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Abstract 

Background  The pathogenesis of pulmonary arterial hypertension (PAH) and associated biomarkers remain to be 
studied. Copper metabolism is an emerging metabolic research direction in many diseases, but its role in PAH is still 
unclear.

Methods  PAH-related datasets were downloaded from the Gene Expression Omnibus database, and 2067 copper 
metabolism-related genes (CMGs) were obtained from the GeneCards database. Differential expression analysis and 
the Venn algorithm were used to acquire the differentially expressed CMGs (DE-CMGs). DE-CMGs were then used for 
the coexpression network construction to screen candidate key genes associated with PAH. Furthermore, the predic-
tive performance of the model was verified by receiver operating characteristic (ROC) analysis, and genes with area 
under the curve (AUC) values greater than 0.8 were selected as diagnostic genes. Then support vector machine, least 
absolute shrinkage and selection operator regression, and Venn diagrams were applied to detect biomarkers. Moreo-
ver, gene set enrichment analysis was performed to explore the function of the biomarkers, and immune-related 
analyses were utilized to study the infiltration of immune cells. The drug-gene interaction database was used to pre-
dict potential therapeutic drugs for PAH using the biomarkers. Biomarkers expression in clinical samples was verified 
by real-time quantitative PCR.

Results  Four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) were screened. The ROC analysis showed that the 4 
biomarkers performed well (AUCs > 0.7). The high expression groups for the 4 biomarkers were enriched in protein 
activity-related pathways including protein export, spliceosome and proteasome. Furthermore, 8 immune cell types 
were significantly different between the two groups, including naive B cells, memory B cells, and resting memory CD4 
T cells. Afterward, a gene-drug network was constructed. This network illustrated that STREPTOZOCIN, IBUPROFEN, 
and CELECOXIB were shared by the PTGER4 and DDIT3. Finally, the results of RT-qPCR in clinical samples further con-
firmed the results of the public database for the expression of NFKBIA and OSM.

Conclusion  In conclusion, four biomarkers (DDIT3, NFKBIA, OSM, and PTGER4) with considerable diagnostic values 
were identified, and a gene-drug network was further constructed. The results of this study may have significant 
implications for the development of new diagnostic biomarkers and actionable targets to expand treatment options 
for PAH patients.
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Introduction
Pulmonary hypertension (PH) is defined by a mean pul-
monary arterial pressure ≥ 20 mmHg at rest as assessed 
by right heart catheterization. PH is a devastating vas-
cular disease characterized by remodeling of pulmonary 
arteries, elevated pulmonary artery pressure, and sub-
sequent development of right heart failure. Pulmonary 
arterial hypertension (PAH; World Health Organiza-
tion Group 1) represents a specific subset of this disease 
that is focused on the lung vasculature, the most com-
mon types of PAH are idiopathic PAH and PAH associ-
ated with connective tissue disease [1]. Without effective 
treatment, PAH results in high morbidity and mortality 
[2], and early and accurate diagnosis of PAH is critical to 
patient prognosis. The development of comprehensive 
mechanistic theories for PAH may improve our under-
standing of the disease and facilitate the development 
and translation of effective therapies and biomarkers.

The gold standard approach to confirm PAH is right 
heart catheterization, but this is an invasive test that is 
not easily accepted by patients, so the development of 
biomarkers is an ongoing quest to improve outcomes. 
Researchers determined that none of the blood biomark-
ers identified in149 articles provide enough accuracy to 
replace current diagnostic approaches, either due to a 
lack of data or a lack of specificity [3]. To move closer 
towards precision medicine for PAH, there is an urgent 
need to identify novel biomarkers with high value. 
Increasing evidence has shown that a multiple-biomarker 
approach could be superior to using a single biomarker.

