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Abstract
Background This study analysed the performance of radiomics features extracted from computed tomography (CT) 
images with different reconstruction parameters in differentiating malignant and benign pulmonary nodules.

Methods We evaluated routine chest CT images acquired from 148 participants with pulmonary nodules, which 
were pathologically diagnosed during surgery in West China Hospital, including a 5 mm unenhanced lung window, 
a 5 mm unenhanced mediastinal window, a 5 mm contrast-enhanced mediastinal window and a 1 mm unenhanced 
lung window. The pulmonary nodules were segmented, and 1409 radiomics features were extracted for each window. 
Then, we created 15 cohorts consisting of single windows or multiple windows. Univariate correlation analysis and 
principal component analysis were performed to select the features, and logistic regression analysis was performed to 
establish models for each cohort. The area under the curve (AUC) was applied to compare model performance.

Results There were 75 benign and 73 malignant pulmonary nodules, with mean diameters of 18.63 and 19.86 mm, 
respectively. For the single-window setting, the AUCs of the radiomics model from the 5 mm unenhanced lung 
window, 5 mm unenhanced mediastinal window, 5 mm contrast-enhanced mediastinal window and 1 mm 
unenhanced lung window were 0.771, 0.808, 0.750, and 0.771 in the training set and 0.711, 0.709, 0.684, and 0.674 
in the test set, respectively. Regarding the multiple-window setting, the radiomics model based on all four windows 
showed an AUC of 0.825 in the training set and 0.743 in the test set. Statistically, the 15 models demonstrated 
comparable performances (P > 0.05).

Conclusion A single chest CT window was acceptable in predicting the malignancy of pulmonary nodules, and 
additional windows did not statistically improve the performance of the radiomics models. In addition, slice thickness 
and contrast enhancement did not affect the diagnostic performance.
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Introduction
Pulmonary nodules are commonly detected on com-
puted tomography (CT) of the chest [1]. About 95% of 
detected pulmonary nodules are benign and have a wide 
variety of causes (most often granulomas or intrapulmo-
nary lymph nodes), while a small number of nodules are 
early lung cancers [2, 3]. The optimal diagnostic approach 
for pulmonary nodules should facilitate timely and effec-
tive curative treatment for lung cancer and simultane-
ously avoid harmful interventions in benign disease [1]. 
At present, most guidelines recommend noninvasive risk 
assessment of pulmonary nodules; and CT surveillance 
is recommended for low-risk nodules, while PET-CT or 
biopsy or excision is suggested for high-risk nodules [1, 
4, 5]. The recommended risk assessment models mainly 
include the Brock model and Mayo model, which were 
established based on clinical variables [6, 7].

Nevertheless, drastic increases in computational power 
and memory have enabled the development and imple-
mentation of artificial intelligence techniques in the med-
ical field [8]. For example, radiomics analysis, which can 
noninvasively mine high-throughput quantitative image 
features from standard-of-care medical imaging, is gain-
ing incremental importance in cancer research [9]. Most 
studies have demonstrated that radiomics models could 
be effective supplementary tools for the decision-making 
of clinicians in the diagnosis and treatment of cancer, and 
radiomics models can predict the malignancy of lesions, 
gene mutation, pathological type, clinical stage, treat-
ment response and prognosis [10]. For pulmonary nod-
ules, previous studies have shown that radiomics models 
performed well in predicting the lung cancer risk of nod-
ules based on CT images, such as low-dose or routine CT 
images [11, 12] and unenhanced or contrast-enhanced 
CT images [13, 14].

However, it was reported that image acquisition and 
reconstruction parameters such as contrast enhance-
ment, slice thickness, convolution algorithm, tube voltage 
and current could affect the reproducibility of radiomic 
features and influence the diagnostic performance of 
radiomics models [15–17]. For example, Stefano et al. 
revealed that the diagnostic value of histogram features 
could vary at different Hounsfield units (HU) [18]. Nev-
ertheless, only one or a few reconstruction parameters 
were investigated in previous studies of lung cancer 
risk prediction. The impact of different reconstruction 
parameters on radiomics feature extraction and analysis 
has not yet been thoroughly explored.

Hence, this study intended to simultaneously assess 
how four common chest CT reconstruction windows 
affect the performance of radiomics features in dif-
ferentiating malignant and benign pulmonary nod-
ules, which included a 5 mm unenhanced lung window, 
a 5  mm unenhanced mediastinal window, a 5  mm 

contrast-enhanced mediastinal window and a 1  mm 
unenhanced lung window.

