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Abstract 

Background: High mobility group protein B2 (HMGB2) is a multifunctional protein that plays various roles in differ-
ent cellular compartments. Moreover, HMGB2 serves as a potential prognostic biomarker and therapeutic target for 
lung adenocarcinoma (LUAD).

Methods: In this study, the expression pattern, prognostic implication, and potential role of HMGB2 in LUAD were 
evaluated using the integrated bioinformatics analyses based on public available mRNA expression profiles from 
The Cancer Genome Atlas and Gene Expression Omnibus databases, both at the single-cell level and the tissue level. 
Further study in the patient-derived samples was conducted to explore the correlation between HMGB2 protein 
expression levels with tissue specificity, (tumor size-lymph node-metastasis) TNM stage, pathological grade, Ki-67 
status, and overall survival. In vitro experiments, such as CCK-8, colony-formation and Transwell assay, were performed 
with human LUAD cell line A549 to investigate the role of HMGB2 in LUAD progression. Furthermore, xenograft tumor 
model was generated with A549 in nude mice.

Results: The results showed that the HMGB2 expression was higher in the LUAD samples than in the adjacent normal 
tissues and was correlated with high degree of malignancy in different public data in this study. Besides, over-expres-
sion of HMGB2 promoted A549 cells proliferation and migration while knocking down of HMGB2 suppressed the 
tumor promoting effect.

Conclusions: Our study indicated that HMGB2 was remarkably highly expressed in LUAD tissues, suggesting that it is 
a promising diagnostic and therapeutic marker for LUAD in the future.
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Introduction
Lung cancer is the most commonly diagnosed cancer 
worldwide, accounting for the greatest number of deaths 
among those caused by cancer [1]. The most common 
histological subtype of lung cancer is lung adenocarci-
noma (LUAD), which accounts for more than 40% of the 
total lung cancer cases [2]. AlthoughLUAD can be diag-
nosed at an early stage using computerized tomography, 
many patients with non-small cell lung cancer (NSCLC) 
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are diagnosed at an advanced stage. In recent decades, 
therapies, including surgery, chemotherapy, radiother-
apy, molecular-target therapy, and immune therapy, 
have been used to improve the survival of patients with 
LUAD [3]. However, the prognosis of patients with 
advanced-stage LUAD remains grim [4, 5]. The discovery 
of aberrant gene expression may contribute to the early 
screening of patients with lung cancer and may increase 
the percentage of cancer diagnosis in patients at an early 
stage [6, 7]. Therefore, it is important to identify a novel 
molecular target to facilitate the early diagnosis and 
treatment of patients with lung cancer.

The HMGB2 protein, which belongs to the high-mobil-
ity group box (HMGB) family, which plays an essential 
role in transcription, chromatin remodeling, and other 
processes by binding to single-stranded DNA [8, 9]. 
HMGB2 promotes the progression of breast cancer by 
targeting lactate dehydrogenase B and febrile convul-
sions 1 proteins [10]. In gastric cancer, HMGB2 indicates 
a poor prognosis [11, 12] and is involved in tumor pro-
gression along with microRNAs, long non-coding RNAs, 
and proteins [13–15]. HMGB2 is also considered as an 
oncogene in NSCLC and is involved in the chemothera-
peutic drug resistance of NSCLC [16–18]. However, the 
involvement of HMGB2 in LUAD and the proliferation 
and invasion of LUAD cells have yet to be thoroughly 
investigated.

Therefore, in this study, a bioinformatics approach was 
employed to identify the HMGB2 as a potential diagnos-
tic and prognostic marker for LUAD. Subsequently, the 
expression analysis of the HMGB2 gene in a cohort of 
patients with was analyzed to investigate the correlation 
between the HMGB2 gene expression and the clinical 
characteristic of patients with LUAD.

Methods
Data acquisition and processing
The gene expression profiles and invasion scores of 
the single LUAD dataset EXP0068 were downloaded 
from the CancerSEA database (http:// biocc. hrbmu. edu. 
cn/ Cance rSEA/ home. jsp) [19, 20]. Then, the datasets 
GSE10072 [21], GSE21933 [22], and GSE32863 [23] were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https:// www. ncbi. nlm. nih. gov/ geo/). The 
TCGA-LUAD dataset was downloaded from The Cancer 
Genome Atlas (TCGA) database (https:// portal. gdc. can-
cer. gov/), and the unit of gene expression was converted 
from count to transcripts per kilobase million (TPM). The 
proteomic data of patients with LUAD (PDC000219) was 
downloaded from The National Cancer Institute’s Clini-
cal Proteomic Tumor Analysis Consortium (CPTAC) 
(https:// pdc. cancer. gov) [24]. The signature gene list for 
the poor survival of LUAD was downloaded from the 

MSigDB database [25, 26]. The signature gene list for the 
invasion was downloaded from the CancerSEA database. 
Survival data and invasion scores for each of the LUAD 
samples in TCGA-LUAD, GSE10072, GSE21933, and 
GSE32863 datasets were quantified using single-sample 
gene set enrichment analysis (ssGSEA) method with cor-
responding signature gene patterns using the R package 
“GSVA”.