Recently, the metabolic theory of PAH has emerged, 
which facilitates the identification of several key meta-
bolic targets that are directly involved in PAH patho-
genesis and can form the basis of biomarker and drug 
discovery programs [4]. Metabolic changes occur in PAH 
pulmonary arteries, including abnormalities in glycolysis 
and glucose oxidation, fatty acid oxidation, glutaminoly-
sis, arginine metabolism, one-carbon metabolism, and 
the tricarboxylic acid cycle; PAH-associated nuclear and 
mitochondrial mutations can also affect metabolism [5, 
6]. Copper metabolism has also become an emerging 
metabolic research direction. Copper is one of the most 
abundant basic transition metals in the human body; 
both excess copper levels and copper deficiency can be 
harmful, and careful homeostatic control via copper 
metabolism is important [7]. In addition, recent exciting 
work has implicated copper-handling and copper-utiliz-
ing proteins in controlling the striking metabolic changes 
that occur in proliferating cells [8], indicating a potential 

role of copper metabolism in PAH pathogenesis. It was 
indeed proven that copper could be a biomarker for PAH 
[9]. Copper also plays a significant role in the control of 
endothelial cell proliferation in PAH [10], but the mecha-
nisms and genes related to copper metabolism that are 
involved in PAH development are still not clear. Copper 
participates in PAH development, but the role of specific 
genes related to copper metabolism in pathogenesis of 
PAH remain to be determined, which would help to iden-
tify potential treatment targets and biomarkers.

Based on this rationale, in this study, PAH-related 
datasets were downloaded from the GEO database, and 
copper metabolism-related genes were obtained from 
the GeneCards database. Bioinformatics analysis meth-
ods such as limma, weighted gene coexpression network 
analysis (WGCNA), support vector machine (SVM), 
least absolute shrinkage and selection operator (LASSO) 
regression, and Venn diagrams were used to identify cop-
per metabolism-related genes with diagnostic value for 
PAH. This study will increase our knowledge of the basic 
pathologic mechanisms behind vascular pulmonary dis-
ease, contribute to the early diagnosis and differentiation 
of PAH from other diseases and improve risk assessment 
before and during treatment using novel copper metab-
olism-related biomarkers. In the best-case scenario, 
the findings might even help in individualizing preven-
tion and treatment. We present the following article in 
accordance with the TRIPOD reporting checklist.

Materials and methods
Data source
The PAH-related GSE33463 and GSE113439 datasets and 
the corresponding sample grouping information were 
downloaded from the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). Among them, the GSE33463 dataset 
with 71 samples (PAH: Control = 30: 41) was used as the 
training set, and the GSE113439 dataset with 17 samples 
(PAH: Control = 6: 11) was used for the validation of the 
diagnostic model. In addition, 2067 CMGs were obtained 
from the GeneCards database (https://​www.​genec​ards.​
org/) with "copper metabolism" as keywords.

Identification of DE‑CMGs and functional enrichment 
analysis
The "limma" package [11] was used to perform differ-
ential analysis to obtain DEGs based on 31 PAH sam-
ples and 40 control samples from the GSE33463 dataset 
(|log2(fold change)(FC)|> 0.5 and p value < 0.05). Fur-
thermore, to screen the DE-CMGs, the "ggvenn" package 
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was used to perform Venn analysis on the DEGs and 
CMGs. Subsequently, Gene Ontology (GO) annotation 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
functional enrichment of DE-CMGs were analysed by the 
"clusterProfiler" package [12–15], and visualized by the 
"ggplot2" package.

Identification of DE‑CMG modules significantly associated 
with PAH using WGCNA
The DE-CMG expression matrices of 71 samples in 
GSE33463 were used as input data for WGCNA using 
the "WGCNA" package [16], and PAH and control were 
used as trait data to construct a coexpression network. 
First, all samples were clustered, and redundant samples 
were eliminated. Sample clusters and trait heatmaps were 
built, and the optimal soft threshold was determined. The 
modules were divided by the dynamic cutting tree algo-
rithm, and the parameter minModuleSize was set to 10 
to obtain the gene module. Correlation analysis was per-
formed to determine the relationship between the mod-
ules and PAH and those modules with strong correlations 
were selected for subsequent analysis.

