 

Fig. 6  Validation of the prognostic model for NSCLC patients using external datasets. A–C Kaplan–Meier curves and ROC curves for the overall 
survival of NSCLC in three GEO datasets. D Validation of the correlation of risk scores and clinical characteristics in external datasets. E The 
distribution of risk scores and the relationship between risk scores and survival times in GEO datasets. F Receiver operating characteristic curve of 
the combined risk models for the prognosis of NSCLC with the mean AUC value 0.784. G Variable importance of risk scores and clinical variables 
of predicting the prognosis of NSCLC. Mean decrease accuracy represents the decrease of accuracy in the model when one variable is excluded, 
and mean decrease Gini represents the specific diagnostic capabilities of variables in the construction of the predicting model. *p < 0.05; **p < 0.01; 
***p < 0.001

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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of NSCLC, implying that the current evaluation system 
including TNM stages failed to discriminate the molec-
ular subtypes. Moreover, somatic mutations analysis on 
the frequency of mutations demonstrated no signifi-
cant enrichment of mutations between two subtypes 
both in LUAD and LUSC, suggesting somatic mutation 
didn’t participate in the process of immune-subtypes in 
NSCLC.

To further explore the potential biological functional 
features of the subtypes in NSCLC, we also performed 
GO enrichment and GSEA analysis. Consistent with the 
immunological signatures of subtypes, functional enrich-
ment analysis revealed that B cells associated biological 

processes including “B cell mediated immunity”, “Immu-
noglobulin mediated immune response” and “Cell activa-
tion involved in immune response” were more active in 
SubB groups while immunoregulation and amino-acid 
metabolism associated pathways such as “Positive regu-
lation of leukocyte activation”, “Organic acid metabolic 
process” and “Peptide metabolic process” were signifi-
cant enriched in the SubA cohorts. Markowitz’s study 
[39] has demonstrated that TGF-β signaling pathway 
played an important role in suppressing primary tumo-
rigenesis in multiple tissues and Inoue et  al. also found 
the overexpression of TGF-β was associated with the bet-
ter prognosis in the 5-year survival for lung cancers [40]. 
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In addition, cellular experiments exhibited EGFR inhibi-
tors might reverse of Warburg effect, one metabolic pro-
cess of the excessive conversion from glucose to lactate 
in cancers, and re-activate oxidative phosphorylation of 
cancer cells for cancer therapy [41]. Interestingly, in this 
study, the results of GSEA showed SubA was significantly 
enriched in the metabolic-related signaling pathways 
such as “TGF-β signaling pathway” and “oxidative phos-
phorylation pathway”, interpreting the better prognosis 
of Subtype A in NSCLC. Moreover, the SubB cohorts 
were also enriched in the B cell induced immune path-
ways such as “B cell receptor signaling pathways” and 
“Fc_Gamma_R_mediated_phagocytosis”, consisted with 
the results of GO analysis.

Furthermore, to better clarify the prognostic value 
of DEGs for NSCLC, we successfully screened 11 prog-
nostic risk signatures based on LASSO regression analy-
sis and univariate/multivariate Cox regression analysis. 
High-expression of these risk signatures at protein levels 
was confirmed by immunohistochemistry from the HPA 
database. Notably, based on the expression of these genes, 
risk scores were further identified, which effectively strat-
ified the NSCLC patients into high- and low-risk groups 
in TCGA and GEO dataset respectively. Survival analysis 
revealed that low-risk groups had longer overall survival 
than patients with high riskscores and ROC curves exhib-
ited the certain predictive capacity of risk scores for the 
one/three/five years survival of NSCLC. Female had been 
recognized as the major cohorts for the never-smokers 
with NSCLC [42] and in the study, clinical correlation 
analysis also exhibited higher riskscores were found in 
female NSCLC patients, consisted with previous pub-
lishments. Moreover, high-risk scores were significantly 
positive-associated with severe clinical stages including 
general stages and TNM stages, suggesting risk scores 
were closely related to the poor prognosis of NSCLC.