Weighted correlation network analysis (WGCNA)
Weighted correlation network analysis (WGCNA) was 
performed using the R package “WGCNA” with the pro-
tein-coding genes (PCGs) expression profiles of a single 
LUAD cell. In this study, the following parameters were 
used; soft-threshold β = 5, min module size = 30, and 
threshold to merge similar modules = 0.25. Pearson’s cor-
relation analysis was performed to identify the features 
related modules (coefficient > 0.5, P < 0.05). Hub genes in 
the features-related module were identified according to 
the Pearson’s correlation between the gene expressions 
profiles and feature scores (coefficient > 0.3, P < 0.05) and 
module (coefficient > 0.8, P < 0.05).

Protein–protein interaction (PPI) analysis
STRING database (https:// www. string- db. org/) [27] 
and Cytoscape software were used to construct the pro-
tein–protein interaction (PPI) network according to the 
instructions provided on their official websites.

Gene ontology (GO) analysis
Gene Ontology (GO) analysis was performed using 
“ClueGo” in Cytoscape software or Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID) 
v6.8 with default parameters.

Survival analysis
Kaplan–Meier analysis of patients with LUAD based 
on the HMGB2 expression was performed using Gene 
Expression Profiling Interactive Analysis 2.0 (GEPIA 2.0) 
database (http:// gepia2. cancer- pku. cn/# index) [28] and 
PrognoScan database (http:// dna00. bio. kyute ch. ac. jp/ 
Progn oScan/ index. html) [29].

Functional state analysis
Patients with LUAD were divided into two groups based 
on the median expression of HMGB2, and GSEA analy-
sis was performed on the data from TCGA-LUAD and 
GSE10072 datasets. The functional state analyses of 
HMGB2 in the LUAD samples at a single cell level were 
performed using the CancerSEA database. The TISIDB 
(http:// cis. hku. hk/ TISIDB/ index. php) database [30] was 
used to evaluate the expression profiles of the HMGB2 
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gene among the different immune subtypes of LUAD 
(from C1 to C6).

Patient specimens and tissue microarray (TMA) 
preparation
Formalin-fixed paraffin-embedded tissue blocks, includ-
ing LUAD and adjacent normal lung tissues, were 
collected from the The First People’s Hospital of Lian-
yungang. The samples, collected from 2010 to 2015, were 
obtained from the patients with primary LUAD, who 
received no chemotherapy or radiotherapy. For the tis-
sue microarray (TMA) construction, all the specimens 
were re-evaluated and checked by hematoxylin and 
eosin (HE) staining and the representative areas were 
selected and prepared into 1.5-mm-thick tissue cores. 
In this study, a total of 98 LUAD samples with adjacent 
normal tissues were analyzed. The clinical information of 
patients, including age, tumor size, Ki-67 status, lymph 
node status, TNM stage, pathologic grades, and follow-
up information for calculating overall survival (OS) rates, 
were retrieved from the patients’ electronic medical 
records (Additional file  1: Table  S1). Clinicopathologi-
cal classification and staging were performed according 
to the 8th edition of the American Joint Committee on 
Cancer (AJCC) staging system. The study was reviewed 
and approved by the Ethics Committee of The First Peo-
ple’s Hospital of Lianyungang. The approved number is 
KY-20190927005. In this study, written informed consent 
has been obtained from each subject and that all experi-
ments conform to the Declaration of Helsinki.

Immunohistochemistry (IHC)
For immunohistochemistry (IHC) analysis, 3  µm-thick 
TMAs slides were dewaxed in xylene and rehydrated 
in graded ethanol solutions. Antigens were retrieved 
using the high-pressure heat method with a citrate solu-
tion (pH = 6). Then, the slides were incubated with goat 
serum in a 3% hydrogen peroxide solution for 15  min 
at room temperature. The samples were then incubated 
with HMGB2 monoclonal antibody (1:300, Abcam, 
ab124670) at 4 °C overnight, which was then followed by 
detection with a universal SP kit (mouse/rabbit strepta-
vidin–biotin detection system, ZSBIO, Cat # SP-9000), 
following the manufacturer’s instructions. The sections 
were then stained with 3,3-diaminobenzidine (DAB), 
counterstained with hematoxylin, dehydrated with a 
graded alcohol series, cleared in xylene, and mounted by 
neutral resins.