Methods
Study patients
This retrospective, single-centre study was approved by 
the institutional review board of the West China Hospital 
of Sichuan University, and the requirement for informed 
consent was waived as the privacy and identity infor-
mation of the participants were protected. The study 
selected eligible patients discharged from West China 
Hospital of Sichuan University from 2010 to 2018 based 
on the following inclusion criteria: (1) the patient was 
older than 18 years old; (2) there was a solitary pulmo-
nary nodule detected on routine chest CT in the insti-
tution; (3) the patient was treated with surgery without 
receiving chemo- or radiotherapy, and the nodule was 
pathologically confirmed as primary lung cancer or 
benign pulmonary lesion; and (4) four chest CT recon-
struction windows were available, including a 5  mm 
unenhanced lung window, a 5 mm unenhanced mediasti-
nal window, a 5 mm contrast-enhanced mediastinal win-
dow and a 1  mm unenhanced lung window. Otherwise, 
the subjects were excluded if (1) the patient was receiving 
treatment due to other malignancies; (2) the pulmonary 
nodule was calcified; or (3) the entire nodule volume was 
not completely shown on all four windows. As the 1 mm 
contrast-enhanced mediastinal window was only avail-
able in a small number of patents, this window was not 
collected and analysed in the current study. In total, 148 
patients with 592 chest CT images were finally enrolled. 
Clinical variables, including sex, age, and pathological 
diagnosis, were collected for further analysis.

CT acquisition protocol
Images were acquired from one 64-slice multidetector 
CT scanner of the chest (SOMATOM, Definition Flash, 
Siemens). The scan parameters included: voltage, 80–140 
kVp; current, 98–678 mAs; rotation time, 0.5  s; matrix, 
512 × 512; table speed, 30.6-139.3  mm/s; reconstruction 
thickness, 1 and 5  mm. After plain CT, arterial-phase 
enhanced scans were performed 40  s after intrave-
nous injection of nonionic iodinated contrast medium 
(300 mg/mL), which was administered for all patients at 
a dose of 2 mL/kg body weight and rate of 3.5-4.0 mL/s 
using a power injector from Bayer. Finally, four CT series 
were reconstructed: 5  mm unenhanced lung window, 
5 mm unenhanced mediastinal window, 5 mm contrast-
enhanced mediastinal window and 1  mm unenhanced 
lung window. All images were exported in DICOM for-
mat for subsequent analysis.
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CT analysis
Two respiratory physicians (CBJ and ZR, with 10 and 6 
years of experience in chest image interpretation, respec-
tively) independently reviewed all the CT images and 
resolved discrepancies by discussion. All images were 
reviewed at both lung (width = 1500 HU; level = − 700 HU) 
and mediastinal (width = 350 HU; level = 40 HU) settings. 
Nodule diameter, location, texture, consolidation/tumour 
ratio, spiculation, lobulation and cavity were evaluated 
on the axial plane of a 1 mm unenhanced lung window as 
morphological features. The consolidation/tumour ratio, 
namely, the ratio of the maximum consolidation diam-
eter to the maximum nodule diameter, was calculated to 
assess the proportion of the solid component [19].

Image preprocessing, nodule segmentation and radiomics 
feature extraction
Figure  1 shows the whole modelling pipeline. First, LK 
software (Lung Intelligence Kit, version 1.5.0, GE Health-
care) was applied to preprocess images and segment 
the volume of interest (VOI). All images were prepro-
cessed by resampling (spatial resolution = 1 mm × 1 mm 
× 1  mm), Laplace enhancement and Gaussian filtering 
(standard deviation, SD = 0.5). Then, the LK software 
automatically detected and segmented the whole nod-
ule volume on each reconstruction window, which was 
accompanied by manual correction (by CBJ and ZR) 
to ensure that every nodule was accurately delineated. 
Approximately 40% of the nodules segmented by the soft-
ware were manually modified slice by slice. One example 
of a segmented nodule on four windows is shown in 
Fig. 2.

Subsequently, AK software (Artificial Intelligence 
Kit, version 3.3.0, GE Healthcare) was applied to auto-
matically extract 1409 three-dimensional radiomics 
features from each window for all patients, including 

shape features (n = 14), first-order features (n = 18), grey 
level cooccurrence matrix features (n = 24), grey level 
run length matrix features (n = 16), grey level size zone 
matrix features (n = 16), neighbouring grey tone differ-
ence matrix features (n = 5), grey level dependence matrix 
features (n = 14), Laplacian of Gaussian filtered features 
(n = 186, Sigma = 1.0, 3.0, 5.0), first-order wavelet-filtered 
features (n = 744, Level = 1) and 3-D local binary pat-
tern related features (n = 372, Level = 2, Radius = 1.00, 
Subdivision = 1).

