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Abstract
Background  To comprehensively analyze the stemness characteristics related to prognosis and the immune 
microenvironment in lung adenocarcinoma (LUAD).

Methods  The OCLR machine learning method was used to calculate the stemness index (mRNAsi) of the LUAD 
samples. DEGs common between the low mRNAsi, normal, and high mRNAsi groups were screened and the immune-
stemness genes were obtained. Then the PPI network was created and enrichment analyses were performed. 
Moreover, different subtypes based on immune-stemness genes associated with prognosis were identified, and the 
relationships between LUAD stemness and TIME variables were systematically analyzed, followed by TMB analysis.

Results  Patients in the high mRNAsi groups with poor prognosis were screened along with 144 immune-stemness 
genes. IL-6, FPR2, and RLN3 showed a higher degree in the PPI network. A total of 26 immune-stemness genes 
associated with prognosis were screened. Two clusters were obtained (cluster 1 and cluster 2). Survival analysis 
revealed that patients in cluster 2 had a poor prognosis. A total of 12 immune cell subpopulations exhibited 
significant differences between cluster 1 and cluster 2 (P < 0.05). A total of 10 immune checkpoint genes exhibited 
significantly higher expression in cluster 1 (P < 0.05) than in cluster 2. Further, the TMB value in cluster 2 was higher 
than that in cluster 1 (P < 0.05).

Conclusion  Immune-stemness genes, including L-6, FPR2, and RLN3, might play significant roles in LUAD 
development via cytokine–cytokine receptor interaction, neuroactive ligand‒receptor interaction, and the JAK‒STAT 
pathway. Immune-stemness genes were related to tumor-infiltrating immune cells, TMB, and expression of immune 
checkpoint gene.

Highlights
	• IL-6, FPR2, RLN3 had higher degree in PPI network.
	• The patients in cluster 1 had better prognosis.
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Background
Lung cancer is a malignant disease with the highest inci-
dence rate and mortality rate across the world [1, 2]. Lung 
adenocarcinoma (LUAD) is a major type of lung cancer, 
accounting for 40–50% of all lung cancers and originates 
from the bronchial epithelial and mucous glands [3, 4]. 
Despite significant improvements in targeted and che-
motherapeutic techniques, the overall survival rate of 
patients with LUAD is still poor [5]. Therefore, it is essen-
tial to screen markers related to LUAD prognosis.

Cancer stem cells (CSCs) have the ability of self-
renewal and producing heterogeneous tumor cells [6]. 
However, owing to their biological characteristics and 
the protective effect of the tumor microenvironment 
(TME), CSCs are less sensitive to conventional radio-
therapy and chemotherapy, a phenomenon that supports 
tumor recurrence and metastasis [7]. Therefore, if CSCs 
are not completely removed, relapse and metastasis can 
easily occur. Transcriptional and epigenetic disorders 
of cancer cells often alter the core signaling pathways—
regulating the phenotype of normal stem cells—leading 
to carcinogenic dedifferentiation and acquisition of stem-
ness [8]. In addition, the complex interactions between 
immune cells and their secreted molecules in the TME 
help maintain the viability and self-renewal ability of the 
CSCs [9]. The stemness index (mRNAsi) is an index used 
to describe the similarity between tumor cells and stem 
cells. Higher mRNAsi is related to active biological pro-
cess and a higher degree of tumor dedifferentiation [10]. 
LUAD comprises a complex system of cancer cells, infil-
trating immune cells, CSCs, and nonmalignant stromal 
cells. However, a synthesized understanding of the tumor 
immune microenvironment (TIME) and LUAD stemness 
is lacking.

In this study, an OCLR machine learning method 
was used to calculate the mRNAsi of the LUAD sam-
ples. Then, the samples were divided into low and high 
mRNAsi groups based on the median value of mRNAsi. 
The DEGs between the low mRNAsi group vs. normal 
group, high mRNAsi group vs. normal group, and high 
mRNAsi group vs. low mRNAsi group were screened, 
and immune-stemness genes were obtained. PPI net-
work analysis and enrichment analysis were performed. 
Moreover, different subtypes based on immune-stemness 
genes associated with prognosis were acquired. The rela-
tionships between LUAD stemness and TIME variables 
were systematically evaluated, followed by tumor muta-
tion burden (TMB) analysis. This study offers novel 

understanding of the stemness characteristics of LUAD 
and provides a theoretical basis for drug development.