Interpretation and evaluation of IHC results
To analyze IHC expression results, the TMA slides were 
scanned under an Olympus optical microscope. The 
HMGB2-positive stains were mainly concentrated in the 

nucleus; for expression analysis, both the nuclear-positive 
staining intensity and percentage of positive cells were 
graded and multiplied to obtain the overall staining score 
Staining intensity was scored on a scale of 0–3 as follows; 
0 (negative), 1 (weak), 2 (medium), and 3 (strong). The 
percentage of positive tumor cells was categorized into 
five semi-quantitative classes: 0 (≤ 5% positive cells), 1 
(6–25% positive cells), 2 (26–50% positive cells), 3 (51–
75% positive cells), and 4 (> 76% positive cells). An over-
all staining score of > 6 was defined as the high HMGB2 
expression. The expression score of HMGB2 was ana-
lyzed by two independent experienced pathologists.

Cell culture
HMGB2-coding lentivirus vector and HMGB2 knock-
ing-down shRNA vector combined with psPAX and 
Pmd2.0G were transinfected into HEK293T cells. Lenti-
virus was collected to infect A549 cells after 48 h. All cells 
were cultured in DMEM medium (Gibco) with 10% fetal 
bovine serum (FBS) (Gibco) and 1% penicillin–strepto-
mycin (Gibco) at 37 °C with 5%  CO2.

Western blotting
Cells were lysed by pre-cooled RIPA lysis buffer (Sigma) 
and cell proteins were extracted.The total protein con-
centration was measured by bicinchoninic acid protein 
(BCA) assay kit (Sigma) and 10 ug total protein lysate 
per sample was separated via SDS-PAGE and trans-
ferred to PVDF membranes (Millipore). Membranes 
were blocked by skim milk for 1 h and then proteins were 
detected by incubating with primary antibodies HMGB2 
(1:300, Abcam, ab124670) and HRP Goat Anti-Rabbit 
IgG (H + L) (Abcam, Cambridge, UK). Housekeep gene 
β-Actin (Proteintech, 20,536–1-AP, 1:5000) was used as a 
loading control. https:// www. ncbi. nlm. nih. gov/ pmc/ artic 
les/ PMC77 38851/- B25.

Cell growth assay
Cells were plated into 96-well micro-plate (2000 cells/
well, 3 parallel wells) at 37  °C and 5%  CO2. Then, the 
cells were collected at 0 h, 24 h, 36 h, 48 h, 72 h, and cell 
number was analyzed by using the CCK8 reagent (MCE, 
HY-K0301)according to manufacturer’s instruction. The 
optical density (450 nm) was used to indicate the number 
of A549 cells.

Colony‑forming assay
Dissociated cells were plated into 6-well plate (200 cells/
well, 3 parallel wells). After 3 weeks, colonies were fixed 
with 4% paraformaldehyde for 30  min and then stained 
with 0.1% crystal violet solution. Each well was counted 
for colony-forming under a microscope.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738851/-B25
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738851/-B25
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Transwell assay
Appropriately 5 ×  104cells were plated in the top chamber 
of Transwell (Costar, Cambridge, MA, USA) in serum-
free DMEM and DMEM containing 10% FBS was added 
to the lower chamber. After incubation for 36 h at 37 °C, 
migrated cells were fixed with 4% paraformaldehyde for 
30 min and then stained with 0.1% crystal violet solution.
After the non-migrated cells present on the upper surface 
were removed, each Transwell membrane was photo-
graphed and cells were counted.

Cell cycle assay
A549 cells were cultured in 6 wells plate for 12 h. Next, 
cells were digested with trypsin and suspended into sin-
gle cell, and fixed with 70% ethanol at 4  °C overnight. 
Then cells were re-suspended and washed by PBS. 
0.2  mg/mL RNase A and 100  μg/mL Propidium in PBS 
was applied for staining cells for 30 min. The percentages 
of cells of G0/G1, S, and G2/M were analyzed by counted 
cell numbers according to red fluorescence emission by 
Beckman Cytoflex.

Animal experiment
A total of 1 ×  106 A549 cells infected with HMGB2-
shRNA and Scramble-shRNA were injected into the 
subcutaneous fat tissue of nude mice aged 6 weeks pur-
chased from Model Animal Research Center of Nanjing 
University. There were 5 mice in each group and all the 
operations in accordance with ARRIVE guidelines and 
animal healthcare of Nanjing Medical University disci-
pline. Tumor volume was calculated using the formula 
(length ×  width2)/2. At the end of the experiment, the 
mice were sacrificed by Carbon dioxide gas anesthesia, 
and tumor masses were separated and recorded by pho-
tograph. The animal procedures were approved by the 
Nanjing Medical University Health Science Center Insti-
tutional Animal Care and Use Committee.

