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Abstract 

Background: Cancer stem cells (CSCs) are implicated in cancer progression, chemoresistance, and poor prognosis; 
thus, they may be promising therapeutic targets. In this study, we aimed to investigate the prognostic application of 
differentially expressed CSC-related genes in lung squamous cell carcinoma (LUSC).

Methods: The mRNA stemness index (mRNAsi)-related differentially expressed genes (DEGs) in tumors were iden-
tified and further categorized by LASSO Cox regression analysis and 1,000-fold cross-validation, followed by the 
construction of a prognostic score model for risk stratification. The fractions of tumor-infiltrating immune cells and 
immune checkpoint genes were analyzed in different risk groups.

Results: We found 404 mRNAsi-related DEGs in LUSC, 77 of which were significantly associated with overall survival. 
An eight-gene prognostic signature (PPP1R27, TLX2, ANKLE1, TIGD3, AMH, KCNK3, FLRT3, and PPBP) was identi-
fied and used to construct a risk score model. The TCGA set was dichotomized into two risk groups that differed 
significantly (p = 0.00057) in terms of overall survival time (1, 3, 5-year AUC = 0.830, 0.749, and 0.749, respectively). 
The model performed well in two independent GEO datasets (p = 0.029, 0.033; 1-year AUC = 0747, 0.783; 3-year 
AUC = 0.746, 0.737; 5-year AUC = 0.706, 0.723). Low-risk patients had markedly increased numbers of CD8+ T cells and 
M1 macrophages and downregulated immune checkpoint genes compared to the corresponding values in high-risk 
patients (p < 0.05).

Conclusion: A stemness-related prognostic model based on eight prognostic genes in LUSC was developed and 
validated. The results of this study would have prognostic and therapeutic implications.
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Background
Lung cancer is one of the most common and deadliest 
global malignancies [1]. Lung squamous cell carcinoma 
(LUSC), a primary subtype of non-small cell lung can-
cer (NSCLC), accounts for approximately 30% of all lung 

cancer cases [2]. LUSC is more common in men than in 
women and is largely attributed to smoking habits [3]. 
Although approximately 70% of stage I patients survive 
for more than 5  years, the total five-year survival rate 
of LUSC is roughly 20%, largely because LUSC is often 
detected at an advanced stage [4, 5].

Cancer stem cells (CSCs) are a subgroup of pluripotent 
cells possessing a high capability of self-renewal, differ-
entiating into various cell types, and acquiring stem-cell-
like features [6, 7]. According to the widely accepted CSC 
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theory, CSCs are implicated in tumor initiation, growth, 
and metastasis [8, 9]. CSCs are major contributors to 
the resistance to conventional therapies, tumor recur-
rence, and poor prognosis. Therefore, targeting CSCs 
offers a new approach to developing efficient therapies 
and improving outcomes [10, 11]. An increasing evidence 
shows that CSCs have prognostic value and could serve 
as potential prognostic biomarkers in various cancers, 
including lung cancer [12–14]. Recently, Liao et al. iden-
tified key cancer stemness-related genes implicated in 
LUSC through integrated bioinformatics analysis [15]. 
Similarly, Qin et  al. screened LUSC mRNA-related hub 
genes through bioinformatics and concluded that these 
genes may serve as therapeutic targets for inhibiting the 
LUSC stem cell properties [16]. Nevertheless, there is a 
lack of research on the application of cancer stemness-
related genes as prognostic tools in LUSC.

Many studies have been conducted on the derivation 
of gene signatures as a way of determining prognostic 
potential; for example, Giannos et  al. identified prog-
nostic genetic biomarkers for cell lung cancer progres-
sion through comprehensive bioinformatics analysis [17], 
and Wu et al. identified hub genes and important KEGG 
pathways closely related to the occurrence and develop-
ment of lung adenocarcinoma by analyzing gene expres-
sion microarrays [18]. In the present study, we used 
publicly available transcriptomic data and the mRNA 
expression-based stemness index (mRNAsi) as a quan-
titative reflector of cancer stemness to screen mRNAsi-
related genes with prognostic potential. We then used 
the results to construct a risk score model for survival 
prediction in LUSC. Two independent cohorts were used 
to validate the prognostic performance of the risk score 
model. The molecular mechanisms underlying the sur-
vival subgroups were explored. The results of this analysis 
would contribute to the subtyping of survival groups and 
a more refined prognosis of LUSC.