Feature selection and model construction
To evaluate the diagnostic value of radiomics features 
derived from independent reconstruction windows as 
well as multiple reconstruction windows, we regrouped 
the four windows into 15 cohorts to establish 15 models, 
including four single-window models, six double-window 
models, four triple-window models and one four-window 
model. All subjects were randomly separated into the 
training set (N = 104) and test set (N = 44) at a ratio of 7:3.

As there were thousands of radiomics features in each 
cohort, feature selection was performed to identify rep-
resentative features and avoid overfitting. Specifically, 
after standardization with Z score transformation, uni-
variate correlation analysis (cut-off = 0.7) and principal 
component analysis (number of components = 10) were 
performed to select features. In the study, the number of 
principal components was set to ten based on the scree 
diagram derived from Kaiser‒Meyer‒Olkin analysis. 
Finally, the logistic regression model was selected and 
established in the training set and validated in the test set 
for each cohort after comparison with the other machine 
learning models (support vector machine, decision tree, 
decision forest, Bayes, K-nearest neighbour).

Fig. 1 The pipeline of the whole study. 5 L, 5 mm unenhanced lung window; 5 S, 5 mm unenhanced mediastinal window, 5 C, 5 mm contrast-enhanced 
mediastinal window; 1 mm, 1 mm unenhanced lung window; other model symbols being combinations of single-window abbreviations
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Statistical analysis
The continuous variables are described as the mean ± SD 
and were compared with Student’s t test, while the cat-
egorical variables are described as the number of cases 
(proportion) and were compared with the chi-square 
test or Fisher’s exact test. In addition, the receiver oper-
ating characteristic (ROC) curve and area under the 
curve (AUC) were acquired to evaluate the discrimina-
tion performance of the models. Delong’s test was con-
ducted to compare AUCs. The accuracy, sensitivity and 
specificity were calculated based on Youden’s J index. 
Moreover, the Hosmer‒Lemeshow test was applied to 

illustrate the goodness of fit, and decision curve analysis 
was conducted to evaluate the clinical usefulness of the 
established models. A two-tailed p value < 0.05 indicated 
statistical significance. All statistical analyses were imple-
mented using the Institute of Precision Medicine Statis-
tics (version 1.1, GE Healthcare) and SPSS (version 28.0).

Results
Clinical characteristics
The clinical characteristics of the enrolled patients are 
summarized in Table  1. Among all 148 patients, the 
age ranged from 26 to 77 years old, with a mean ± SD 

Fig. 2 One example of a segmented pulmonary nodule on four windows. 5 L, 5 mm unenhanced lung window; 5 S, 5 mm unenhanced mediastinal 
window, 5 C, 5 mm contrast-enhanced mediastinal window; 1 mm, 1 mm unenhanced lung window
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of 54.49 ± 11.1 years. The patients with malignant nod-
ules were older (57.12 ± 10.56 vs. 51.92 ± 11.05 years, 
P = 0.004). There were 57 males and 91 females, and no 
significant difference was observed between the malig-
nant and benign groups (P = 0.293).

Regarding the pathology of the enrolled subjects, 75 
(50.68%) nodules were benign, and 73 (49.32%) nodules 
were malignant. The malignant nodules included adeno-
carcinomas (N = 68, 93.15%) and squamous carcinomas 
(N = 5, 6.85%), whereas the benign nodules consisted of 
chronic inflammatory lesions (N = 30, 40.00%), granu-
lomas (N = 15, 20.00%), hamartomas (N = 11, 14.67%), 
tuberculosis (N = 8, 10.67%) and so on. Detailed informa-
tion on the pathological diagnosis of the pulmonary nod-
ules is summarized in Table S1.

In terms of the morphological features of the enrolled 
malignant and benign nodules, the mean diameters were 
19.15  mm and 18.63  mm, respectively (P = 0.672), and 
most were located in the right upper lobe (36.99% vs. 
32.00%, P = 0.953). There were many more subsolid nod-
ules in the malignant group (69.86% vs. 24.00%, P < 0.001). 
However, no significant difference was observed regard-
ing spiculation (28.77% vs. 32.00%, P = 0.669), lobulation 
(31.51% vs. 29.33%, P = 0.774) and cavity sign (9.59% vs. 