Statistical analysis
Two-tailed t test was utilized to analyze the difference 
between two groups. Log-rank test was utilized for sur-
vival analysis.

Results
Construction of WGCNA and identification of key genes
WGCNA was performed using the PCGs expression 
profile of a single LUAD dataset after quality control. A 
total of 6 modules were identified based on the average 
hierarchical clustering and dynamic tree clipping meth-
ods (Fig.  1A). The blue module was the most closely 
related to the invasion score and poor survival (Fig. 1B). 

Similarly, the genes (HMGB2, PTTG1, CENPF, NUSAP1, 
and TOP2A) in the blue module, which were closely 
related to the invasion and poor survival, were identified 
among the hub genes (Fig. 1C–E).

PPI network and GO analysis of genes in the blue module
The blue module consists of 60 genes, which are listed 
in Table 1. The PPIs among these 60 genes were identi-
fied using the STRING database. A PPI network was 
constructed using “MCODE” in Cytoscape software, 
which consisted of 25 genes (CDC20, TOP2A, NUSAP1, 
PTTG1, RRM2, TK1, PRC1, CENPF, CKS2, TYMS, 
HMGB2, KPNA2, CKAP2, CENPW, UBE2T, SMC4, 
TPX2, KIAA0101, MAD2L1, CCNB2, NUF2, CCNB1, 
BIRC5, CKS1B, and CDK1) and illustrated (Fig. 2A). The 
GO analysis of 25 genes using ClueGo showed that these 
genes might participate in the segregation of sister chro-
matid, cyclin-dependent protein serine/threonine kinase 
activator activity, chromosome condensation, organi-
zation of microtubule cytoskeleton involved in mitosis 
(Fig. 2B).

mRNA expression of HMGB2 was higher in LUAD tissues 
than in the normal lung tissues
The mRNA expression of the HMGB2 gene was com-
pared between the LUAD and normal lung tissues using 
four public datasets. Both the TCGA-LUAD dataset 
(Fig. 3A) and three GEO datasets (GSE10072, GSE21933, 
and GSE32863) (Fig.  3B–D) showed that the mRNA 
expression of the HMGB2 gene was higher in the LUAD 
tissues than in that in the normal lung tissues. Besides, 
the mRNA expression of the HMGB2 gene was positively 
correlated with the invasion score of LUAD samples in 
the TCGA-LUAD, GSE21933, and GSE32863 datasets 
(Fig. 3E–G).

High mRNA expression of HMGB2 predicted poor 
prognosis of patients with LUAD
First, using the GEPIA online tool, the patients with 
LUAD with high HMGB2 expression were found to 
exhibit shorter disease-free survival (DFS) than that 
those with low HMGB2 expression (Fig.  4A). Next, the 
PrognoScan database demonstrated that the patients 
with LUAD with high HMGB2 expression had shorter 
relapse-free survival (RFS) and OS than that those with 
low HMGB2 expression (Fig. 4B). Additionally, it was also 
found that the mRNA expression of the HMGB2 gene 
was positively correlated with the poor survival of LUAD 
samples in the TCGA-LUAD, GSE10072, GSE21933, and 
GSE32863 datasets (Fig. 4C–F).
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Fig. 1 Identification of modules and genes associated with LUAD traits. A Dendrogram of co-expressed clusters. Each color band represents 
a module. B Heatmap of the correlation between the module and LUAD traits. C Screening genes with GS for invasion >  = 0.3, MM in blue 
module >  = 0.8. D Screening genes with GS for poor survival >  = 0.3, MM in blue module >  = 0.8. E Genes associated with LUAD traits in the blue 
module. GS, gene significance; MM, module membership
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Table 1 List of genes in the blue module

Genes GS.Invasion p.GS.Invasion GS.POOR_SURVIVAL p.GS.POOR_SURVIVAL MMblue p.MMblue