Methods
Data source and retrieval
Gene expression data (FPKM value, Illumina HiSeq 2000 
platform) from 501 tumor samples and 49 matched nor-
mal samples were downloaded from The Cancer Genome 
Atlas (TCGA) data repository (https:// gdc- portal. nci. 
nih. gov/). Among these, 494 tumor samples with corre-
sponding clinical prognosis information were used as the 
training set (TCGA set).

We searched for the validation datasets in the NCBI 
GEO database using lung cancer and Homo sapiens as 
keywords. The inclusion criteria were as follows: histolog-
ical information available, 150 or more samples, includ-
ing 50 or more LSCC samples, and overall survival (OS) 
information of LSCC samples available. Consequently, 

the GSE30219 [19] (N = 307) and GSE37745 [20, 21] 
(N = 196) datasets (GPL570 Affymetrix Human Genome 
U133 Plus 2.0 Array) met the criteria and were used as 
validation datasets in the current study, containing 58 
and 66 LUSC samples, respectively, with corresponding 
clinical prognosis information.

Evaluation of mRNAsi scores and differentially expressed 
genes
Stem cell features of the tumor samples were evaluated 
using mRNAsi values, which were calculated using a one-
class logistic regression machine-learning algorithm in 
the gelnet package in R software (version 2.41-1); the pro-
tocol has been described in detail in our previous report 
[22].

We compared the mRNAsi scores of tumor and nor-
mal samples using the t-test in the R software program 
(version 3.6.1). Based on the median mRNAsi score, the 
tumor samples were categorized into low- and high-
mRNAsi groups (values being below or above the median 
mRNAsi). Kaplan–Meier (KM) survival curves were plot-
ted for each group and compared using the log-rank test.

We used the limma package [23] in R to screen for dif-
ferentially expressed genes (DEGs), setting the threshold 
of significance at FDR < 0.05 when comparing tumor and 
normal samples and |log2FC|> 0.5 when comparing low- 
and high-mRNAsi samples. The genes that were common 
between the two lists of DEGs were then subjected to the 
gene ontology (GO) function and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analy-
sis using DAVID software (version 6.8, https:// david. ncifc 
rf. gov/). Statistical significance was set at P < 0.05.

Risk score model for survival prediction
Univariate Cox regression analysis was performed to 
identify survival-related common DEGs (log-rank p 
value < 0.05) using the survival package in R [24]. Of the 
survival-related genes, prognostic genes were identified 
by performing L1-penalized least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis [25] 
using the penalized package. We used 1000-fold cross-
validation to determine the optimal lambda value, the 
penalty parameter, corresponding to the minimal mean-
squared error. Consequently, based on a linear combina-
tion of the LASSO Cox regression coefficients multiplied 
by the expression value of each optimal prognostic gene, 
the risk score was calculated for each sample in the 
TCGA set using the following formula:

where βDEGs and  Expgenes represent the regression coeffi-
cients and expression values, respectively.

Risk score PS) =
∑

βDEGs × ExpDEGs

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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Based on the median risk score, the tumor samples 
were then separated into high- and low-risk samples 
(having values above or below the median risk score).

Analysis of tumor‑infiltrating immune cells and immune 
checkpoint genes
Differences in the fractions of tumor-infiltrating immune 
cells (TIICs) between high- and low-risk samples were 
analyzed using CIBERSORT [26] software. The expres-
sion levels of 14 immune checkpoint genes were also 
compared between the high- and low-risk samples.

Pathway enrichment analysis and protein prediction
Based on the gene expression data, we performed the 
KEGG pathway enrichment analysis using the Gene Set 
Enrichment Analysis described in the literature [27] 

(FDR < 0.05). We then accessed the Human Protein Atlas 
(HPV) database [28] (version 18, https:// www. prote inatl 
as. org/) to search for immunohistological images of the 
proteins encoded by the risk score genes in tumor and 
normal tissues.

