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Abstract 

Objectives  Emerging evidence have demonstrated that oligometastatic non-small cell lung cancer (NSCLC) can 
achieve clinical benefit from local consolidative therapy. Bone oligometastasis is common in advanced lung cancer, 
but little is known about its molecular features. The purpose of our study aimed to investigate the genomic landscape 
bone oligometastatic NSCLC.

Methods  We collected paired blood and tissue samples from 31 bone oligometastatic NSCLC patients to make a 
comprehensive analysis of mutations by performing next-generation sequencing.

Results  A total of 186 genomic mutations were detected from 105 distinct cancer-relevant genes, with a median 
number of 6 alterations per tumor. The most frequently mutated genes were EGFR (58%) and TP53 (55%), followed 
by KRAS (16%), CDKN2A (13%) and MET (13%). The signatures related to smoking, aging, homologous recombination 
deficiency and APOBEC were identified as the most important mutational processes in bone oligometastasis. The 
median tumor mutation burden was 4.4 mutations/Mb. Altogether, genetic alterations of bone oligometastasis are 
highly targetable that 74.19% of patients had at least one actionable alteration that was recommended for targeted 
therapy based on the OncoKB evidence. Of these patients, 16.13% had two actionable alterations that could poten-
tially benefit from a different combination of targeted drugs to achieve better outcomes.

Conclusion  Our research comprehensively elucidates the genomic features of bone oligometastatic NSCLC patients, 
which may optimize individualized cancer treatment in the era of precision medicine.
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Introduction
Non-small cell lung cancer (NSCLC) has the highest 
morbidity and mortality of all malignant tumors world-
wide [1, 2]. The bone is one of the most common dis-
tant metastases in patients with advanced lung cancer 
[3]. Although there are a variety of treatments includ-
ing bisphosphonate administration, local radiotherapy, 
surgery of metastases sites and systemic therapies, the 
median survival of lung cancer patients after bone metas-
tases is often less than 1 year, indicating the poor prog-
nosis [4]. With the development of lung cancer biology, 
an emerging area of interest to improve survival out-
come is identification of oligometastatic NSCLC, which 
has been recognized as a unique tumor entity that may 
achieve clinical benefit from local consolidative therapy 
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(LCT) [5–7]. Bone oligometastasis is defined as a clini-
cal stage with limited number of metastases confined to 
the bone. This stage of the disease is characterized by an 
indolent state with a better prognosis, so radical multi-
modal therapy can be considered. The widespread appli-
cation of more accurate and sensitive imaging techniques 
such as PET-CT and MRI has improved the detection 
rate of oligometastatic state in lung cancer. However, the 
current definition of oligometastasis is solely defined by 
the number of lesions, without considering the genomic 
background. Moreover, bone oligometastasis may have 
distinct molecular features due to the organ-specific 
nature of tumor metastasis, and its genomic profile has 
hardly been investigated. Therefore, it is necessary to 
elucidate the mutational landscape of bone-only oligo-
metastatic NSCLC, which will provide valuable clinical 
and biological insights into this unique subtype of lung 
cancer.

Targeted therapies and immune checkpoint inhibitors 
(ICIs) have revolutionized the treatment landscape for 
advanced lung cancer. Tumor mutation burden (TMB) 
is a prognostic and predictive biomarker for a variety of 
tumors treated with immunotherapy [8]. However, lit-
tle is known regarding the expression pattern of TMB 
in bone oligometastasis. In addition, previous studies on 
actionable alterations for targeted therapy have mainly 
focused on conventional NSCLC populations. Thus, the 
evidence level and frequency for actionable alterations in 
bone oligometastatic NSCLC also remains unknown. In 
the era of precision medicine, there has been an increas-
ing emphasis on individual comprehensive treatment 
under the guidance of genomics in oncology. Therefore, 
reassessment on the landscape of actionable alterations 
corresponding to targeted therapies and identification 
of candidate predictive immunotherapy biomarkers in 
bone oligometastasis are important to guide the applica-
tion of tyrosine kinase inhibitors (TKIs) and ICIs in these 
patients.