Construction and validation of diagnostic models
Based on the modules with strong correlations obtained 
from WGCNA, genes in the module were identified as 
DE-CMGs. Additionally, the roc function of the "pROC" 
package [17] was used to draw ROC curves based on the 
grouping information of the sample and the expression 
level of each module DE-CMG to select candidate key 
genes. The 41 control samples and 30 PHA samples in 
the GSE33463 dataset were randomly divided into train-
ing and testing sets at a ratio of 6:4. In the training set, to 
examine the impact of different candidate key gene com-
binations on the diagnostic efficiency, the possible com-
binations of all candidate key genes were calculated by 
SVM. The combination with the highest predictive rate 
for diagnostis (i.e., indicating the genes in the combina-
tion are biomarkers) was selected, and a model was built 
in the training set. The model classification ability was 
verified using a tenfold cross-validation method, and the 
sensitivity, specificity, negative predictive value, and posi-
tive predictive value of the model for predicting pulmo-
nary hypertension were analysed. LASSO regression was 
also utilized to screen the candidate biomarkers based 
on key genes, and tenfold cross-validation was adopted 
to verify the model. Biomarkers were further detected by 
intersecting the results of SVM and LASSO regression 
using a Venn diagram. In addition, the predictive perfor-
mance of the model was verified by ROC curves and the 
sensitivity and specificity of the model in the testing set 
and GSE113439 dataset.

GSEA of biomarkers
To explore the function of the diagnostic genes, the 30 
PAH patient samples were divided into high and low 
expression groups according to the median expression 
of the diagnostic genes, and GSEA was performed on all 
genes. The FDR < 25% and NOM.p value < 0.05 were set 
as significace thresholds.

Immune cell infiltration accessment using the CIBERSORT 
algorithm
To investigate the immune cells infiltration in the con-
trol group and PAH group, the Cell type Identification 
By Estimating Relative Subsets Of RNA Transcripts 
(CIBERSORT) algorithm and the LM22 gene set were 
used to calculate the proportions of 22 immune cell 
types in 71 samples (Control: PAH = 41:30). The propor-
tion of each immune cell type in each sample was calcu-
lated using the CIBERSORT algorithm, and the samples 
with p > 0.05 were excluded (remaining samples control: 
PAH = 41: 30), according to the statistical value. Accord-
ing to the scores of each immune cell in the two groups, 
a score heatmap of 22 immune cell types was drawn. 
The "ggplot2" package was used to draw boxplots with 
the Wilcoxon rank sum test method. Then, a correlation 
heatmap of the biomarkers and 22 immune cell types was 
plotted, and the two immune cell types that were most 
positively or negatively correlated with the biomark-
ers were selected for further analysis of the differences 
in immune cell expression and their corresponding bio-
markers between the control and PAH groups.

Biomarker potential drug prediction using the DGIdb 
database
The DGIdb (https://​dgidb.​genome.​wustl.​edu/) database 
was used to predict the potential therapeutic drugs for 
PAH using the biomarkers, and Cytoscape software [18] 
was used to visualize the prediction results.

Validation of biomarker expression
To further confirm the results of the public database anal-
ysis, we collected eight control peripheral blood mono-
nuclear cell (PBMC) samples from healthy subjects and 
eight PBMC samples from patients with PAH (the basic 
characteristics of the patients are shown in Additional 
file 1: Table S1) and isolated RNA for RT-qPCR. Doppler 
echocardiogram was performed to screen for the pres-
ence of PAH. Pulmonary artery systolic pressure (sPAP) 
was estimated adopting a modified Bernoulli equation 
[19]: sPAP = 4 x (tricuspid systolic jet)2 + 10 mmHg (esti-
mated right atrial pressure). PAH was defined as an esti-
mated sPAH > 35  mmHg using echocardiograms. Total 
RNA was separated by TRIzol (Ambion, Austin, USA) 

https://dgidb.genome.wustl.edu/
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based on the manufacturer’s guidance. The inverse tran-
scription of total RNA into cDNA was implemented 
using the first strand cDNA synthesis kit (Servicebio, 
Wuhan, China) based on the manufacturer’s instruc-
tions. Then, qPCR was carried out utilizing 2 × Universal 
Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, 
China) according to the manufacturer’s instructions. The 
primer sequences for PCR are listed in Table 1. Expres-
sion levels were normalized to the internal reference 
GAPDH and computed employing the 2−ΔΔCq formula.