Results
Identification of mRNAsi‑related DEGs
A flowchart depicting the overall design of the study 
is shown in Fig.  1. Using TCGA data, we found that 
mRNAsi was significantly higher in tumor tissues than 
in normal tissues (p < 0.001, Fig. 2a). Upon analyzing the 
median mRNAsi values, it was found that tumor samples 
could be categorized into high- and low-mRNAsi groups, 
with significantly different overall survival (OS) times 
(p = 0.00095, Fig. 2b). Additionally, age was significantly 

Fig. 1 The flow diagram of this study

https://www.proteinatlas.org/
https://www.proteinatlas.org/
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different between the high- and low-mRNAsi samples 
(p = 1.20E−02, Table 1).

We identified 4,768 DEGs in tumor tissues, compared 
to normal tissues, and 453 DEGs when comparing high- 
and low-mRNAsi tumors (FDR < 0.05, |log2FC|> 0.5). The 
two lists of DEGs had 404 common genes (Fig. 3a). Upon 
clustering analysis, we found that there were significant 
differences in the expression levels of common DEGs in 
normal tissues and high- and low-mRNAsi tumor sam-
ples (Fig. 3b). A total of 404 mRNAsi-related DEGs were 
significantly involved in 18 biological processes, includ-
ing “cell adhesion,” “potassium ion transmembrane 
transport,” “inflammatory response,” “potassium ion 
transport,” and “cell–cell signaling” (Table  2). Moreover, 
these mRNAsi-related DEGs were significantly enriched 
in 12 KEGG pathways, such as “neuroactive ligand-
receptor interaction,” “cAMP signaling pathway,” and 
“calcium signaling pathway.”

Construction and validation of an eight‑gene prognostic 
model
The results of the univariate Cox regression analy-
sis indicate that a total of 77 mRNAsi-related DEGs 
were significantly associated with prognosis. Apply-
ing LASSO Cox regression analysis (1 mean squared 
error = 0.03871 (Additional file  1: Fig. S1)), we then 
selected a set of eight prognostic signature genes 

(PPP1R27, TLX2, ANKLE1, TIGD3, AMH, KCNK3, 
FLRT3, and PPBP). Based on the median expression 
level of each optimal signature gene, tumor samples 
were classified into high- and low-expression groups 
with significantly different OS times (p < 0.05, Fig. 4).

The expression data and the LASSO regression coef-
ficients of the eight signature genes were used to calcu-
late the risk score, as follows:

The TCGA dataset was consequently dichotomized 
into high- -and low-risk groups. In the ROC curve 
analysis, the 1-, 3-, and 5-year AUC values were 0.830, 
0.749, and 0.749, respectively (Fig. 5a). The OS time was 
significantly longer in high-risk patients than in low-
risk patients (p = 0.00057, Fig.  6a). Furthermore, the 
eight-gene risk score model was applied to GSE37745 
and GSE30219 datasets to validate the predictive per-
formance of the model. The GSE37745 and GSE30219 
datasets were divided by the eight-gene risk score 
into two risk groups with differential survival times 
(p = 0.029, 0.033, Fig. 6b, c; 1-year AUC = 0747, 0.783; 

RS = (−0.095670091) ∗ ExpPPP1R27 + (−0.03266893)

∗ ExpTLX2 + (−0.021438984) ∗ ExpANKLE1

+ (−0.024649027) ∗ ExpTIGD3 + (−0.005064291)

∗ ExpAMH + (0.094337731) ∗ ExpKCNK3

+ (0.010097571) ∗ ExpFLRT3 + (0.016920132)

∗ ExpPPBP

Fig. 2 Analysis of mRNA stemness index (si). a Different mRNAsi values in normal and tumor tissue; b Kaplan–Meier survival curves of high- and 
low-mRNAsi tumor samples
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3-year AUC = 0.746, 0.737; 5-year AUC = 0.706, 0.723, 
Fig. 5b, c).

In addition, we assessed the associations of mRNAsi 
levels with the risk score in the TCGA dataset. As shown 
in Fig. 7, the mRNAsi level was positively correlated with 
the risk score (PCC = 0.4402, p-value = 2.2E−16) and was 
significantly elevated in low-risk samples compared to 
high-risk samples (p-value = 8.1E−13).