In addition, high risk-scores were significantly nega-
tively correlated with immune activation responses espe-
cially T cells activation through the immune infiltration 
analysis. The killing effect of CD8+ T cells especially 
cytotoxic T lymphocytes has been considered as the 
major effector cells in the anti-tumor process. CD8+ 
T cells could discriminate particular tumor-associated 
antigen and destroy cancer cells directly in various can-
cers, including oesophageal cancers [43], colorectal can-
cers [44]and gallbladder cancers [45]. Through secreting 
cytokines and attracting inflammatory cells to tumor 
cells, such as macrophages, neutrophils and NK cells, 
CD4+ T cells played an essential role in orchestrating 
the immune responses to cancers [46]. Hiraoka’s study 
also demonstrated the concurrent infiltration of CD8+ 
and CD4+ T cells was a favorable prognostic factor in 
NSCLC [47]. All these studies indicated the loss of CD4+ 

and CD8+ T cells might lead to the poor prognosis in 
high-risk NSCLC groups. Interestingly, although the 
high-risk groups were associated with the poor progno-
sis, the expression of immune check points was obviously 
elevated in the patients with high risk-scores, implying 
those patients might be sensitive to the immunotherapy, 
such as PD-1/PD-L1 inhibitors.

To further construct effective models for predicting 
the prognosis of NSCLC, we combined the risk prognos-
tic signatures with other clinical characteristics based 
on multivariate Cox regression analysis. To better pre-
dict the one/three/five years survival of NSCLC for each 
individual, we successfully established the nomogram by 
incorporating age, gender, TNM stages and risk scores. 
Calibration curves exhibited that the nomogram had 
good prediction capacity in both three-year and five-year 
overall survival and its clinical practicability was also vali-
dated in DCA. Besides, data from three GEO dataset also 
confirmed that high-risk groups were associated with 
worse overall survival than low-risk groups with excel-
lent AUC value. In the validation datasets, high-risk sub-
groups were also positive associated with female and high 
clinical stages and also discriminated NSCLC patients 
with poor outcomes. Furthermore, ROC curves showed 
that risk scores could be used to predict the prognosis for 
NSCLC combined with traditional clinical indices, with a 
high mean AUC value of 0.784. The results of our analysis 
using a ranking method with an RF model showed that 
risk-score was the most significant index for the progno-
sis of NSCLC, with greater mean decrease of Gini and 
Accuracy than other clinical indexes. These findings indi-
cated that we might be able to evaluate and predict the 
prognosis of NSCLC through measuring the expression 
levels of the risk signatures to infer the risk scores.

Furthermore, to validate the significance of risk-scores 
in the prediction of immunotherapy, the patients receiv-
ing anti-PDL1 immunotherapy were evaluated based on 
external datasets and we found the risk scores were sig-
nificantly higher in patients responded to correspond-
ing immunotherapy, suggesting target immunotherapy 
might be beneficial tool for the patients with high risk-
scores. Besides immunotherapy, common chemothera-
peutic drugs were also be demonstrated lower IC50 
value in high risk-score cohorts, implying the high risk-
score patients might be more efficacious against these 
chemotherapeutic drugs. Overall, these findings from 
external datasets validated the potential benefits in high 
risk-scores and indicated risk scores might play a vital 
role in predicting the curative responses to common 
chemotherapy and immune checkpoint therapy.

However, there are still several limitations in our study. 
For one thing, although the risk prediction model for 
the prognosis of NSCLC was proposed and validated by 
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TCGA and GEO datasets, the accuracy and clinical appli-
cation of this model was still need more external conge-
neric researches, even clinical practices, to repeatedly 
confirm and improve. In addition, our study only found 
the association between the risk scores and poor progno-
sis in NSCLC while the detailed role of these risk genes 
in the pathogenesis of NSCLC remains to be further veri-
fied by in-depth in vivo and in vitro studies.

Conclusion
In conclusion, our study firstly proposed the immune 
molecular subtypes based on clustering immune-cell 
infiltration scores with distinct clinical and immuno-
logical signatures in both LUAD and LUSC patients. 
Moreover, we identified and validated the immune risk 
prognostic model combined risk scores and clinical sig-
natures, which can be used as an effective tool to pre-
dict the overall survival and immunotherapy efficacy of 
NSCLC. The various transcriptomic analysis helps us 
screen significant genetic signatures of NSCLC and pro-
vides a new clinical application in predicting prognosis 
and benefits of immunotherapy for NSCLC.
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