Statistical analysis
All statistical analyses were performed using R software 
(version 4.0.3). The differences between the two groups 
were compared by the Wilcoxon test. P < 0.05 was consid-
ered statistically significant.

Results
Identification of DE‑CMGs and functional enrichment 
analysis
A total of 814 DEGs were obtained from the PAH vs. 
control comparison group, including 258 up-regulated 
genes and 556 down-regulated genes (Fig.  1A). Moreo-
ver, 85 DE-CMGs were identified from the overlap analy-
sis of DEGs and CMGs (Fig.  1B–C). These DE-CMGs 
were enriched in 445 biological process (BP) terms, 7 
cellular component (CC) terms, 22 molecular function 
(MF) terms, and 55 KEGG signalling pathways. These 
DE-CMGs were primarily enriched in various inflam-
matory response, neuron death and apoptotic, ion bind-
ing and homeostasis, protein transport and binding GO 
terms, such as regulation of inflammatory response, 
regulation of neuron death, neuron apoptotic process, 
transition metal ion homeostasis and copper ion binding 
(Fig. 1D). The DE-CMGs were primarily enriched in vari-
ous immune- and disease-related KEGG pathways, such 
as Th17 cell differentiation, the IL-17 signaling pathway, 

coronavirus disease-COVID-19, and Chagas disease 
(Fig. 1E).

Identification of DE‑CMG modules significantly associated 
with PAH using WGCNA
To identify the DE-CMG modules significantly associ-
ated with PAH, the WGCNA was performed. Among 
the 71 samples of the GSE33463 dataset, 8 outlier 
samples (GSM827709, GSM827715, GSM827721, 
GSM827734, GSM827730, GSM827723, GSM827718 
and GSM827729) were eliminated (Fig. 2A–B). The opti-
mal soft threshold was determined to be 16 (R2 = 0.86) 
(Fig.  2C), and 4 gene modules were screened (Fig.  2D). 
Among the 4 gene modules, the turquoise module had a 
significantly strong correlation with PAH (Fig. 2E).

Construction of a diagnostic model based on 4 genes
A total of 28 module DE-CMGs were acquired from 
the WGCNA, and the expression of these genes was 
significantly different in the PAH and control groups 
(Fig.  3A). Furthermore, 10 module DE-CMGs (CXCR4, 
JUN, DDIT3, PPP1R15A, NFKBIA, PHLDA1, CTRL, 
OSM, PTGER4, and COQ10B) were screened as can-
didate key genes according to AUC > 0.8, and the 95% 
confidence intervals of 28 module DE-CMGs are shown 
in Additional file  2: Table  S2, indicating that these 10 
candidate key genes had diagnostic value (Fig.  4). The 
combination of 4 genes (DDIT3, NFKBIA, OSM, and 
PTGER4) was filtered by SVM (Fig. 3B). Seven candidate 
genes (CXCR4, JUN, DDIT3, NFKBIA, OSM, PTGER4, 
and COQ10B) were filtered using LASSO regression 
(Fig. 3C). By intersecting the 4 genes filtered by SVM and 
the 7 genes detected by LASSO regression, 4 biomark-
ers (DDIT3, NFKBIA, OSM, and PTGER4) for the diag-
nosis of PAH were identified (Fig. 3D). The combination 
of the 4 genes distinguished PAH well from the control 
(Table 2), and the AUC value was greater than 0.7 in the 
training set, testing set, and GSE113439 dataset respec-
tively, indicating high predictive effectiveness of the 
model (Fig. 3E–G).