Identification of independent prognostic factors 
and stratification analysis
Using the TCGA data, with clinical factors and risk 
score model status as variables, we performed univari-
ate and multivariate Cox regression analyses to identify 
prognostic factors. In Table  3, we show that recurrence 
(HR = 2.047, 95%CI = 1.475–2.843, p-value = 1.880E−05) 

and risk score (HR = 1.571, 95%CI = 1.128–2.186, 
p-value = 7.530E−03) were independent prognostic 
factors.

As depicted in Fig. 8a, significantly different OS times 
were observed between patients with (N = 286) and with-
out recurrence (N = 100, p < 0.0001). Stratification analy-
sis was conducted according to recurrence. In patients 
without tumor recurrence, a worse prognosis was 
observed in the high-risk subgroup than in the low-risk 
subgroup (p = 0.0012, Fig.  8b). Regarding patients with 
tumor recurrence, the difference in OS time was insignif-
icant between the two risk subgroups (p = 0.67, Fig. 8c).

The two risk groups had distinct immune characteristics 
and were significantly involved in DNA‑repair‑related 
pathways
There is evidence that cancer stemness is associated with 
immune checkpoint genes and the proportion of TIICs in 
the tumor microenvironment [22]. Therefore, we assayed 
the proportion of different types of TIICs. Compared 
to high-risk samples, low-risk samples had significantly 
increased percentages of naïve B cells (p = 0.006), CD8+ 
T cells (p = 0.044), and M1 macrophages (p = 0.022) and 
decreased percentages of resting memory CD4+ T cells 
(p = 0.022), monocytes (p = 0.01), and activated mast 
cells (p = 0.001, Fig.  9). We compared the expression of 
18 immune checkpoint genes. Notably, CD47, HAVCR2, 
SIRPA, ICOS, TNFRSF9, BTLA, and TNFRSF4 were 
significantly downregulated in low-risk samples com-
pared to high-risk samples (p < 0.05, Fig. 10). This result 
indicates that the two risk samples had different immune 
characteristics.

Moreover, we identified nine DNA-repair-related 
KEGG pathways that were significantly associated with 
the obtained risk subgroups (FDR < 0.05), including base 
excision repair, RNA degradation, RNA polymerase, and 
spliceosome (Table  4). Using data from the HPA data-
base, we found immunohistochemical images of five 
prognostic signature genes in normal and tumor tissues 
(Fig.  11), including three upregulated genes (ANKLE1, 
PPP1R27, and AMH) and two downregulated genes 
(FLRT3 and PPBP). The immunohistochemical results 
were consistent with our differential expression analysis 
(Fig. 11, Additional file 2: Table S1).

Discussion
Functionally defined by their high tumorigenic potency 
and self-renewal properties, CSCs are a critical driving 
force for cancer metastasis, recurrence, and chemore-
sistance and have been increasingly acknowledged as 
potential therapeutic targets [29]. In the present study, 
we focused on the identification of CSC-related prognos-
tic genes for survival prediction in LUSC. By exploiting 

Table 1 Clinical characteristics of high and low mRNAi samples

Characteristics N of cases mRNAsi level P‑value

Low High

Age (years)