HP1BP3 0.194489465 2.36E–17 0.342049134 2.48E–52 0.375415927 1.72E–63

HMGN2 0.248015567 1.54E–27 0.392491809 9.85E–70 0.429403445 1.51E–84

H2AZ1 0.556301554 5.23E–152 0.619374063 5.2E–198 0.596681948 2.81E–180

TXNDC12 0.087574798 0.000152652 0.155133526 1.63E–11 0.166013358 5.41E–13

HMGB2 0.54856885 5E–147 0.680433829 8.17E–254 0.828524272 0

PTTG1 0.481163346 1.13E–108 0.593038281 1.47E–177 0.815720624 0

LMNA 0.085663156 0.000212437 0.111125441 1.5E–06 0.227541962 2.5E–23

CENPF 0.438465802 1.78E–88 0.617326342 2.38E–196 0.815359656 0

MAD2L1 0.43155391 1.81E–85 0.58602481 1.99E–172 0.75751139 0

CDC20 0.416711313 3.05E–79 0.5066494 3.58E–122 0.780645386 0

CNIH4 0.115705602 5.43E–07 0.185395548 6.97E–16 0.317357887 6.58E–45

LBR 0.295566173 6.5E–39 0.414605908 2.2E–78 0.495050243 6.9E–116

RRM2 0.270310779 1.37E–32 0.482672635 1.92E–109 0.464027189 3.2E–100

NUSAP1 0.414665704 2.08E–78 0.607574845 1.31E–188 0.810276286 0

DTYMK 0.126552657 4.17E–08 0.22417539 1.13E–22 0.335943941 1.97E–50

LSM3 0.181587012 2.73E–15 0.263558096 5.23E–31 0.320540308 7.93E–46

ANP32E 0.414532352 2.36E–78 0.568420259 4.41E–160 0.61992395 1.85E–198

SMC4 0.406941975 2.6E–75 0.61080064 3.85E–191 0.686571747 3.45E–260

PRC1 0.400037124 1.3E–72 0.589546434 5.46E–175 0.739849565 5.92878775009496e–323

CCNB1 0.397426228 1.32E–71 0.525596988 5.64E–133 0.752110706 0

BIRC5 0.394914249 1.2E–70 0.508903547 2.02E–123 0.736089122 4.45089906500295e–318

UBE2T 0.391091811 3.3E–69 0.585210459 7.7E–172 0.55671854 2.79E–152

HNRNPH1 0.079826757 0.000559412 0.081351724 0.000436945 0.139160814 1.59E–09

CANX 0.050491299 0.029225736 0.139841541 1.32E–09 0.166869243 4.09E–13

TPX2 0.390565821 5.2E–69 0.572889036 3.81E–163 0.780337799 0

LSM5 0.185672298 6.3E–16 0.217785631 1.85E–21 0.326003446 1.98E–47

H2AZ2 0.232757918 2.31E–24 0.342232892 2.17E–52 0.415424258 1.02E–78

TOP2A 0.387650554 6.32E–68 0.603502347 1.86E–185 0.82601939 0

RAD21 0.199951614 2.85E–18 0.351562846 2.23E–55 0.438644081 1.49E–88

CKAP2 0.383987637 1.41E–66 0.54116512 2.23E–142 0.649091595 1.46E–223

TUBB4B 0.243836908 1.2E–26 0.333798418 8.95E–50 0.504846153 3.53E–121

CCDC34 0.211582621 2.56E–20 0.299505525 5.85E–40 0.314867874 3.38E–44

MSRB2 – 0.056602615 0.014495592 –0.034170132 0.1401855 – 0.121155745 1.54E–07

NUF2 0.382601836 4.5E–66 0.560125366 1.61E–154 0.777739445 0

HNRNPH3 0.064298362 0.005473179 0.096709601 2.87E–05 0.166721726 4.29E–13

BUB3 0.297794076 1.67E–39 0.471913779 4.72E–104 0.488204343 2.73E–112

PTMS 0.145072376 3.09E–10 0.189829616 1.37E–16 0.220034372 6.98E–22

CKS1B 0.382129621 6.69E–66 0.478582912 2.27E–107 0.703647857 8.68E–279

CCNB2 0.381374568 1.26E–65 0.495160248 6.03E–116 0.722727963 3.24E–301

MZT1 0.283437277 8.55E–36 0.406075716 5.72E–75 0.493581645 4.14E–115

CENPW 0.375372785 1.78E–63 0.487446587 6.75E–112 0.551660618 5.29E–149

CDK1 0.354106101 3.28E–56 0.534635613 2.25E–138 0.67376856 4.57E–247

HMGB3 0.346876287 7.28E–54 0.38390452 1.51E–66 0.580098229 3.46E–168

TUBA1C 0.325429384 2.93E–47 0.451808378 1.76E–94 0.53847834 1.01E–140

ARL6IP1 0.208283525 1E–19 0.260398287 2.77E–30 0.567205804 2.94E–159

UBB 0.19887289 4.34E–18 0.188569008 2.18E–16 0.288429248 4.64E–37

CALM2 0.314837801 3.45E–44 0.318958225 2.28E–45 0.495383249 4.59E–116

SKA2 0.198230093 5.58E–18 0.277240152 2.93E–34 0.440151637 3.21E–89

DCAF7 0.066230214 0.004217493 0.154166518 2.18E–11 0.166071026 5.31E–13
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Elevated HMGB2 levels were correlated with the poor 
prognosis of LUAD
Higher protein expression of HMGB2 was observed 
in LUAD than that in normal lung tissues using a pub-
lic data from CPTAC (Fig.  5A). To identify the protein 
expression level of HMGB2 in LUAD tissues, an IHC 
assay was performed using a TMA panel, which con-
tained the tissue samples of 98 patients with LUAD. The 
results comfirmed a significantly higher level of HMGB2 
expression in the tumor tissues than that in the adjacent 
alveolar tissues (Fig.  5B and C). Moreover, the protein 
level of HMGB2 in the patients with advanced LUAD 