GSEA biomarker enrichment analysis
The top 5 KEGG pathways that were significantly 
enriched in the high and low expression groups for the 
4 biomarkers are shown in Fig.  5. Protein export, spli-
ceosome, citrate cycle TCA cycle, and proteasome were 
enriched in the high expression groups. In the low DDIT3 
expression group, the genes were mainly enriched in the 
complement and coagulation cascades, ECM receptor 
interaction, and olfactory transduction pathways.

Table 1  The primer sequences for qPCR

Primer Sequence

DDIT3 For TCA​CCA​CTC​TTG​ACC​CTG​CTTC​

DDIT3 Rev TGA​CCA​CTC​TGT​TTC​CGT​TTCC​

NFKBIA For GAG​GAG​TAC​GAG​CAG​ATG​GTCAA​

NFKBIA Rev CAA​TTT​CTG​GCT​GGT​TGG​TGAT​

OSM For CAC​AGA​CTG​GCC​GAC​TTA​GAGC​

OSM Rev TGA​GTG​CAT​GAA​GCG​ATG​GTAG​

PTGER4 For CAG​CAG​TAC​ATC​TCA​GAC​CCTCC​

PTGER4 Rev ACC​AGC​CTC​ATC​CAC​CAG​TAA​

GAPDH For CCC​ATC​ACC​ATC​TTC​CAG​G

GAPDH Rev CAT​CAC​GCC​ACA​GTT​TCC​C
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Fig. 1  Identification of 85 DE-CMGs and their enrichment analysis. A 814 DEGs including 258 up-regulated (red dots) and 556 down-regulated 
(green dots) genes from the GSE33463 dataset in the volcano map. B Venn diagram to detect 85 DE-CMGs. C Heatmap of the expression of the top 
100 DEGs. D The top 27 GO terms included 10 biological process (BP) terms, 7 cellular component (CC) terms, and 10 molecular function (MF) terms 
of the DE-CMGs. E Top 20 KEGG pathways of the DE-CMGs
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Fig. 2  Construction of WGCNA to identify DE-CMG modules in the GSE33463 dataset. A Cluster dendrogram of module eigengenes to detect 
outlier samples. B Dendrogram of all expressed genes in the PAH and control samples clustered based on a dissimilarity measure (1‐TOM). C 
Analysis of the scale-free topology fit index and the mean connectivity for various soft-threshold powers (β) for the genes. D Hierarchical clustering 
tree based on the topological overlap dissimilarity (1-TOM). E Heatmap of the module-trait relationships. The corresponding P values are also 
annotated
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Immune cell infiltration accessment by the CIBERSORT 
algorithm
As immunity/inflammation is considered a critical 

pathogenesis mechanism during PAH development [20, 
21]), we investigated the different immune/ inflammatory 
cells, and employed the CIBERSORT algorithm. Eight 

Fig. 3  Identification and validation of four biomarkers. A Heatmap of the expression of 28 module DE-CMGs in PAH and control samples from the 
training set. B The accuracy and error of estimate generation for the SVM‐RFE algorithm in the training set. (C) Candidate genes selected by the 
LASSO regression model. D Four biomarkers detected by Venn diagram. ROC curves of the prognostic values of the four biomarkers in the training 
(E), testing (F), and GSE113439 (G) sets
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immune cell types were significantly different (p < 0.05) 
between the two groups, including naive B cells, memory 
B cells, resting memory CD4 T cells, follicular helpe rT 
cells, monocytes, M0 macrophages, M2 macrophages, 

and neutrophils (Fig.  6A–B). Among these immune 
cells, OSM had the most significant positive correla-
tion with resting memory CD4 T cells, and DDIT3 had 
the most significant negative correlation with neutropils 

Fig. 4  Ten module DE-CMGs with AUC values > 0.8

Table 2  Construction and validation of the predictive performance of the four-gene model

Terms Training dataset Testing dataset GSE113439 dataset

Actual disease Actual normal Actual disease Actual normal Actual disease Actual normal

Predicted disease 13 5 17 5 4 0

Predicted normal 0 24 0 7 2 11

Total 13 29 17 12 6 11

Correct 13 24 17 7 4 11

Senstivity 100 100 67

(%)

Specificity 83 58 100

(%)
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(Fig.  6C–D). Moreover, the expressions levels of OSM 
and DDIT3, and the abundance of resting memory 
CD4 T cells and neutropils were significantly different 
between the PAH and control samples (Fig. 7).