 ≤ 60 107 65 42 1.20E−02

 > 60 382 179 203

Gender

 Male 366 181 185 7.58E−01

 Female 128 66 62

Pathologic M

 M0 406 211 195 2.71E−01

 M1 7 2 5

Pathologic N

 N0 316 151 165 3.70E−01

 N1 127 68 59

 N2 40 24 16

 N3 5 2 3

Pathologic T

 T1 114 48 66 1.39E−01

 T2 287 154 133

 T3 70 36 34

 T4 23 9 14

Pathologic stage

 Stage I 242 116 126 4.85E−01

 Stage II 158 82 76

 Stage III 83 45 38

 Stage IV 7 2 5

Tumor recurrence

 Yes 100 51 49 9.98E−01

 No 286 144 142

Radiotherapy

 Yes 50 31 19 7.19E−02

 No 376 181 195
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gene expression data from TCGA, we identified 404 
mRNAsi-related DEGs in tumors—77 of which were sig-
nificantly associated with survival—and constructed a 
risk score model using eight prognostic genes obtained 
using LASSO Cox regression analysis. The eight-gene 
risk score partitioned the TCGA dataset into two risk 
groups with significantly different OS times (p = 0.00057, 
1-, 3-, and 5-year AUC = 0.830, 0.749 and 0.749, respec-
tively). The value of mRNAsi was positively correlated 
with the risk score. The capability of the eight-gene risk 
score to stratify survival into subgroups was successfully 
validated in the two validation datasets, as evidenced by 
the significant log-rank p-values and high AUC values 
(0.7–0.8). Furthermore, the eight-gene risk score was 
shown to be an independent prognostic factor, regardless 
of recurrence rate. These results extend our knowledge of 
the maintenance and promotion of the malignant charac-
teristics of CSCs and may contribute to a more accurate 
prognosis (survival prediction) as well as targeted thera-
pies for LUSC.

The eight-gene prognostic signature identified in our 
study was composed of PPP1R27, TLX2, ANKLE1, 
TIGD3, AMH, KCNK3, FLRT3, and PPBP. Anti-Mul-
lerian hormone (AMH), a member of the transforming 
growth factor/bone morphogenetic protein superfamily, 
participates in regulating epithelial-mesenchymal transi-
tion (EMT), epithelial plasticity, and chemoresistance in 
lung cancer [30]. Moreover, AMH is an immune-related 
prognostic gene in LUSC and has been used to construct 
a prognostic model in LUSC [31]. Zhuang et  al. also 

found that AMH is a LUSC-related immune gene and is 
not associated with distant metastasis [32]. TWIK-related 
acid-sensitive potassium channel 1 (TASK1), encoded by 
KCNK3, is associated with pulmonary circulation and 
controls pulmonary arterial tone, which may contribute 
to poor prognosis in lung cancer patients [33]. KCNK3 
has been shown to influence apoptosis and proliferation 
in NSCLCs, and KCNK3 knockdown increases apopto-
sis in tumor cells [34]. Therefore, KCNK3 may play a role 
in cell motility, activation and proliferation [35]. FLRT3 
is a transmembrane protein belonging to the family of 
axon guidance-related factors. FLRT3, which is found in 
many tissues and is involved in cell adhesion and adipo-
cytokine signalling pathways [35], has been implicated in 
the progression and prognosis of LUSC and could serve 
as a prognostic biomarker [36]. Pro-platelet basic pro-
tein (PPBP) and chemokine ligand 7 (CXCL7) are plate-
let activation markers that act as inducers of macrophage 
chemotaxis and mediators of neutrophil accumulation 
[37]. PPBP is a survival-related hub gene in lung adeno-
carcinoma [18] and non-smoker females with lung can-
cer [38]. Furthermore, studies have shown that PPBP is 
significantly increased in lung cancer tissue and blood 
samples, making it a novel diagnostic biomarker for lung 
carcinoma [39, 40]. T-cell leukemia homeobox 2 (TLX2) 
has prognostic value in uterine sarcoma [41]. ANKLE1 
(ankyrin repeat and LEM domain) is involved in DNA 
damage response and DNA repair and is associated with 
breast cancer development [42, 43]. In addition, ANKLE1 
has been repeatedly shown to be involved in DNA repair 

Fig. 3 Identification of common differentially expressed genes (DEGs). a Venn diagram displaying common genes between the DEGs in tumor 
and the DEGs between high- and low-mRNAsi tumor samples. b heatmap showing expression patterns of the common DEGs in normal samples, 
low-mRNAsi tumor samples and high-mRNAsi tumor samples
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pathways in preclinical and in  vitro screens, including 
endonuclease activity, proliferation, and drug response in 
CRISPR screens of cancer cell lines [44–46]. A study of 
NSCLC showed that ANKLE1 RNAi in combination with 
paclitaxel increased the efficacy of drug response [47]. 
Nonetheless, there is little information regarding the bio-
logical functions of PPP1R27 and TIGD3 in cancer. In 
this study, the capability of the eight-gene risk score to 
stratify survival time was successfully validated using two 
validation datasets, suggesting that these eight genes may 
be prognostic biomarkers for LUSC.