was remarkably higher than that in the early-stage 
patients (Fig. 5D). Subsequently, the upregulation of the 
HMGB2 gene was positively correlated with poor dif-
ferentiation grade (Fig. 5E). Furthermore, the expression 
level of the HMGB2 gene was positively correlated with 
the percentage of Ki-67-positive cells (Fig.  5F). Moreo-
ver, patients with LUAD with a high level of HMGB2 
(quantitative IHC score > 6) had a shorter survival time 
than those with low levels of HMGB2 (Fig. 5G). In brief, 
these results suggested that the HMGB2 gene could 
be regarded as an independent prognostic marker for 
patients with LUAD.

Table 1 (continued)

Genes GS.Invasion p.GS.Invasion GS.POOR_SURVIVAL p.GS.POOR_SURVIVAL MMblue p.MMblue

DDX5 0.299252295 6.83E–40 0.199262962 3.73E–18 0.241041764 4.63E–26

KPNA2 0.273618228 2.22E–33 0.388151454 4.12E–68 0.570266281 2.42E–161

TK1 0.156623239 1.04E–11 0.296986593 2.74E–39 0.331512416 4.43E–49

CKS2 0.306621658 6.84E–42 0.360689519 2.11E–58 0.57519621 9.58E–165

TYMS 0.263405175 5.67E–31 0.447817381 1.17E–92 0.29786502 1.6E–39

SNX5 0.121354136 1.47E–07 0.223181068 1.76E–22 0.228520426 1.61E–23

PCLAF 0.304101046 3.36E–41 0.507961995 6.72E–123 0.407520658 1.54E–75

EIF2S2 0.111905656 1.27E–06 0.175157876 2.57E–14 0.165517307 6.35E–13

DDX39A 0.233122056 1.95E–24 0.321454453 4.3E–46 0.342708414 1.54E–52

LSM4 0.248708321 1.09E–27 0.301903889 1.32E–40 0.278432804 1.49E–34

UBE2S 0.259184683 5.23E–30 0.451218342 3.28E–94 0.545264365 6.14E–145

GS gene significance, MM module membership

Fig. 2 PPI network and GO annotations of the hub genes in the blue module. A MCODE analysis of all the 60 genes in the blue module resulted in 
the PPI network of 25 hub genes. B GO annotations of 25 hub genes in the blue module. PPI, protein–protein interaction; GO, gene ontology
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The expression level of HMGB2 was positively correlated 
with cell cycle and proliferation in the LUAD tissues
Pearson’s correlation analysis employing the expres-
sion patterns of single LUAD cells from two patients 
with LUAD patients (Pearson’s coefficient > 0.3, P < 0.05) 
revealed that HMGB2 expression was positively cor-
related with cell cycle, proliferation, and invasion, as 
evidenced by the CancerSEA database (Fig.  6A and B). 
Futhermore, the GSEA analysis, based on the data from 
TCGA-LUAD and GSE10072 datasets, showed that both 
the cell cycle and DNA replication pathways were signifi-
cantly enriched in the LUAD samples with high HMGB2 
expression (Fig. 6C–F).

PPI network and GO analysis of HMGB2 and co‑expressed 
genes
HMGB2 was used as the input as a single protein in the 
STRING database. The PPI network of HMGB2 and 
its co-expressed genes consisted of 11 genes (HMGB2, 
HMGB1, HIST1H1A, HIST1H1B, HIST1H1D, H1F0, SET, 
APEX1, ANP32A, NME1, and GZMA), which are shown 

in (Fig.  7A). The GO analysis of 11 genes using DAVID 
showed that these genes might participate in biologi-
cal processes, such as nucleosome assembly, regulation 
of mRNA stability, positive regulation of DNA binding, 
and apoptotic DNA fragment (Fig. 7B); molecular func-
tion, such as like poly (A) RNA binding and chromatin 
DNA binding (Fig. 7C); and cellular component, such as 
nucleus and nucleoplasm (Fig. 7D).