Use of biomarkers for potential drug prediction using 
the DGIdb database
A gene-drug network was constructed and is displayed 
in Fig.  8. It was found that 27 drugs were predicted by 
DDIT3, 9 drugs were predicted by NFKBIA, 1 drug 
was predicted by OSM, and 21 drugs were predicted 

by PTGER4. Moreover, the network also suggested that 
STREPTOZOCIN, IBUPROFEN, and CELECOXIB were 
shared by PTGER4 and DDIT3.

Verification of biomarker expression in clinical samples
As illustrated in Fig. 3A, expression of DDIT3, NFKBIA, 
OSM, and PTGER4 was reduced in the PAH samples 
compared with control samples. We then further con-
firmed the expression in clinical samples (eight control 
samples and eight PAH samples) by RT-qPCR. In agree-
ment with the results of the public database data analysis, 

Fig. 5  Top 5 KEGG pathways of the four biomarkers. Top 5 KEGG pathways of DDIT3 (A), NFKBIA (B), OSM (C), and PTGER4 (D) by GSEA enrichment

Fig. 6  Evaluation of immune cell infiltration using the CIBERSORT algorithm. A A stacked bar plot of the proportions of 22 immune cell types 
in control and PAH samples from the training based on the CIBERSORT algorithm. B Vioplot of 22 immune cell contents in the control and PAH 
samples from the training set. C Correlations between the 4 biomarkers and 22 immune cell types. D Correlation analysis between the expression 
level of DDIT3 and abundance of neutrophils (left), and the expression level of OSM and abundance of resting memory CD4 T cells (right) in the 
training set

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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NFKBIA and OSM were markedly down-regulated in 
clinical PAH samples versus control samples (Fig.  9). 
However, the trends in DDIT3 and PTGER4 expression 
were not consistent with the public database results, 
probably due to sample heterogeneity or limited sample 
size (Fig. 9).

Discussion
As early as the 1980s, researchers found that increased 
serum copper may be a cause or a marker of PAH [22], 
and intravenous infusion of copper sulfate significantly 
increased pulmonary vascular resistance. [23], indicating 
an important role of copper during PAH development. 
It is critical for organisms to maintain homeostatic con-
centrations of copper. In recent years, copper metabo-
lism has emerged as an important metabolic research 
direction for PAH. However, the mechanism underlying 
the effects of copper and changes in copper metabolism 

in PAH remain to be studied. To overcome these prob-
lems, this study screened differentially expressed copper 
metabolism-related genes. Four-gene-based models were 
constructed, and DDIT3, NFKBIA, OSM, and PTGER4 
had improved diagnostic value in identifying PAH com-
pared with normal controls, and thus had potential to 
be biomarkers for PAH. The immune infiltration profiles 
of PAH and normal controls were significantly different. 
High proportions of memory B cells, monocytes, M0 
macrophages, M2 macrophages, and neutrophils were 
found in PAH, while high proportions of resting memory 
CD4 T cells, naïve B cells, and follicular helper T cells 
were found in normal controls. OSM was most posi-
tively correlated with resting memory CD4 T cells, and 
DDIT3 was most negatively correlated with neutrophils; 
Drugs were predicted by targeting the 4 biomarkers, and 
STREPTOZOCIN, IBUPROFEN, and CELECOXIB were 
shared by PTGER4 and DDIT3.