Methods
Data source and data preprocessing
The gene expression data of 585 LUAD patients (collected 
using an Illumina HiSeq 2000 RNA Sequencing platform-
based) were acquired from TCGA. In total, 501 LUAD 
tumor samples and 58 normal samples were obtained 
after retaining LUAD samples and normal samples with 
survival prognosis information. Ethical approval was 
obtained for accessing patient information curated on the 
database, and all methods were carried out in accordance 
with relevant application guidelines and regulations of 
TCGA. This study is based on open source data, so there 
are no ethical issues. A flowchart of this study is shown 
in Fig. 1.

Evaluating the clinical significance and prognosis of 
mRNAsi
The mRNAsi of LUAD samples was calculated using 
OCLR machine learning [11] through the gelnet pack-
age in R software. Thereafter, the differences in mRNAsi 
values between LUAD samples and normal samples were 
evaluated using a t-test. In addition, the LUAD samples 
were categorized into low and high mRNAsi groups 
based on the median value of mRNAsi, and Kaplan‒
Meier survival analysis was used to assess the prognosis 
of patients between the low and high mRNAsi groups. 
Fisher’s exact test (count variables such as sex) and t-test 
(continuous variables such as age) were used to assess the 
differences in clinical information between the low and 
high mRNAsi groups.

PPI network and enrichment analysis of immune-stemness 
genes
The samples were allocated into normal sample, low 
mRNAsi, and high mRNAsi sample groups based on the 
source information and mRNAsi grouping information 
of the samples. Thereafter, the limma package [12] of R 
was used to identify the DEGs between the low mRNAsi 
group vs. normal group, high mRNAsi group vs. nor-
mal group, and high mRNAsi group vs. low mRNAsi 
group with the following cutoffs: false positive discov-
ery (FDR) < 0.05; |log2FC| > 0.5. Common DEGs were 
then obtained. In addition, immune-related genes were 
acquired from the Immport database [13]. The common 
DEGs were intersected with these immune-related genes 

	• Total 10 immune checkpoint genes showed higher expression in cluster 1.
	• TMB value in cluster 2 was higher than that in cluster 1.
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and the overlapping genes were redefined as immune-
stemness genes.

STRING [14] was used to analyze the interactions 
between immune-stemness genes encoding proteins with 
a PPI score > 0.7. Cytoscape [15] was used to build the 
PPI network. Moreover, enrichment analysis of immune-
stemness genes in the PPI network was performed using 
DAVID [16, 17] with an FDR threshold < 0.05.

Identification of different subtypes based on immune-
stemness genes related to prognosis
Immune-stemness genes in the PPI network were sub-
jected to univariate Cox regression analysis using the sur-
vival package [18] to screen the immune-stemness genes 
significantly associated with survival prognosis with a 
threshold of P < 0.05. In addition, based on the expres-
sion of immune-stemness genes related to prognosis, the 
pheatmap package [19] in R software was used to con-
duct bidirectional hierarchical cluster analysis to iden-
tify the different subtypes using the centered Pearson 

Fig. 1  Flow chart of this study
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correlation algorithm [20]. Subsequently, Kaplan‒Meier 
survival analysis was used to assess the prognosis of 
patients between these different subtypes. Fisher’s exact 
test (count variables such as sex) and t-test (continu-
ous variables such as age) were used to evaluate the dif-
ferences in clinical information between these different 
subtypes.

Association between different subtypes with TIME
Based on the expression profile of LUAD samples, 
CIBERSORT [21] was used to evaluate 22 types of tumor-
infiltrating immune cells in these subtypes. The differ-
ences in the expression of numerous immune checkpoint 
genes were compared.

TMB analysis of different subtypes
As the biology of LUAD is different depending on 
the type of oncogenic driver mutations, the relations 
between driver mutations [Kirsten rat sarcoma viral 
oncogene homolog (KRAS), epidermal growth factor 
receptor (EGFR), anaplastic lymphoma kinase (ALK), 
c-Ros oncogene 1 receptor tyrosine kinase (ROS1), V-raf 
murine sarcoma viral oncogene homolog B1 (BRAF), 
mesenchymal-epithelial transition factor (MET), and 
RET proto-oncogene (RET)] and the stemness score were 
compared. In addition, based on the LUAD gene muta-
tion data obtained from TCGA, the gene mutation fre-
quencies of LUAD samples were evaluated. t-test was 
used to assess the differences in gene mutation frequency 
between these different subtypes. TMB is generally 
defined as the number of somatic coding mutations per 
million bases. The TMB of LUAD samples was calculated 
using the maftools package [22] in R, and the differences 
in TMB between these different subtypes were compared 
using Wilcox test.

Statistical analysis
Fisher’s exact test was used to compare the differences 
in count variables between groups. t-test was used to 
compare the differences in continuous variables between 
groups, and the normalization was conducted before 
using the t-test, and non-parametric methods was used 
if the parameters were not normally distributed. P < 0.05 
was considered significant.