The immune environment is predictive of the progno-
sis of NSCLCs [48]. TTIICs have been implicated exten-
sively in the initiation and progression of LUSC [49]. In 
the current study, increased numbers of CD8+ T cells 

and M1 macrophages and significant downregulation 
of immune checkpoint genes were observed in low-risk 
patients compared to high-risk patients. These results 
showed that the high -and low-risk subgroups possessed 
distinct immune microenvironment characteristics. 
CD8+ T cells mediate an anti-tumor immune response 
[50], and M1 macrophages exert pro-inflammatory and 
anti-tumor actions [51]. Immune checkpoints are criti-
cal for immune suppression and evasion in cancers, and 
immune checkpoint inhibitors represent an efficient 
therapeutic approach against a wide spectrum of malig-
nancies [52]. Our results suggest that low-risk patients 
have a stronger antitumor immune function, which pro-
tects against LUSC and achieves a significant survival 
benefit. Through interactions with the tumor immune 

Table 2 Summary of significant GO terms and pathways

Category Term Count of genes P‑value

Gene ontology biology process GO:0007155 ~ cell adhesion 30 2.19E−07

GO:0071805 ~ potassium ion transmembrane transport 12 5.88E−5

GO:0006954 ~ inflammatory response 22 7.30E−05

GO:0006813 ~ potassium ion transport 9 3.70E−04

GO:0007267 ~ cell–cell signaling 16 4.01E−04

GO:0007268 ~ chemical synaptic transmission 14 2.09E−03

GO:0007166 ~ cell surface receptor signaling pathway 15 2.45E−03

GO:0034765 ~ regulation of ion transmembrane transport 9 2.68E−03

GO:0007165 ~ signal transduction 40 3.61E−03

GO:0006955 ~ immune response 19 4.38E−03

GO:0007596 ~ blood coagulation 11 6.43E−03

GO:0055085 ~ transmembrane transport 13 6.55E−03

GO:0030198 ~ extracellular matrix organization 11 9.83E−03

GO:0018108 ~ peptidyl-tyrosine phosphorylation 9 1.75E−02

GO:0006508 ~ proteolysis 19 2.31E−02

GO:0006810 ~ transport 14 3.77E−02

GO:0007399 ~ nervous system development 12 4.57E−02

GO:0006898 ~ receptor-mediated endocytosis 9 4.74E−02

KEGG Pathway hsa04080:Neuroactive ligand-receptor interaction 17 1.86E−03

hsa04024:cAMP signaling pathway 13 4.68E−03

hsa04020:Calcium signaling pathway 12 6.04E−03

hsa04514:Cell adhesion molecules (CAMs) 10 1.04E−02

hsa04022:cGMP-PKG signaling pathway 10 1.97E−02

hsa04614:Renin-angiotensin system 4 2.00E−02

hsa04964:Proximal tubule bicarbonate reclamation 4 2.00E−02

hsa04060:Cytokine-cytokine receptor interaction 13 2.16E−02

hsa04924:Renin secretion 6 2.34E−02

hsa04261:Adrenergic signaling in cardiomyocytes 9 2.48E−02

hsa02010:ABC transporters 5 2.54E−02

hsa04062:Chemokine signaling pathway 10 4.84E−02
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microenvironment, CSCs facilitate immune evasion and 
suppress the immune system to promote tumor progres-
sion [53]. Taken together, these results indicate that the 
crosstalk between CSCs and the immune microenviron-
ment may affect the prognosis of LUSC patients, and fur-
ther studies are needed to validate these results.

This study has some limitations. Firstly,  because all 
data were obtained from the TCGA and GEO databases, 
selection bias could not be ruled out. Secondly,  501 
LUSC tumor samples and 49 normal control samples 
were downloaded from the TCGA database, consid-
ering that such unequal sample distribution (controls 
being approximately 10% of tumor samples), may amplify 

the detection of differences. Thus, further validation is 
required to support the discovery of this research.