Herein, we investigated the molecular profiles of 
bone oligometastatic NSCLC and their correlation with 
TMB, as well as the distribution of actionable altera-
tions by performing 1021-gene next-generation sequenc-
ing (NGS). Our results shall help clinicians optimize the 
individualized cancer treatment for bone oligometastasis, 
especially the application of systematic therapy such as 
targeted therapy and immunotherapy.

Method and material
Study population and sample collection
Thirty one bone oligometastatic NSCLC patients were 
identified in Oncology Center of the Second Affiliated 
Hospital of Chongqing Medical University from February 
2017 to November 2020. The main criteria for selecting 

recruited patients were: (1) pathological confirmation 
of NSCLC; (2) stage IV disease according to the eighth 
edition of AJCC; (3) had only one metastatic lesion con-
fined to bone for three or more months to ensure the real 
oligometastatic state as much as possible. The regional 
lymph node involvement was not counted as a metastatic 
site and was categorized with the primary tumor. Clinical 
and histopathological information were collected from 
electronic medical records of each patient. The ethical 
committee of Chongqing Medical University approved 
the study. Written approval was obtained from each par-
ticipant prior to enrollment.

DNA extraction and target capture sequencing
Tissue samples from each patient were all obtained from 
metastatic lesions and sequenced in the Geneplus-Beijing 
Institute (Beijing, China) using a 1021-gene-panel. All 
1021 cancer-related genes were listed in the Additional 
file 1: Table S1. The genomic DNA in Formalin-Fixed and 
Paraffin-Embedded (FFPE) tumors samples was extracted 
by using the QIAamp DNA FFPE Tissue Kit (Qiagen, 
Hilden, Germany). Then, the Qubit dsDNA BR assay 
(Life Technologies, USA) and 1% agarose gel electropho-
resis were used to detect DNA quantity and fragment 
distribution. 1.0 μg of tissue DNA was sheared into 300-
bp fragments using a Covaris S2 ultrasonicator. Periph-
eral blood was collected using a Cell-Free DNA BCT 
Blood Collection Tube (Streck, 218,962) and centrifuged 
for 10 min at 2500 × g. The supernatant was transferred 
into a microcentrifuge tube and centrifuged for 10  min 
at 16,000 × g to remove the residual cell debris. Circulat-
ing free DNA (cfDNA) from plasma was separated using 
the MAGMAX cell-free DNA ISO Kit (life, A29319). 
The Qubit dsDNA HS kit (Invitrogen, Q32851) and 
Agilent 2100 bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA) were used to detect cfDNA quantity 
and fragment distribution. The library was constructed 
by KAPA DNA Library Preparation Kit. Then, the tar-
get regions from the library were enriched using a cus-
tomized probe set (Integrated DNA Technologies, IDT). 
Finally, the Gene+Seq-2000 sequencer (Gene + technol-
ogy) was used to sequence the targeted library. Quality 
control criteria: content of tumor cells in the tissue sam-
ples assessed under the microscope after HE staining was 
≥ 10%, and the average sequencing depth was ≥ 500X. 
The total amount of DNA obtained from the blood sam-
ple was ≥ 15 ng, and the average sequencing depth was 
≥ 4000X.

Sequencing data analysis
Low-quality reads and end-adaptor sequences were 
removed by filtering the raw sequencing data. The reads 
were aligned to the human genome build GRCh37 
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using BWA (a Burrows-Wheeler aligner) [9]. Picard 
tools (http://​broad​insti​tute.​github.​io/​picard/) were used 
to mark PCR duplicates. Single nucleotide variations 
(SNVs) and small insertions and deletions were called 
by MuTect (version 1.1.4) [10] and GATK (version 3.4-
46-gbc02625) [11], respectively. PBL sequencing results 
filtered germline variations. All candidate somatic altera-
tions identified by the bioinformatics pipeline were man-
ually reviewed using the Integrative Genomics Viewer 
(IGV) [12] by assessing the overall read depth per muta-
tion site, the mapping quality of the reads, and the quality 
of base calls. Mutations were annotated by ANNOVAR 
software [13] to identify the mutant protein-coding posi-
tion and filtered silent and intronic changes. The variant 
allele fraction (VAF) was calculated as follows: sequenc-
ing read count of altered alleles/(sequencing read count 
of reference alleles + sequencing read count of altered 
alleles) × 100%. Mutations were identified in tissue 
according to the following criterias: VAF ≥ 1.0%, and at 
least 5 high-quality reads (Mapping quality ≥ 30, phred 
score ≥ 30, and no paired-end reads bias).