Results
Evaluating the clinical significance and prognosis of 
mRNAsi
As shown in Fig. 2 A, the mRNAsi value corresponding to 
that of LUAD samples was higher than that correspond-
ing to that of normal samples. Survival analysis revealed 
that the patients in the high mRNAsi group had a poor 
prognosis (Fig.  2B). In addition, differences in clinical 
information between the low and high mRNAsi groups 

were examined (Table 1). The results revealed that patho-
logical T (Fig. 2 C) and pathological stage (Fig. 2D) were 
significantly different between the low and high mRNAsi 
groups (P < 0.05), and the mRNAsi value was positively 
correlated with pathological T and stage, which explains 
the poor prognosis in the high mRNAsi group.

PPI network enrichment analysis of immune-stemness 
genes
As previously mentioned, a total of 4653, 3961, and 2583 
DEGs were screened from the low mRNAsi group vs. 
normal group, high mRNAsi group vs. normal group, 
and high mRNAsi group vs. low mRNAsi group, respec-
tively, and a total of 1239 common DEGs were identified 
(Fig. 3 A). The expression levels of common DEGs were 
significantly different between samples from the high and 
low mRNAsi groups (Fig. 3B). In addition, 144 immune-
stemness genes were identified. The PPI network of these 
immune-stemness genes showed that there were 109 
nodes in the PPI network (Fig.  3  C), and interleukin 6 
(IL-6), formyl peptide receptor-2 (FPR2), and relaxin 3 
(RLN3) had a higher degree in the PPI network (Supple-
mentary Table  ); thus, L-6, FPR2, and RLN3 might play 
significant roles in LUAD development. Subsequently, 
enrichment analysis was carried out on the immune-
stemness genes in the PPI network. The results showed 
that the 109 immune-stemness genes were involved in 
42 biological processes (BPs) (Fig.  3D) and 16 Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
(Fig. 3E) [23, 24].

Identification of different subtypes based on immune-
stemness genes associated with prognosis
A total of 26 immune-stemness genes associated with 
prognosis were screened (Supplementary Table  2). Two 
clusters were identified, cluster 1 and cluster 2; there 
were 166 and 335 samples in cluster 1 and cluster 2, 
respectively (Fig. 4 A). Survival analysis showed that the 
patients in cluster 2 had a poor prognosis (Fig. 4B). The 
differences in age, sex, pathologic N, pathologic T, and 
pathologic stage between cluster 1 and cluster 2 were sig-
nificant (P < 0.05) (Fig. 4 C and Table 2).

Association between different subtypes with TIME
A total of 22 infiltrating immune subpopulations were 
evaluated; among them, 12 immune cell subpopulations 
showed significant differences between cluster 1 and 
cluster 2 (P < 0.05) (Fig. 5 A). A comparison of the differ-
ences in expression levels of immune checkpoint genes 
between cluster 1 and cluster 2 revealed that 10 immune 
checkpoint genes showed significantly higher expression 
in cluster 1 than in cluster 2 (P < 0.05) (Fig.  5B). These 
results provided new insights into LUAD development 
and immunotherapy.
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TMB analysis of different subtypes
As shown in Fig. 6, the stemness scores of KRAS, EGFR, 
ALK, ROS1, BRAF, MET, and RET showed no significant 
difference between the Mut and Wild groups (P > 0.05). 
The gene mutation frequency of LUAD samples was 
determined; tumor protein p53 (TP53), titin (TTN), 
mucin 16, cell surface associated (MUC16), etc. had a 
high mutation frequency (Fig.  7  A); the mutation fre-
quency of TP53, TTN, CUB, and Sushi multiple domains 
3 (CSMD3), among others, in cluster 1 and cluster 2 were 
significantly different (Fig.  7B). The TMB value in clus-
ter 2 was higher than that in cluster 1 (P < 0.05) (Fig. 7 C), 
which is explained by the results of survival analysis.

Discussion
In this study, patients in the high mRNAsi group with 
a poor prognosis and a total of 144 immune-stemness 
genes were screened. There were 109 nodes in the PPI 
network, and enrichment analysis revealed that the 109 
immune-stemness genes were involved in 42 BPs and 16 
KEGG pathways. In total, 26 immune-stemness genes 
associated with prognosis were screened. Two clusters 
were identified, namely, cluster 1 and cluster 2. Survival 
analysis revealed that patients in cluster 2 had a poor 
prognosis. A total of 12 immune cell subpopulations 
showed significant differences between cluster 1 and 
cluster 2 (P < 0.05), and a total of 10 immune checkpoint 

Fig. 2  Evaluation of the clinical significance and prognosis of mRNAsi. (A) The mRNAsi value corresponding to LUAD samples and normal samples. (B) 
Survival analysis of low and high mRNAsi groups. Difference in the pathological T (C) and pathological stage (D) between the low and high mRNAsi 
groups
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genes showed significantly higher expression in cluster 1 
than in cluster 2 (P < 0.05); TMB values in cluster 2 were 
higher than those in cluster 1.