2.67%, P = 0.095) between the malignant and benign 
groups.

Radiomics feature selection
When the four windows were regrouped into 15 cohorts, 
there were 1409 features for the single-window cohort, 
2818 features for the double-window cohort, 4227 fea-
tures for the triple-window cohort and 5636 features 
for the four-window cohort. After univariate correlation 
analysis, approximately 10.8% ± 1% radiomics features 
remained in each cohort. Then, the remaining features 
were compressed to 10 representative components by 
principal component analysis to establish models for 
each cohort. Details of the radiomics feature selection are 
demonstrated in Table S2.

Performance of radiomics models
Figure  3 shows the ROC curves of the 15 established 
models, and Table 2 summarizes the corresponding diag-
nostic values. There were 11 models with an AUC greater 
than 0.700 in the test set. However, no significant differ-
ences were observed among the AUCs by DeLong’s tests 
(Table S3). Taken as a whole, all models demonstrated 
similar performance.

Table 1 Clinical characteristics of enrolled patients
Characteristics Total (N = 148) Malignant group (N = 73) Benign group (N = 75) P value
Age, mean ± SD, year 54.49 ± 11.10 57.12 ± 10.56 51.92 ± 11.05 0.004

Sex, n (%) 0.293

Male 57 (38.51) 25 (34.25) 32 (42.67)

Female 91 (61.49) 48 (65.75) 43 (57.33)

Nodule diameter, mean ± SD, mm 19.15 ± 17.63 19.86 ± 18.61 18.63 ± 16.78 0.672

Nodule location, n (%) 0.953

Upper left lobe 37 (25.00) 17 (23.29) 20 (26.67)

Upper right lobe 51 (34.46) 27 (36.99) 24 (32.00)

Lower left lobe 24 (16.22) 11 (15.07) 13 (17.33)

Lower right lobe 25 (16.89) 13 (17.80) 12 (16.00)

Middle right lobe 11 (7.43) 5 (6.85) 6 (8.00)

Nodule texture, n (%) < 0.001

Solid 79 (53.38) 22 (30.14) 57 (76.00)

Subsolid 69 (46.62) 51 (69.86) 18 (24.00)

Consolidation/tumor ratio, n (%) < 0.001

> 0.5 98 (66.22) 36 (49.32) 62 (82.67)

≤ 0.5 50 (33.78) 37 (50.68) 13 (17.33)

Spiculation, n (%) 0.669

Yes 45 (30.41) 21 (28.77) 24 (32.00)

No 103 (69.59) 52 (71.23) 51 (68.00)

Lobulation, n (%) 0.774

Yes 45 (30.41) 23 (31.51) 22 (29.33)

No 103 (69.59) 50 (68.49) 53 (70.67)

Cavity, n (%) 0.095*

Yes 9 (6.08) 7 (9.59) 2 (2.67)

No 139 (93.92) 66 (90.41) 73 (97.33)
* The P value was calculated using Fisher’s exact test

Abbreviations: SD, standard deviation
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Table 2 The predictive performance of 15 radiomics models
Models Training set Test set P 

value*Accuracy AUC (95% CI) Sensitivity Specificity Accuracy AUC (95% CI) Sensitivity Specificity
5SLC + 1 0.767 0.825 (0.756, 0.888) 0.784 0.75 0.644 0.743 (0.607, 

0.862)
0.682 0.609 0.1443

5SL + 1 0.757 0.819 (0.745, 0.883) 0.765 0.75 0.644 0.741 (0.611, 
0.858)

0.682 0.609 0.3137

5SLC 0.777 0.813 (0.736, 0.883) 0.843 0.712 0.711 0.737 (0.601, 
0.859)

0.773 0.652 0.0578

5SC 0.757 0.806 (0.732, 0.874) 0.863 0.654 0.711 0.737 (0.599, 
0.860)

0.864 0.565 0.1213

5SL 0.767 0.805 (0.729, 0.873) 0.686 0.846 0.644 0.729 (0.597, 
0.852)

0.591 0.696 0.1547

5SC + 1 0.728 0.792 (0.718, 0.862) 0.902 0.558 0.733 0.725 (0.584, 
0.849)