Mutational signature analysis
Mutation signatures were defined in each patient by ana-
lyzing both synonymous and non-synonymous somatic 
SNVs, including six types of base substitutions, C > A, 
C > G, C > T, T > A, T > C and T > G, respectively. In terms 
of the 3′ and 5′ flanking nucleotides of a specific mutant 
base, there are 96 substitution types existing in total. 
Potential mutational signatures were extracted in each 
patient using the 30 signatures recorded in the Catalogue 
of Somatic Mutations in Cancer (COSMIC) [14] as a ref-
erence (R package MutationalPatterns) [15]. Afterwards, 
we compared the relative contribution of different signa-
tures in bone oligometastatic tumors.

Clinical actionability: OncoKB
Precision oncology knowledge database (OncoKB) [16] 
was used to classify individual gene-level events accord-
ing to their therapeutic implications. This clinical sup-
port tool predicts the actionability of drug based on 
available clinical evidence, which is continuously updated 
and includes emerging biomarker data for Food and Drug 
Administration (FDA)-approved regimens and those 
still under clinical trial. An evidence classification sys-
tem was established to categorize potentially actionable 
alterations into one of four levels based on the strength 
of the evidence. Level 1 represents an FDA-recognized 
biomarker for predicting response to an FDA-approved 
drug. Level 2 is a standard care biomarker predictive of 
response to an FDA-approved drug recommended by 
professional guidelines. Level 3 has compelling clinical 
evidence to support the biomarker as being predictive 

of response to a drug. Level 4 has compelling biological 
evidence to support the biomarker as being predictive of 
response to a drug. Genomic alterations having thera-
peutic implications were defined as “actionable muta-
tions” and corresponded to OncoKB levels of evidence 
1–4. The analysis of OncoKB database was performed on 
September 27th, 2022.

Statistical analysis
The somatic mutations of all patients were evaluated 
enrichment in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) and Gene ontology (GO) using Clus-
terProfiler package [17] to explore their biological signifi-
cance. The statistical analysis was completed with SPSS 
26.0 software. The Fisher’s exact test or Chi-square test 
was performed to compare any two categorical variables, 
and the T-test or Mann–Whitney U-tests was used to 
compare any continuous variables. A two-sided p < 0.05 
was considered statistically significant.

Table 1  Clinical characteristics of 31 bone-only oligometastatic 
NSCLC patients

Characteristics No. of patients (%)

Total 31 (100.0)

Gender

Male 16 (51.6)

Female 15 (48.4)

Age (years)

Median (range) 66 (38–81)

Tumor histology

Adenocarcinoma 31 (100)

Squamous cell carcinoma 0 (0.0)

Smoking

Yes 11 (35.5)

No 16 (51.6)

Unknown 4 (12.9)

Family history

Yes 6 (19.4)

No 21 (67.7)

Unknown 4 (12.9)

Location of bone oligometastasis

Spine 5 (16.1)

Outside of the spine 26 (83.9)

Type of bone oligometastasis

Synchronous 22 (70.9)

Metachronous 9 (29.1)

Nodal status

N0-1 5 (16.1)

N2-3 26 (83.9)

http://broadinstitute.github.io/picard/
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Results
Patient characteristics
Clinical characteristics of 31 bone oligometastatic 
NSCLC patients enrolled in this study were summarized 
in Table 1. The median age for all oligometastatic patients 
was 66  years (range, 38–81  years). Nearly half of the 
patients were male (16/31), and all were diagnosed with 
lung adenocarcinoma. Most patients were non-smokers 
(16/27), no family history (21/27), outside of the spine 
metastasis (26/31), synchronous oligometastasis (22/31) 
and N2–N3 lymph nodal status (26/31).