Conclusion
In this study, we constructed and validated a risk score 
model based on the expression of eight CSC-related 
DEGs that could effectively predict LUSC outcomes. 
These eight CSC-related genes may be prognostic bio-
markers and potential therapeutic targets for LUSC. 
Our study sheds light on the prognostic value of cancer 
stemness-related genes and their underlying mechanisms 
and may facilitate personalized counselling and treat-
ment of LUSC. Further research is required to confirm 
and extend these findings.

Fig. 4 Kaplan–Meier survival curves for high- and low-expressed tumor samples in the TCGA set according to the median expression level of each 
optimal signature gene
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Fig. 5 Risk score distribution (upper), survival analysis (middle), and ROC curve analysis (lower) in the TCGA set (a), GSE37745 dataset (b), and 
GSE30219 dataset (c)
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Fig. 6 Kaplan–Meier survival curves for high- and low-risk tumor samples in the TCGA set (a), GSE37745 dataset (b), and GSE30219 dataset (c)

Fig. 7 Associations of risk score with stemness index. a Correlation of mRNAsi values with risk score; b comparison of mRNAsi values between 
high- and low-risk samples in the TCGA set
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Table 3 Identification of independent prognostic factors

RS, risk score; HR, hazard ratio; CI, confidence interval

Clinical characteristics Uni‑variable cox Multi‑variable cox

HR 95%CI P‑value HR 95%CI P‑value

Age (years, mean ± SD) 1.016 0.999–1.033 5.86E−02 – – –

Gender (male/female) 1.196 0.868–1.648 2.73E−01 – – –

Pathologic M (M0/M1/-) 3.095 0.985–7.574 9.12E−02 – – –

Pathologic N (N0/N1/N2/N3/-) 1.147 0.943–1.395 1.71E−01 – – –

Pathologic T (T1/T2/T3/T4) 1.341 1.124–1.600 1.11E−03 1.308 0.989–1.731 5.986E−02

Pathologic stage (I/II/III/IV/-) 1.273 1.079–1.502 4.04E−03 1.009 0.768–1.324 9.494E−01

Radiation therapy (yes/no/-) 1.221 0.794–1.877 3.62E−01 – – –

Recurrence (yes/no/-) 2.240 1.625–3.086 4.11E−07 2.047 1.475–2.843 1.880E−05

RS model status (high/low) 1.611 1.225–2.115 5.69E−04 1.571 1.128–2.186 7.530E−03

Fig. 8 Stratification analysis. a Kaplan–Meier survival curves for patients with and without tumor recurrence. b Kaplan–Meier survival curves of 
high- and low-risk patients without tumor recurrence; c Kaplan–Meier survival curves of high- and low-risk patients with tumor recurrence
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Fig. 9 Comparative analysis of fractions of tumor-infiltrating immune cells in high- and low-risk samples of the TCGA set

Fig. 10 Expression levels of eight differentially expressed immune checkpoint genes in high- and low-risk patients
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Table 4 Significant KEGG pathways associated with the obtained risk subgroups

Size, the count of genes significantly enriched in a pathway. FDR, false discovery rate

Pathway name Size Enrichment score Normalized enrichment 
score

FDR (q‑value)

KEGG_BASE_EXCISION_REPAIR 33 − 0.642 − 1.896 0

KEGG_CELL_CYCLE 112 − 0.522 − 1.774 1.43E−02

KEGG_DNA_REPLICATION 33 − 0.776 − 1.980 0

KEGG_HOMOLOGOUS_RECOMBINATION 22 − 0.738 − 1.793 1.97E−03

KEGG_MISMATCH_REPAIR 22 − 0.747 − 1.881 0

KEGG_NUCLEOTIDE_EXCISION_REPAIR 43 − 0.621 − 1.978 0

KEGG_RNA_DEGRADATION 48 − 0.516 − 1.760 1.02E−02

KEGG_RNA_POLYMERASE 26 − 0.556 − 1.668 4.74E−02

KEGG_SPLICEOSOME 91 − 0.484 − 1.868 3.85E−02

Fig. 11 Immunohistochemical staining of ANKLE1, PPP1R27, AMH, FLRT3, and PPBP in normal and tumor tissues
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