HMGB2 was negatively related to inflammation 
in the LUAD tissues
As shown in Fig. 6A, the HMGB2 expression was nega-
tively correlated with the inflammation score in LUAD 
patients 3 in EXP0068 cohort at the single-cell level (coef-
ficient = -0.50 and P < 0.001). Furthermore, it was found 
that the C3 immune type (inflammatory) of patients 
with LUAD had the lowest expression of HMGB2 as 
compared to the other immune types (Fig.  8A). Results 
of Pearson’ correlation analysis showed that the expres-
sion of HMGB2 was negatively correlated with that of 
chemokines (CXCL16, CX3CR1, and CCL14) (Fig. 8B–D) 

Fig. 3 High expression of HMGB2 was correlated with invasion in LUAD. A–D HMGB2 mRNA expression was higher in the LUAD than in normal lung 
samples in A TCGA-LUAD, B GSE10072, C GSE21933, D GSE32863 datasets. E–G HMGB2 expression was positively correlated with the invasion score 
of LUAD samples in E TCGA-LUAD, F GSE21933, and G GSE32863 datasets. P* < 0.05, P** < 0.01, P**** < 0.0001
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and immunostimulatory proteins (TNFSF13, TMEM173, 
IL6R, and TNFSF15) (Fig. 8E–H).

Overexpression of HMGB2 promoted A549 cells 
proliferation and migration
HMGB2 stable expression A549 cell line was constructed 
and validated as shown in Fig. 9A and Additional file 2; 
Figure S1. The in vitro experiments’ results showed that 
over-exprssion of HMGB2 promoted A549 cells prolif-
eration (Fig.  9B) and colony-formation (Fig.  9C and D). 
Besides, Transwell assay’ result showed that HMGB2 
may promote the ability of A549 cells to migrate (Fig. 9E 
and F).

Knockdown of HMGB2 inhibited A549 cells proliferation, 
tumorigenicity and migration
HMGB2 knockdown A549 cell line was constructed and 
validated as shown in Fig. 10A. The colony assays showed 
that knockdown of HMGB2 inhibited the colony-for-
mation of A549 cells (Fig. 10B). The in vivo experiments 
showed that knockdown of HMGB2 inhibited the vol-
umes of the tumors (Fig.  10C). Cell cycle assay showed 
that the knockdown of HMGB2 increased the number of 
cells in the G0/G1 phase and decreased the number of 
cells in the G2/M phase (Fig. 10D). Besides, we observed 
that knockdown of HMGB2 could inhibited the migra-
tion of A549 cells (Fig. 10E).

Discussion
Extensive efforts have been devoted to exploring the 
promising diagnostic and therapeutic target for improv-
ing the prognosis of lung cancer. In this study, we 
performed WGCNA and ssGSEA analyses with the 

Fig. 4 High HMGB2 expression predicted poor prognosis of the patients with LUAD. A Patients with the high HMGB2 expression had shorter DFS 
than those with the low HMGB2 expression. B Patients with the high HMGB2 expression had shorter RFS and OS than those with the low HMGB2 
expression. C–F HMGB2 expression was positively correlated with the poor survival of LUAD samples in C TCGA-LUAD, D GSE10072, E GSE21933, and 
F GSE32863 datasets. DFS, disease-free survival; RFS, relapse-free survival; OS, overall survival
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expression profiles of patients with LUAD at a single-cell 
level and identified the HMGB2 gene was identified as a 
promising diagnostic and prognostic biomarker for the 
LUAD (Additional file 2; Figure S2). Furthermore, using 
an integrated bioinformatics analysis on multiple expres-
sion profiles from TCGA and GEO datasets, we found 
that the HMGB2 might affect the prognosis of patients 
with LUAD patients by regulating the proliferation and 
invasion of LUAD cells.

HMGB2, a member of the family of high mobility 
group nonhistone chromatin proteins, regulates the 
processes of transcription, replication, recombination, 
and DNA repair [31]. HMGB2 is highly expressed dur-
ing embryogenesis, however, its expression is limited 

in the adult organs and is mainly detected in lymphoid 
organs and testes. However, previous studies have elab-
orated on the elevated expression of HMGB2 in several 
types of tumor tissues and reported it as an oncogene. In 
breast cancer, the HMGB2 is regulated with ER, LDHB, 
and FBP1 to promote the endocrine therapy resistance 
and tumorigenesis of tumor cells [10, 32, 33]. In gastric 
cancer, the high expression of HMGB2 predicts a poor 
prognosis [11, 34] and its expression is regulated by non-
coding RNA, miRNA-23b-3p, miRNA-1297, MALAT1, 
and miRNA-873 to promote the proliferation, migra-
tion, and invasion of cells [13–15]. In prostate cancer, 
the early detection of HMGB2 in prostate tissues using 
IHC contributed to the early-stage diagnosis of prostate 