Genomic landscape of bone oligometastatic NSCLC
The mutational landscape of 31 bone oligometastatic 
NSCLC generated from targeted sequencing data is 
shown in Fig. 1A. The most frequently mutated genes in 
bone oligometastasis were EGFR (58%) and TP53 (55%). 
Other genomic alterations involved in decreasing order 
(≥ 10%), KRAS (16%), CDKN2A (13%), MET (13%), 
ARID2 (10%), ATM (10%), CTNNB1 (10%), MYC (10%) 
and SMARCA4 (10%). A total of 186 genomic mutations 
in 105 distinct cancer-relevant genes were identified in 
31 cases. The number of alterations per sample ranged 
from 0 to 22, with a median of 6, and at least one muta-
tion was found in 30 patients (96.8%) (Fig. 1A). Missense 
mutation was the most common mutation type, followed 
by frame shift deletion and nonsense (Fig. 1B). And sin-
gle nucleotide polymorphisms occur more frequently 

than insertions and deletions (Fig. 1C). We also analyzed 
the prevalence of CNV changes and detected 41 clini-
cally related CNV events in bone oligometastasis. The 
most frequent CNV alterations were EGFR amplification 
(19.35%), following by CDKN2A deletion (9.68%), MET 
amplification (9.68%) and MYC amplification (9.68%) 
(Fig. 1D). To examine the SNV spectrum, the mutational 
fraction of the six-base substitution for each sample 
was shown in Additional file 2: Fig. S1A. We found that 
the most frequent single nucleotide variation was C > A 
transversion and C > T transition, both of which are cor-
related with exposure to tobacco [18], and the Ti/Tv ratio 
of oligometastasis was 0.53 (Fig. 1E, F).

Since all the tumors of bone oligometastasis in our 
study were lung adenocarcinoma (LUAD), we compare 
the top mutated genes from our cohort with mutations 
in LUAD in the publicly available dataset from Memo-
rial Sloan Kettering Cancer Center (MSKCC) (Additional 
file  2: Fig. S1B). The frequency of EGFR, MYC, FAT2 
alterations were found to be significantly higher in oligo-
metastasis than that reported in MSKCC. However, the 
significantly lower incidence of KRAS was also observed 
in oligometastatic group compared with MSKCC (Addi-
tional file 2: Fig. S1B). Given that EGFR and TP53 were 
the most common mutations in our cohort and their sub-
types were closely associated with treatment decision and 
response to treatment, they were individually analyzed 
to reveal the heterogeneity. MutationMapper analysis 

Fig. 1  A Alteration landscape of 31 bone oligometastatic NSCLC patients. The heat map shows top 20 genes across all samples, with genes ranked 
by mutation frequency. Top bar summarizes the total number of mutations in each patient (columns), and the dashed line indicates the median 
number of mutations. Side bar (rows) summarizes the percentage of tumors with mutation in each gene and mutation composition for each gene 
in the entire cohort. Bottom heat map, smoking, gender and age information. Different colors denote different types of mutations and different 
clinical features. B Variant classification, C variant type, D prevalence of CNV alterations, E single nucleotide variations, F Ti/Tv ratios, G mutual 
exclusivity and co-occurrence analysis in bone oligometastasis
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showed that the most frequent mutation sites of EGFR 
and TP53 were L858R and M246L (Additional file 2: Fig. 
S2A and B), respectively. And the mutated sites of other 
high-frequency alterations (≥ 10%) were also shown in 
Additional file  2: Fig. S2C–I. Particularly, we observed 
24 EGFR mutations in 18 patients (18/31 = 58%), with 
EGFR p.L858R and exon 19del accounting for 37.50% and 
12.50%, respectively (Additional file 2: Fig. S1C). Moreo-
ver, TP53 was the second most frequently mutated gene 
in our cohort. A total of 55% (17/31) of the patients had 
18 mutations in TP53, and 33% of the mutations were 
truncating mutations causing the inactivation of TP53. 
EGFR/TP53 co-alterations have been proved to reduce 
responsiveness to EGFR TKIs and worsen prognosis 
in patients with lung cancer [19–21]. Notably, the co-
occurrence of EGFR and TP53 alterations comprised 61% 
among the EGFR-mutant oligometastatic patients (Addi-
tional file  2: Fig. S1D). Next, we further analyzed the 
interaction between somatic mutations in bone oligome-
tastasis. Co-occurrence and mutual exclusivity analysis 
showed that ATM/ERBB2, CDKN2B/MYC, CDKN2A/
CDKN2B and CDKN2A/MYC were significantly co-
occurring, but we didn’t detect any mutations that were 
mutually exclusive in oligometastatic tumors (Fig. 1G).