Fig. 7  Wilcoxon’s test. Wilcoxon’s test of the expression of OSM and DDIT3, and the abundance of memory-resting CD4 T cells and neutrophils 
between the PAH and control samples
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Fig. 8  Drug–gene interaction diagram. The red square indicates the four biomarkers, and the green circle indicates the drugs

Fig. 9  The expression of biomarkers (NFKBIA (A), OSM (B), DDIT3 (C), and PTGER4 (D)) in clinical PBMC samples detected by RT-qPCR. NP indicates 
normal peopole. **p value < 0.01
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The copper metabolism-related genes DDIT3, NFK-
BIA, OSM, and PTGER4 were downregulated in PAH, 
as identified by WGCNA and SVM. Copper could cause 
increased expression of DDIT3 [24], DDIT3, as an onco-
gene [25], has been reported to promote vascular remod-
eling in MCT-induced PH [26], but its expression and 
role in PAH have not been studied. In this study, DDIT3 
was upregulated in the validated cohort of PAH patients, 
which is not consistant with our predicted results and 
requires further studies to understand the possible 
pathogenic mechanisms as a controversial point. NFK-
BIA, OSM, and PTGER4, which were predicted to be 
downregulated in PAH by bioinformatics analysis in the 
present study have not yet been reported in PAH. The 
prediction results of NFKBIA and OSM are consist-
ent with the validated results, while the expression of 
PTGER4 was not significantly changed in the validated 
cohort of PAH patients. Our study indeed provides new 
research directions for PAH. Usually, NFKBIA functions 
as a tumour suppressor and has the potential to be intro-
duced as a novel anti-tumour agent [27, 28], whether it 
can reverse pulmonary vascular remodeling in PAH 
is not yet clear. It is known that nuclear factor-κB (NF-
κB) plays an important role in PAH [29], which could 
be regulated by copper [30, 31]. Inhibition of NF-κB, 
prevents MCT-PH in mice [32]. NFKBIA serves as an 
inhibitor [33, 34] in regulating NF-κB and is reported to 
suppress the epithelial-mesenchymal transition (EMT), 
cell migration, proliferation and invasion [27]. Our 
results indicated an important role of NFKBIA in PAH 
development, which provides a new research direc-
tion for PAH that needs to be clarified further. OSM, a 
member of the interleukin 6 cytokine family, can sup-
press fibroblast activation to prevent cardiac fibrosis by 
inhibiting the SMAD signaling pathway [35]. OSM treat-
ment preserved cardiac function and inhibited apoptosis 
and fibrosis after myocardial infarction [36]. In addition, 
OSM protected against cardiac I/R injury by regulating 
apoptosis, insulin sensitivity and mitochondrial biogene-
sis in diabetic mice [37]. Some studies have reported that 
OSM activates endothelial cells [38] and smooth muscle 
cells [39], but to date, the role of OSM in PAH and the 
underlying mechanisms remain to be studied. There is 
an imbalance between vasodilation and vasoconstriction 
favouring vasoconstriction with an increase in circulat-
ing vasoconstrictors and a decrease in circulating vaso-
dilators (i.e., prostacyclin and prostaglandin) during PAH 
development. Therefore, prostacyclin and prostaglandin 
analogs are crucial treatments for PAH [40]. The prosta-
glandin receptor PTGER4 agonist could attenuate PAH 
by activating PPARγ [41] and suppressing EndMT [42]. 
The PAH pharmacotherapies beraprost and iloprost can 
bind to PTGER4 to mediate vasodilatory functions [43, 

44]. A previous study showed that although the prosta-
cyclin receptor was downregulated, PTGER4 had a stable 
expression [44], which is consistent with our validated 
results. Studies have also shown increased PTGER4 
expression in pulmonary artery aneurysm with dissec-
tion in a patient with PAH [45]. However, in this study, 
we predicted that PTGER4 was downregulated in PAH. 
Thus, the expression pattern of PTGER4 in different sub-
groups of PAH need to be researched further.