0.955 0.522 0.0705

5 L 0.757 0.771 (0.690, 0.847) 0.745 0.769 0.689 0.711 (0.570, 
0.840)

0.727 0.652 0.3912

5 L + 1 0.777 0.797 (0.719, 0.867) 0.824 0.731 0.667 0.709 (0.564, 
0.840)

0.773 0.565 0.0233

5 S 0.757 0.808 (0.735, 0.877) 0.784 0.731 0.644 0.709 (0.567, 
0.830)

0.636 0.652 0.0554

5 S + 1 0.738 0.804 (0.731, 0.871) 0.804 0.673 0.6 0.702 (0.558, 
0.826)

0.636 0.565 0.0058

5LC 0.757 0.764 (0.683, 0.840) 0.784 0.731 0.622 0.700 (0.556, 
0.830)

0.591 0.652 0.1426

5 C + 1 0.728 0.756 (0.673, 0.831) 0.824 0.635 0.622 0.694 (0.543, 
0.828)

0.773 0.478 0.0776

5LC + 1 0.728 0.771 (0.693, 0.845) 0.843 0.615 0.644 0.688 (0.542, 
0.819)

0.818 0.478 0.1569

5 C 0.689 0.750 (0.670, 0.827) 0.863 0.519 0.622 0.684 (0.540, 
0.814)

0.955 0.304 0.4862

1 mm 0.748 0.771 (0.682, 0.846) 0.804 0.692 0.644 0.674 (0.528, 
0.802)

0.682 0.609 0.0389

* The P value was calculated using Hosmer-Lemeshow Test from the test set. When P > 0.05, the model had a high goodness of fit

Abbreviations: AUC, area under the curve; 5  L, 5  mm unenhanced lung window; 5  S, 5  mm unenhanced mediastinal window, 5  C, 5  mm contrast-enhanced 
mediastinal window; 1 mm, 1 mm unenhanced lung window. Other model symbols were combinations of single-window abbreviations, for example, 5SLC + 1 = 5 mm 
unenhanced mediastinal window + 5 mm unenhanced lung window + 5 mm contrast-enhanced mediastinal window + 1 mm unenhanced lung window

Fig. 3 The ROC curves of all models in the training set (A) and test set (B). 5 L, 5 mm unenhanced lung window; 5 S, 5 mm unenhanced mediastinal 
window, 5 C, 5 mm contrast-enhanced mediastinal window; 1 mm, 1 mm unenhanced lung window; other model symbols being combinations of 
single-window abbreviations
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In detail, the four-window model demonstrated an 
AUC of 0.743 (95% CI, 0.607–0.862), an accuracy of 
0.644, a sensitivity of 0.682 and a specificity of 0.609. For 
the single-window models, first, the 5 mm unenhanced-
lung-window model showed an AUC of 0.711 (95% CI, 
0.570, 0.840), an accuracy of 0.689, a sensitivity of 0.727 
and a specificity of 0.652. Second, the 5 mm unenhanced 
mediastinal window model showed an AUC of 0.709 
(95% CI, 0.567, 0.830), an accuracy of 0.644, a sensitivity 
of 0.636 and a specificity of 0.652. Third, the 5 mm con-
trast-enhanced mediastinal window model demonstrated 
an AUC of 0.684 (95% CI, 0.540, 0.814), an accuracy of 
0.622, a sensitivity of 0.955 and a specificity of 0.304. 
Finally, the 1  mm unenhanced-lung-window model had 
an AUC of 0.674 (95% CI, 0.528, 0.802), an accuracy of 
0.644, a sensitivity of 0.682 and a specificity of 0.609. The 
mentioned diagnostic values were from the test set.

As shown in Table  2, the values predicted by most 
models matched well with the actual data (Hosmer‒Lem-
eshow Test, P > 0.05). Figure 4 demonstrates the decision 
curve analyses for 15 models, which indicated that the 
established radiomics models had potential clinical prac-
ticability to some degree.

Discussion
In the current study, by regrouping four chest CT recon-
struction windows, a total of 15 single-window and mul-
tiple-window radiomics models were established. The 
results indicated that all models demonstrated similar 
performance in differentiating malignant and benign pul-
monary nodules.