Enrichment of somatic alterations by KEGG and GO 
analysis
The activation or inactivation of various signaling path-
ways has been studied in certain types of tumors, and 
several cancers seem to be predisposed to activate spe-
cific signaling change that promote tumorigenesis. To 
elucidate the biological function of the mutations in bone 
oligometastasis, we performed KEGG and GO enrich-
ment analysis. Genetic alterations including SNVs and/or 

copy number variations were tested for potential enrich-
ment against each KEGG and GO pathway. Figure  2 
shows the top 20 pathways enriched by KEGG (Fig. 2A) 
and GO (Fig.  2B) according to gene count and p value. 
Altered signaling pathways included PI3K-Akt signaling, 
FoxO signaling, central carbon metabolism in cancer, 
thyroid hormone signaling, p53 signaling, Ras signaling, 
and other well-known pathways. Particularly, we focused 
on mutations in the PI3K-Akt signaling pathway, which 
could promote the growth of PI3K-dependent NSCLC 
and enhance osteoclastogenic potential [22]. Among the 
patients with bone oligometastasis, 83.9% (n = 26) car-
ried 80 genetic alterations in the PI3K-Akt pathway. We 
identified one truncation mutation in PTEN, leading to 
the loss of function of PTEN and activation of the PI3K 
pathway. Moreover, there were several pathways associ-
ated with viral infection, such as human papillomavirus, 
human cytomegalovirus, human T-cell leukemia virus 1, 
kaposi sarcoma-associated herpesvirus and viral carcino-
genesis. Therefore, viral infection may play an important 
role in promoting tumorigenesis and development in 
bone oligometastatic NSCLC. GO enrichment analysis 
revealed that most of functional categories were asso-
ciated with kinase activity, branching morphogenesis, 
response to oxygen.

Mutational signature and TMB analysis
The mutational signature analysis was helpful to explore 
the specific etiology that may contribute to the mutagen-
esis process of bone oligometastasis. The mutation data 
of all patients were classified into a base substitution 
matrix and analyzed using the non-negative matrix fac-
torization method implemented in MutationalPatterns 
R package to infer the underlying mutational processes. 

Fig. 2  Top 20 enriched pathways by A KEGG and functional terms by B GO enrichment of somatic mutations in bone oligometastasis. Count: the 
number of mutations enriched in this signaling pathway or functional term
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We observed the mutational signature of tumor sam-
ples was composed of signature 4 (40.6%), 3 (18.6%), 1A 
(18.4%), 2 (11.5%) and unknown (10.9%) (Fig. 3A). Signa-
ture 4, which is associated with smoking and exposure to 
tobacco mutagens, was the most abundant contributor 
to the mutational process in oligometastasis. Signature 3 
making up 18.6% of the observed signature is associated 
with homologous recombination deficiency (HRD). DNA 
damage due to HRD is also supported by the presence 
of somatic alterations in ATM (n = 3, 10%) and BRCA1 
(n = 2, 6%) in our cohort. Signature 1A (18.4%) correlates 
with age and is mainly characterized by C > T transitions, 
which is the result of an endogenous mutational process 
initiated by spontaneous deamination of 5-methylcyto-
sine. Considering the median age of our tumor samples 
is 66 (range, 38–81 years), which might possibly explain 
the abundance of signature 1A due to the older age of our 
patients. Signature 2 (11.5%) is linked to the activity of 
APOBEC cytidine deaminase. It has been proposed that 
the activation of these cytidine deaminases is due to viral 
infection, tissue inflammation or retrotransposon activ-
ity. The etiology of other mutational signature (10.9%) 
that contributes to bone oligometastasis still remains 
unknown. Taken together, apart from environmental 
factors such as tobacco smoking, intrinsic sources, such 
as HRD and APOBEC, have been described as the main 
cause of bone oligometastatic NSCLC.