Fig. 5 Elevated HMGB2 levels were correlated with the poor prognosis of LUAD. A Elevated protein expression of HMGB2 was observed in LUAD 
using public data from PDC000219. B A representative case, showing the elevated expression of HMGB2 in LUAD as compared to that in the 
adjacent alveolus tissue; C Quantitative analyses of the IHC staining of HMGB2 in the tumor sample and paired adjacent tissue of 98 patients with 
LUAD; D Quantitative analyses of the IHC staining of HMGB2 in 98 LUAD patients TMAs with different TNM-stages; E Quantitative analyses of the 
IHC staining of HMGB2 in 98 LUAD patients TMAs with different pathologic grades F Correlation of the IHC score of HMGB2 and percentage of Ki67 
in 98 LUAD patients. G Kaplan–Meier analysis of the overall survival of 98 patients with HMGB2 (two groups stratified by HMGB2 expression level. 
Differences between the groups were shown using a log-rank test.)

Fig. 6 HMGB2 was correlated with cell cycle and proliferation in LUAD samples. A Correlations between the functional states and HMGB2 
expression in patient 3 (LUAD) at the single-cell level. B Correlations between the functional states and HMGB2 expression in patient 4 (LUAD) at the 
single-cell level. C, D GSEA for HMGB2 using the data from the TCGA-LUAD dataset. C Cell cycle and D DNA replication pathways were enriched in 
the high expression group. E and F GSEA for HMGB2 using the data from the GSE10072 dataset. E Cell cycle and F DNA replication pathways were 
enriched in the high expression group

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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cancer [35]. In cervical cancer, pancreatic cancer, glioma, 
and ovarian cancer, the HMGB2 was reported as a reli-
able prognosis predictor. In NSCLC, the high expression 
of HMGB2 in cancer was associated with the chemo-
therapy response and poor prognosis [36, 37]. Together 
with PDIA3, p21, and LINC00184, the HMGB2 can regu-
late the chemotherapy- and radiotherapy-induced DNA 
damage to enhance drug resistance [17, 38, 39]. All these 
results indicated that the HMGB2 might play an impor-
tant role in the development of tumors, including lung 
cancer. However,no evidence has demonstratedits effect 
on tumor growth in NSCLC, especially in LUAD.

In this study, HMGB2 was screened as a promising 
biomarker for LUAD. Furthermore, the integrated bio-
informatics analysis, using the data from public plat-
forms both at tissue and single-cell levels indicated 

that the HMGB2 might affect the cell cycle, prolifera-
tion, and expression of inflammatory factors in LUAD. 
For further validation, the correlation of HMGB2 with 
clinical characteristics was analyzed using TMA stain-
ing for HMGB2 on 98 LUAD specimens. The results 
showed that the expression of HMGB2 was dramati-
cally elevated in tumor cells as compared to that in the 
normal alveolar cells. Moreover, the HMGB2 expres-
sion level was identified to be highly correlated with 
a poor TNM stage, pathologic grade, and prognosis. 
Noteworthily, the expression of HMGB2 was positively 
correlated with that of Ki67 in LUAD. In conclusion, 
this study demonstrated that HMGB2 is a potential 
diagnostic and therapeutic indicator for LUAD, sug-
gesting that HMGB2 might be a potential therapeutic 
target in LUAD.

Fig. 7 PPI network and GO annotations of HMGB2 and its co-expressed genes A PPI network of HMGB2 and its co-expressed genes. B–D 
Significant B biological process, C molecular function, and D cellular component from the GO annotations of HMGB2 and its co-expressed genes 
(P < 0.05). PPI, protein–protein interaction; GO, gene ontology
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Fig. 8 HMGB2 expression was negatively correlated with inflammation in LUAD. A HMGB2 expression among the different immune subtypes of 
LUAD samples. B–D HMGB2 expression was negatively correlated with the expression of chemokines B CXCL16, C CX3CR1, and D CCL14 in LUAD. 
E–H HMGB2 expression was negatively correlated with the expression of immuno-stimulators E TNFSF13, F TMEM173, G IL6R, and H TNFSF15 in 
LUAD

Fig. 9 HMGB2 promoted A549 cells colony-formation and migration. A The protein level of HMGB2 and β-actin in A549 cells between HMGB2 
over-expression group (OE-HMGB2) and negative control group (NC) were determined by western blot assay. B HMGB2 over-expression 
promoted A549 cells growth. C HMGB2 over-expression promoted A549 cells colony-formation. D Histogram of colony numbers between HMGB2 
over-expression group and control group. E HMGB2 over-expression promoted A549 cells migration. F Histogram of cell counts between HMGB2 
over-expression group and control group. ***P < 0.001
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Conclusions
We propose that HMGB2 may be correlated with pro-
liferation of LUAD cells and it is a promising diag-
nositic and therapeutic marker for LUAD.
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