Some multiple-window radiomics models demon-
strated higher AUCs than single-window models, but 
no significant differences were observed. Our results are 
consistent with those of Yang et al., who showed that 

radiomics signatures from both plain and vein-phase 
CT images were not superior to either plain signatures 
or vein signatures in differentiating solitary granulomas 
and solid lung adenocarcinomas [14]. However, two 
recent studies on lung cancer indicated that multiple-
window-based models performed better than single-
window-based models [20, 21]. For example, Lu et al. 
found that when predicting lung tumour growth patterns 
from radiomics features, the models constructed based 
on the lung window or the difference region (subtract-
ing the mediastinal window region from the lung window 
region) were inferior to the model established based on 
both of them [21]. A possible explanation for these find-
ings is that different strategies were applied in acquiring 
VOIs, and different kinds of features were used in the 
models.

In our investigations of diagnostic prediction, thin-
ner reconstruction slice thickness did not provide added 
diagnostic information. Similarly, Park et al. found that 
the performance of radiomics models in prognostic pre-
diction was not significantly changed when they were 
applied to 1-, 3-, and 5-mm slice thickness datasets [22]. 
Nevertheless, He et al. showed that thin-section CT-
based radiomics signatures indeed had better diagnostic 
performance for solitary pulmonary nodules [23]. Our 
unexpected results may be explained by the larger nodule 
diameters of the enrolled patients (mean, 19.15 mm). As 
shown in one recent study, CT reconstruction parame-
ters (including slice thickness) did not substantially affect 
the diagnostic performance of radiomics signatures for 
pulmonary nodules larger than 10  mm, but it mattered 
for pulmonary nodules less than 10  mm, where thin-
section CT-based radiomics signatures performed better 
[24]. This study pointed out that for nodules greater than 
10 mm, perhaps there is an optimal amount of imaging 

Fig. 4 The decision curve analyses for all models in the training set (A) and test set (B). 5 L, 5 mm unenhanced lung window; 5 S, 5 mm unenhanced 
mediastinal window, 5 C, 5 mm contrast-enhanced mediastinal window; 1 mm, 1 mm unenhanced lung window; other model symbols being combina-
tions of single-window abbreviations
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slices at which further addition will no longer increase 
diagnostic efficacy and may even decrease performance 
due to increased noise [24].

It is controversial how contrast enhancement affects 
radiomics analysis in predicting the malignancy of pul-
monary nodules. He et al. showed that radiomics sig-
natures from unenhanced CT demonstrated better 
discrimination and classification capability, as the biolog-
ical heterogeneity within the tumour may be confounded 
by the contrast material [23]. On the other hand, Wu et 
al. found that contrast enhancement did not impact the 
utility of radiomics analysis, and the hypothesis was that 
the selected radiomics features measure the correlation, 
uniformity, and deviation of the pixels [13]. Neverthe-
less, our results indicated that radiomics signatures from 
the unenhanced and contrast-enhanced CT images had 
comparable performance in lung cancer risk prediction, 
where no significant difference was observed.

There were some limitations in the current study. First, 
this was a retrospective, single-centre study with a rela-
tively small population. Second, each regrouped cohort 
had a large number of features, at least 1,409, which 
could cause overfitting of the model. However, after try-
ing as many feature selection methods and machine 
learning models as possible, we believe that the methods 
finally used were relatively optimal. Finally, all CT images 
were acquired from one 64-slice multidetector CT scan-
ner of the chest. In addition, most centres may no longer 
use 5  mm reconstruction, as chest high-resolution CT 
is widely considered more accurate in the assessment of 
pulmonary nodules. Additionally, contrast-enhanced CT 
is not recommended for nodule evaluation unless certain 
conditions apply. Therefore, these aspects may limit the 
generalizability of our results.

In the future, we will carry out prospective studies in 
a clinical setting to further validate the current results. 
Afterwards, the software used in our study can be opti-
mized and installed in the work environment of physi-
cians and radiologists to facilitate the use of proposed 
radiomics models in daily practice and to see if the estab-
lished models could improve their diagnostic efficacy. 
Based on the specific design of the current study, the 
potential application of our results in clinical practice 
may be limited to patients with pulmonary nodules who 
may need hospitalization.

Conclusion
The current study evaluated the performance of 
radiomics features extracted from routine chest CT 
images with different reconstruction parameters in dif-
ferentiating malignant and benign pulmonary nodules. 
The results indicated that radiomics features obtained 
from multiple windows demonstrated comparable per-
formance to those from single windows. In addition, slice 

thickness and contrast enhancement did not substantially 
affect the diagnostic performance.

Abbreviations
CT  Computed tomography
HU  Hounsfield unit
VOI  Volume of interest
SD  Standard deviation
ROC curve  Receiver operating characteristic curve
AUC  Area under the curve
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