TMB is emerging as a sensitive biomarker for immune 
checkpoint inhibitors, including PD-1 and PD-L1 

blockade immunotherapy. In our research, the median 
TMB of bone oligometastasis was 4.4 mutations/Mb 
(range 0.96–22.00 mutations/Mb). Density plot of TMB 
in all cancer patients showed a long tail distribution 
(Fig. 3B). Of note, we identified one patient with a high 
TMB of 22 mutations/Mb, deviating significantly from 
the normal distribution. Known DNA damage repair 
genes, such as BRCA1 and TP53, were among the muta-
tions in this patient. For female patients, the median 
TMB was 4.80 mutations/Mb, which was slightly higher 
than that in male patients (4.00 mutations/Mb, p = 0.958) 
(Fig.  3C). Meanwhile, the median TMB in smokers was 
higher than in non-smokers (7.68 vs. 4.00 mutations/Mb, 
p = 0.233) (Fig.  3C). Considering that both EGFR and 
TP53 mutations are top genetic variants of bone oligo-
metastasis, we further profiled the relationship between 
these two alterations and TMB. The median TMB was 
similar between tumors with and without EGFR muta-
tions (4.50 vs. 4.40 mutations/Mb, p = 0.663) (Fig.  3C). 
Furthermore, TP53 mutant tumors had higher median 
TMB than TP53 wild-type tumors (5.00 vs. 3.92 muta-
tions/Mb, p = 0.114) (Fig. 3C).

Clinically actionable genes for targeted therapy
To assess the potential impact of genomic profiling on 
selecting bone oligometastasis for targeted therapy, all 
somatic mutations were classified into different levels 
based on the evidence of clinical actionability in OncoKB 
(Fig. 4A). Altogether, 74.19% of patients had at least one 

Fig. 3  A Mutational signatures in bone oligometastatic NSCLC. B Density plot of Tumor mutational burden (TMB) in all cancer patients. C TMB 
according to gender (male versus female; smoking versus non-smoking; EGFR mutant versus EGFR wild-type; TP53 mutant versus TP53 wild-type)
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actionable alteration that was recommended for targeted 
therapy. Besides, 61.28% tumors had level 1 actionable 
mutations including ALK and RET fusion, EGFR and 
KRAS mutations, amplification and in-frame insertion of 
ERBB2. 3.23% had level 2 ERBB2, RET and MET altera-
tions. Because the level of evidence was defined as the 
highest actionable targets of all mutations in each patient, 
no sample was assigned to level 3 since patients with level 
3 actionable mutations all had higher-grade targets. Level 
3 mutations include SNVs of EGFR, ERBB2 and KRAS, 
amplification of ERBB2 and fusion of RET. Level 4 altera-
tions accounted for 9.68% including missense mutations 
of KRAS and deletions of CDKN2A (Fig.  4B, D and E). 
All targetable drugs corresponding to specific gene muta-
tion in our bone oligometastatic cohort were also shown 
in Fig. 4E. In addition to profile of distribution of action-
able mutations, we further analyzed the proportion of 
patients with multiple targetable gene mutations. Over-
all, 58.06% of patients had only one actionable alteration, 
while 16.13% had two actionable alterations (Fig.  4C), 
which may lead to better survival outcomes by using dif-
ferent combinations of targeted drugs.

Discussion
Lung cancer has been recognized as a heterogeneous 
disease with high genomic diversity among various 
subtypes, leading to different treatment responses and 
survival outcomes [23–25]. Oligometastatic NSCLC 
was considered to be a distinct treatment sub-entity 
with unique biological and clinical features compared 
to conventional advanced NSCLC, including limited 
metastatic capacity and benefit from LCT. Bone is the 
most common site of distant metastasis in patients with 
stage IV NSCLC and has a very poor prognosis. An 
increasing number of clinical trials have confirmed the 
effectiveness and feasibility of LCT in NSCLC patients 
with bone oligometastasis [26, 27]. However, there is 
no consensus on the exact number of metastases to 
define oligometastasis [28]. Given that most reported 
studies include patients with no more than five metas-
tases [29], we used more stringent inclusion criteria to 
recruit patients with only one metastatic lesion con-
fined to bone for more than three months to ensure the 
real oligometastatic state. Although the treatment of 
oligometastasis develops rapidly, the molecular features 

Fig. 4  Somatic alterations identified by the 1021-panel that are clinically actionable. A Clinical evidence based on OncoKB was used to define 
alterations. B Samples were classified according to their highest level of actionable alterations (left). Mutated genes in different grades (right). C The 
percentage of patients with a single actionable mutation or multiple actionable mutations. D Distribution of levels of actionable alterations and 
their corresponding potential targetable drugs. E Distribution of alteration types of actionable genes
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of oligometastatic patients have not been well explored. 
In recent years, oncology has increasingly emphasized 
that therapeutic decisions of cancer should be made 
under the guidance of genomics. Therefore, it is neces-
sary to conduct a comprehensive genomic analysis of 
such patients to provide a better insight for the precise 
treatment of bone oligometastasis.