Studies have suggested that mRNAsi might serve as 
an effective index for the survival, classification, and 
disease progression of tumor patients [25–27]. Huang 
et al. found that basal breast cancer patients have high 
mRNAsi values [28]. In the present study, we found that 
the mRNAsi value in LUAD samples was higher than that 
in normal samples, and survival analysis revealed that 
patients in the high mRNAsi group had a poor prognosis. 
These findings are in accordance with the results of the 
above studies. In addition, clinical analysis showed that 
the mRNAsi value was positively correlated with patho-
logical T and stage, and patients with higher pathological 
T and stage had a higher mRNAsi value. These findings 
verify the results of survival analysis.

A total of 144 immune-stemness genes were screened 
in this study; IL-6, FPR2, and RLN3 had a high degree in 
the PPI network and therefore could be considered the 

hub genes. IL-6 is a pleiotropic four-helix bundle cyto-
kine that plays various functions in the body [29]. The 
IL-6 family is one of the most important cytokine fami-
lies involved in the process of tumorigenesis and metas-
tasis, particularly IL-6 [30]. IL-6 promotes tumorigenesis 
by regulating all hallmarks of cancer and multiple signal-
ing pathways [31]. FPR2 is a G-protein coupled recep-
tor that plays a major role in cancer development and 
inflammation [32]. Several studies have shown that FPR2 
stimulates tumor cell invasion and proliferation [33, 
34]. For instance, Lu et al. showed that FPR2 enhances 
colorectal cancer progression by promoting epithelial–
mesenchymal transition process [35]. Xie et al. found that 
FPR2 is involved in epithelial ovarian cancer progres-
sion through RhoA-mediated M2 macrophage polariza-
tion [36]. In addition, Zhang et al. found that RLN3 may 
be a key gene affecting the progression of hepatocellular 
carcinoma [37]. Liu et al. revealed that RLN3 was differ-
entially expressed and prognostically relevant in patients 
with KRAS-mutant colorectal cancer [38]. KEGG path-
way analysis revealed that the 109 immune-stemness 
genes in the PPI network were involved in 16 KEGG 
pathways, including cytokine−receptor interaction, neu-
roactive ligand−receptor interaction, and JAK−STAT sig-
naling pathway. Cytokine receptor interaction may be the 
key to determining the role of inflammation in disease 
development [39]. The JAK−STAT signaling pathway is 
highly associated with many inflammatory and immune 
diseases [40]. Zhou et al. found that cytokine−receptor 
interaction and JAK−STAT signaling pathway are related 
to the development of glioblastoma [41]. Chen et al. 
showed that neuroactive ligand−receptor interaction is 
correlated with the occurrence of glioma [42], suggesting 
that these immune-stemness genes might play key roles 
in LUAD development.

Immunotherapy has become an effective treatment for 
cancer; immune cells are an important part of the TME 
and play vital roles in tumor immunotherapy [43]. In this 
study, two clusters were screened, including cluster 1 and 
cluster 2, and the survival analysis uncovered that the 
patients in cluster 1 had a better prognosis. A total of 12 
immune cell subpopulations, including M0 macrophages, 
regulatory T cells (Tregs), and memory B cells, showed 
significant differences between cluster 1 and cluster 2. A 
total of 10 immune checkpoint genes, including PDCD1, 
CTLA4, and CD274, showed significantly higher expres-
sion in cluster 1 than in cluster 2. Among immune check-
point therapies, PD-1/PD-L1 and CTLA-4 inhibitors 
have shown promising therapeutic outcomes [44]. TMB 
is a new biomarker for predicting the effect of immu-
notherapy [45, 46]. Negrao et al. showed that low TMB 
was a predictive factor for worse outcomes in lung can-
cer [47]. Zhang et al. found that high TMB levels led to 
poor survival outcomes in clear cell renal cell carcinoma 

Table 1  Statistics and comparative analysis of clinical 
information in high and low mRNAsi groups
characteristics total cases N of 

case 
501

mRNAsi level P value
Low High

Age(years)