GSEA enrichment analyses demonstrated key pathways 
involved in PAH, indicating that the citrate cycle (TCA 
cycle) participates in PAH development. This finding 
is consistent with previous studies, and abnormal TCA 
cycle flux occurrs in PAH [46]. Additional studies should 
focus on metabolic dysregulation in PAH to offer power-
ful therapeutic means to prevent or even reverse disease 
progression at the molecular level.

Immune cells play an indispensable role in the pro-
cess of pulmonary hypertension vessel remodeling [47]. 
Therefore, attention should be given to the mechanism of 
immune cell infiltration in patients with PAH. We found 
that memory B cells, monocytes, M0 macrophages, M2 
macrophages and neutrophils were increased in PAH, 
while resting CD4 memory T cells, naïve B cells and fol-
licular helper T cells were decreased. A previous study 
reported that B lymphocytes are involved in vessel biol-
ogy, vasomotor regulation, angiogenesis and cell prolif-
eration [48]. Macrophages can cause vasoconstriction, 
increase vascular permeability, and induce proliferation 
[20]. Different subsets of CD4 + T cells play different 
roles in PAH, including small pulmonary artery muscu-
larization, initiation and maintenance of inflammation, 
promotion of vascular remodeling, suppression of vas-
cular inflammation, and limitation of the propagation of 
vascular injury [49]. Our previous study demonstrated 
the crucial role of interleukin 17–producing CD4+ effec-
tor T cells in hypoxia-induced PH [50], while CD4+ 
regulatory T cells showed a protective role against PAH 
[51]. Myeloid cells, specifically nonclassical monocyte 
lineage cells promote vascular remodeling [52]. It is not 
yet fully elucidated how these immune cells alterations 
are involved in PAH, and the molecular mechanisms 
involved in their activation remain unknown. Our results 
showed that OSM was most positively correlated with 
resting memory CD4 T cells, and DDIT3 was most nega-
tively correlated with neutropils, laying the foundation 
for studying the immune mechanisms of PAH. The pos-
sible interaction mechanisms need to be clarified further.

Current PAH treatments generally target vasoconstric-
tion by three different modalities: nitric oxide → soluble 
guanylate cyclase → cGMP levels, and the endothelin 
and prostacyclin pathways [53]. The treatment strat-
egy for PAH has thereby changed significantly over the 
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past decade, combination therapy has progressively 
become the gold standard of care in patients with PAH 
and is becoming widely used in clinical practice [54]. 
In this study, we identified 4 hub copper metabolism-
related genes and constructed a gene-drug network to 
obtain agonists and antagonists of these molecules. The 
results provide a reference for clinicians to decide which 
drugs should be used in combination with current tar-
geted drugs to improve patient prognosis and which 
drugs should be used with caution to prevent the clini-
cal deterioration of PAH. The gene-drug network in this 
study illustrated that STREPTOZOCIN, IBUPROFEN, 
and CELECOXIB were shared by PTGER4 and DDIT3. 
Among them, IBUPROFEN and CELECOXIB are non-
steroidal anti-inflammatory drugs (NSAIDs) that are 
commonly used in the clinic, and it has been reported 
that NSAIDs consumption during pregnancy contributes 
to an increased risk of persistent pulmonary hyperten-
sion of the newborns [55, 56]. Physicians should be alert 
to the potential dangers of these drugs to PAH patients.

This study uncovers a link between copper metabolism-
related genes and pulmonary hypertension, highlighting 
several potential biomarkers. These biomarkers have the 
potential to be used as a routine diagnostic strategy and 
in the evaluation of PAH patients. Copper metabolism 
has potential as a new diagnostic biomarker as well as a 
targeted therapy for PAH, while the underlying mecha-
nisms need to be clarified further in future studies.

Conclusions
In summary, this study identified four copper metabo-
lism-related biomarkers (DDIT3, NFKBIA, OSM, and 
PTGER4) with considerable diagnostic values based on 
bioinformatics analyses, and further constructed a gene-
drug network. The results of this study may have signifi-
cant implications for the development of new diagnostic 
biomarkers and actionable targets to expand treatment 
options for PAH patients.
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