In our study, we detected the most frequent genetic 
mutations in EGFR (58%), higher than the recent 
genomic studies in brain oligometastatic lung can-
cer (44%-47%) [30] and LUAD in Chinese (50%) [31], 
East Asian (47%) [32], MSKCC (33%) [33] cohorts, and 
the discrepancy may be due to the association of EGFR 
mutations with promotion of bone metastasis [34] and 
ethnic differences between eastern and western popula-
tions. This increase has important clinical implications 
because these bone oligometastatic patients are more 
likely to receive EGFR-TKI treatment. In particular, 
EGFR p.L858R and exon 19del were the predominant 
subtypes of EGFR mutation in our patients, but their 
ratio (37.5% vs 12.5%, almost 3:1) was different from 
another study including 2410 EGFR-mutant nonsqua-
mous NSCLC patients (almost 1:1) [35]. Although both 
locations of EGFR (L858 and 19del) are canonical tar-
gets of EGFR-TKI treatment, they have been reported to 
respond differently to EGFR inhibitors. NSCLC patients 
with EGFR 19del had a better response to afatinib [36] 
and showed longer progression-free survival (PFS) 
[37] and overall survival (OS) [38] than L858R-mutant 
patients. Therefore, aggressive combination of LCT, 
such as surgery and radiotherapy, is more beneficial to 
improve TKI efficacy and prolong the survival of bone 
oligometastasis with EGFR-sensitive mutations. Moreo-
ver, TP53 was the second most common alteration in our 
cohort and was an independent prognostic factor in lung 
cancer [39]. Its co-occurrence with EGFR mutations can 
decrease responsiveness to EGFR TKIs and is associated 
with a worse prognosis [19–21]. The incidence of con-
current EGFR/TP53 in bone oligometastasis (61%) was 
comparable to that of EGFR-mutant NSCLC (55–65%) 
in other studies [20, 23, 40]. Furthermore, KRAS ranks as 
the third most significantly mutated gene in our samples. 
Previous researches have demonstrated that KRAS G12C 
mutations occur mostly in western patients with bone 
metastases, while KRAS G12V mutations occur mostly in 
western patients with pleural-pericardial metastases [41, 
42]. Interestingly, although all samples in our cohort were 
lung cancer patients with metastases confined to bone, 
only 2 patients carried the KRAS G12C mutation but 3 
patients harbored KRAS G12V mutation. This suggests 
that different subtypes of KRAS mutations may have a 
different propensity to develop metastatic sites between 
Chinese and western populations.

The somatic mutations of bone oligometastasis were 
enriched in the PI3K-Akt pathways, cell cycle, p53, and 
RAS pathways, which was reminiscent of the genomic 
mutations found in conventional NSCLC. A total of 
83.9% of the patients had one or more alterations in the 
PI3K-Akt pathway. Previous study demonstrated that 
targeting the PI3K pathway could suppresses osteoclast 
formation in vivo and exhibit antitumour activity in mice 
with bone metastasis of lung cancer [22]. Considering 
that most bone metastases are associated with osteoly-
sis [43], the PI3K inhibitor, buparlisib, may be a poten-
tial therapeutic strategy to prevent the structural skeletal 
damage correlated with bone oligometastatic NSCLC. 
Notably, several pathways relevant to viral infections 
were also enriched in our cohort, suggesting viral car-
cinogenesis may contribute to the development of bone 
oligometastasis. In particular, we focused on the human 
papillomavirus (HPV) infection pathway, which was 
reported to be connected with progression and metasta-
sis of NSCLC. Recent studies have shown that the over-
expression of HPV-16 E6 and E7 oncoproteins enhanced 
epithelial-mesenchymal transition (EMT) by activating 
STAT3 signaling pathway to promote bone metastasis in 
lung cancer [44]. Napabucasin, an inhibitor of intracellu-
lar STAT3, could remit bone metastases of lung cancer 
[45] and was approved for the treatment of gastric can-
cer. Many preclinical and clinical trials are validating the 
safety and efficacy of this drug in more advanced solid 
tumors [46]. Thus, napabucasin could be a treatment 
option for bone oligometastatic NSCLC in future. Detail-
ing the relationship between HPV infection and bone 
oligometastasis may provide insight for further research 
into the mechanisms underlying this disease.