≤ 60 157 86 71 1.493E-
01> 60 344 164 180

Geneder

Male 231 115 116 9.986E-
01Female 270 135 135

Pathologic M

M0 333 165 168 6.791E-
01M1 24 13 11

Pathologic N

N0 324 163 161 7.819E-
01N1 94 46 48

N2 72 39 33

Pathologic T

T1 167 79 88 2.060E-
02T2 267 143 124

T3 45 21 24

T4 19 6 13

Pathologic stage

Stage I 268 148 120 3.337E-
03Stage II 119 62 57

Stage III 81 26 55

Stage IV 25 13 12

Tumor recurrence

Yes 74 77 151 9.309E-
01No 131 144 275

Radiotherapy

Yes 32 28 60 8.093E-
01No 194 194 388
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[48]. In this study, we found that the TMB value in cluster 
2 was higher than that in cluster 1, which explains why 
cluster 1 had a better prognosis.

This study has some limitations. First, the data ana-
lyzed in this study were all publicly available; thus, the 
key genes and molecular mechanisms should be explored 
in further experiments in the future. Second, the infiltrat-
ing immune subpopulations were evaluated using only 
the CIBERSORT algorithm; therefore, further tools and 
relevant experiments should be carried out to validate 
our findings. Third, large-scale prospective clinical stud-
ies are required to evaluate the obtained immune-stem-
ness genes.

Conclusion
Immune-stemness genes, including L-6, FPR2, and 
RLN3, might play significant roles in LUAD develop-
ment via cytokine–cytokine receptor interaction, neu-
roactive ligand–receptor interaction, and JAK–STAT 
signaling pathway. In addition, immune-stemness genes 
were related to tumor-infiltrating immune cells, TMB, 
and immune checkpoint gene expression. Therefore, this 
study proposed novel insights into the clinical treatment 
of LUAD.

Fig. 3  Protein-protein interaction (PPI) network and enrichment analysis of immune-stemness genes. (A) Differentially expressed genes (DEGs) and com-
mon DEGs screened from low mRNAsi group vs. normal group, high mRNAsi group vs. normal group and high mRNAsi group vs. low mRNAsi group. (B) 
The expression level of common DEGs in samples from the high mRNAsi and low mRNAsi groups. (C) PPI network of these immune-stemness genes; the 
large nodes with higher degree. Gene ontology (GO) (D) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis (E) of the immune-
stemness genes in the PPI network
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Table 2  Statistics and comparison of clinical information of samples in different subtype clusters using Wilcox test
Clinical characteristics TCGA (N = 501) Cluster 1 (N = 166) Cluster 2 (N = 335) P value
Age(years, mean ± sd) 65.28 ± 10.05 66.79 ± 10.36 64.53 ± 9.822 0.02

Gender(Male/Female) 231/270 61/105 170/165 3.208e-03

Pathologic M(M0/M1/-) 333/24/144 106/6/54 227/18/90 6.496e-01

Pathologic N(N0/N1/N2/-) 324/94/72/11 121/27/9/9 203/67/63/2 8.045e-05

Pathologic T(T1/T2/T3/T4/-) 167/267/45/19/3 70/79/12/3/2 97/188/33/16/1 1.439e-02

Pathologic stage( I / II / III / IV /-) 268/119/81/25/8 107/36/12/7/4 161/83/69/18/4 1.775e-04

Tumor recurrence(Yes/No/-) 151/275/75 45/107/14 106/168/61 7.218e-02

Radiotherapy(Yes/No/- ) 60/388/53 16/136/14 44/252/39 2.417e-01

Fig. 4  Identification of different subtypes based on immune-stemness genes associated with prognosis. (A) Identification of the different subtypes. 
(B) Survival analysis cluster 1 and cluster 2. (C) Differences in age, sex, pathologic N, pathologic T, and pathologic stage between cluster 1 and cluster 2
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Fig. 6  Association between driver mutations and the stemness score

Fig. 5  Association between different subtypes with tumor immune microenvironment (TIME). (A) Differences in immune cell subpopulations between 
the cluster 1 and cluster 2 groups. (B) Differences in the expression levels of immune checkpoint genes between cluster 1 and cluster 2 groups. * repre-
sents P < 0.05
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List of abbreviations
LUAD	� Lung adenocarcinoma
CSCs	� Cancer stem cells
TME	� Tumor microenvironment
TIME	� Tumor immune microenvironment
TMB	� Tumor mutation burden
FPR2	� Formyl peptide receptor-2
RLN3	� Relaxin 3
BPs	� Biological processes
TP53	� Tumor protein p53
TTN	� Titin
MUC16	� Mucin 16
Tregs	� Regulatory T cells
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