Mutational signatures are the cumulative result of 
mutational processes throughout someone’s life [47]. We 
observed that signature 4 (smoking), signature 3 (HRD), 
signature 1A (age) and signature 2 (APOBEC) were iden-
tified as the most important mutational processes in 
samples with bone oligometastasis. Some of these signa-
tures have shown applicability in predicting response to 
cancer treatment. Previously, Rizvi and colleagues found 
an association between signature 4 and PFS in NSCLC 
patients receiving Pembrolizumab [48]. Moreover, sig-
nature 2 related to APOBEC was also considered to be 
markedly correlated with response to ICI therapy [49]. 
These researches reveal the potential for qualitative anal-
ysis of the relationship between mutational patterns and 
treatment outcomes, but the predictive value is largely 
unknown in bone oligometastasis. Future studies should 
recruit more bone oligometastatic NSCLC patients with 
long-term treatment and survival follow-up data to vali-
date the correlation between specific mutational process 
and efficacy response.
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TMB is an emerging biomarker to predict ICI treat-
ment response in multiple solid tumors. In our study, 
the median TMB of bone oligometastatic cohort was 4.4 
mutations/Mb, lower than the 8.7 mutations/Mb previ-
ously reported in brain oligometastatic NSCLC [30]. This 
discrepancy is consistent with previous study in which 
TMB was higher in brain metastases compared with non-
brain metastases in NSCLC, since TMB is a site-specific 
biomarker with spatial distinctions [50]. In addition, 
TMB is widely known to be significantly associated with 
smoking [51], EGFR [52] and TP53 [53] in lung cancer, 
but we did not find any correlation between them. This 
may be owing to the small sample size of our cohort. 
Future studies should be conducted in larger cohorts 
with more bone oligometastatic patients to elucidate the 
relationship between TMB and these clinical characteris-
tics or mutations.

The identification of new targetable drivers and the 
emergence of effective targeted therapies have greatly 
improved the clinical outcomes of patients with spe-
cific gene mutation. Here, we detected that 74.19% of 
bone oligometastatic patients had at least one action-
able alteration according to OncoKB evidence. This 
percentage was slightly higher than the 67% of 1564 
patients with usual advanced NSCLC reported in previ-
ous study [54], suggesting genetic alterations in bone oli-
gometastasis are highly targetable. And the proportion 
of patients with level 1–2 actionable alterations as their 
highest actionable targets was also higher than the con-
ventional advanced NSCLC patients (64.51% vs 57.1%) 
[54]. Matched targeted therapy could significantly pro-
long PFS and OS in NSCLC carrying level 1–2 genomic 
alterations, but no marked clinical benefit was observed 
in NSCLC with level 3–4 alterations [54]. The high prev-
alence of level 1–2 actionable alterations in bone oligo-
metastasis may lead to better survival outcomes than 
in usual advanced NSCLC. Therefore, the use of more 
comprehensive genomic profiling to detect potentially 
actionable alterations is necessary in assisting treatment 
selection and improving the prognosis of patients with 
bone oligometastatic NSCLC.

We comprehensively depicted the genomic profiles of 
bone oligometastatic NSCLC and their correlation with 
TMB, as well as the distribution of actionable alterations. 
These findings may provide new insights to optimize per-
sonalized cancer treatment for guiding either targeted 
therapy or ICI treatment in bone oligometastatic NSCLC 
patients. Finally, our study has several limitations that 
are worth mentioning. First, this is a retrospective study 
with potential selection bias. Second, there is no accu-
rate diagnostic standard of oligometastasis, so we may 
recruit polymetastatic tumors in our samples. Third, we 
calculated the TMB based on panel sequencing, which 

may not be as accurate as whole-exome sequencing. Per-
forming whole-exome sequencing may better explore the 
relationship between genomic profile and TMB in future 
studies.
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