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Abstract 

Background  Both N6-methyladenosine (m6A) and ferroptosis-related genes are associated with the prognosis of 
lung adenocarcinoma. However, the predictive value of m6A-related ferroptosis genes remains unclear. Here, we 
aimed to identify the prognostic value of m6A-related ferroptosis genes in lung adenocarcinoma.

Methods  Lung adenocarcinoma sample data were downloaded from the University of California Santa Cruz Xena 
and Gene Expression Omnibus databases. Spearman’s correlation analysis was used to screen for m6A-related fer‑
roptosis genes. Univariate Cox regression, Kaplan–Meier, and Lasso analyses were conducted to identify prognostic 
m6A-related ferroptosis genes, and stepwise regression was used to construct a prognostic gene signature. The 
predictive value of the gene signature was assessed using a multivariate Cox analysis. In the validation cohort, survival 
analysis was performed to verify gene signature stability. The training cohort was divided into high- and low-risk 
groups according to the median risk score to assess differences between the two groups in terms of gene set varia‑
tion analysis, somatic mutations, and tumor immune infiltration cells.

Results  Six m6A-related ferroptosis genes were used to construct a gene signature in the training cohort and a mul‑
tivariate Cox analysis was conducted to determine the independent prognostic value of these genes in lung adeno‑
carcinoma. In the validation cohort, Kaplan–Meier and receiver operating characteristic analyses confirmed the strong 
predictive power of this signature for the prognosis of lung adenocarcinoma. Gene set variation analysis showed that 
the low-risk group was mainly related to immunity, and the high-risk group was mainly related to DNA replication. 
Somatic mutation analysis revealed that the TP53 gene had the highest mutation rate in the high-risk group. Tumor 
immune infiltration cell analysis showed that the low-risk group had higher levels of resting CD4 memory T cells and 
lower levels of M0 macrophages.

Conclusion  Our study identified a novel m6A-related ferroptosis-associated six-gene signature (comprising SLC2A1, 
HERPUD1, EIF2S1, ACSL3, NCOA4, and CISD1) for predicting lung adenocarcinoma prognosis, yielding a useful prog‑
nostic biomarker and potential therapeutic target.

Keywords  Bioinformatics, Ferroptosis, Lung adenocarcinoma, m6A, Prognosis

*Correspondence:
Qiu‑Gen Li
tchlqg2021@163.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-023-02410-x&domain=pdf


Page 2 of 15Li et al. BMC Pulmonary Medicine          (2023) 23:128 

Background
Lung cancer is one of the most common cancers 
(accounting for 11.6% of all cancer diagnoses) and the 
leading cause of cancer-related deaths worldwide (18.4% 
of total cancer mortality), with an approximate 2.2  mil-
lion new cases and 1.79  million deaths per year [1, 2]. 
Lung adenocarcinoma (LUAD) is the most common type 
of lung cancer, accounting for approximately 40% of cases 
[3]. Although comprehensive therapies such as chemo-
therapy, radiation therapy, and molecular targeted ther-
apy have provided advanced LUAD treatment options, 
the 5-year survival rate remains only 15% [4, 5]. There-
fore, identifying useful diagnostic, therapeutic, and prog-
nostic markers is an urgent goal.

N6-methyladenosine (m6A), the most abundant RNA 
modification in eukaryotic cells, plays an important 
role in various biological processes and mRNA metabo-
lism by regulating translation, processing, stabilization, 
and degradation of the target RNA [6–8]. m6A has been 
associated with various cancers, such as colorectal can-
cer, adrenocortical carcinoma, bladder cancer, and lung 
cancer [3, 9–11]. Zhuang et  al. constructed a robust 
diagnostic model using 11 m6A molecules and a prog-
nostic model using 10 m6A molecules for LUAD [12]. 
Yin et al. reported that m6A RNA methylation-mediated 
RMRP stabilization promotes non-small-cell lung can-
cer (NSCLC) progression by regulating the TGFBR1/
SMAD2/SMAD3 pathway [13]. In addition, Li et  al. 
found that the m6A reader YTHDF2 contributes to 
LUAD progression by targeting AXIN1/Wnt/β-catenin 
signaling [14].

Ferroptosis is a non-apoptotic type of regulated cell 
death that is associated with oxidative damage [15] and 
characterized by an iron-dependent accumulation of 
lipid peroxidation and subsequent damage to the plasma 
membrane [16]. Previous studies have shown that certain 
genes can drive ferroptosis, whereas others can nega-
tively regulate ferroptosis [17, 18]. Ferroptosis-related 
genes may be promising therapeutic targets for antican-
cer drug research and cancer treatment [19]. Researchers 
have also identified a potential link between m6A mol-
ecules and ferroptosis genes in tumor development [20, 
21]. The m6A reader YTHDC2 is a powerful endogenous 
inducer of ferroptosis, and increasing YTHDC2 levels is 
another ferroptosis-based treatment strategy for LUAD 
[22].

According to these findings, m6A molecules and fer-
roptosis genes are associated with the prognosis of 
LUAD. There is a potential link between m6A and fer-
roptosis in LUAD. Therefore, we hypothesized that the 
existence of m6A-related ferroptosis genes (MRFGs) is 
related to the overall survival of patients with LUAD. To 
test this hypothesis, we identified six MRFGs as potential 

predictive biomarkers and constructed prognostic mod-
els based on these six MRFGs using bioinformatics 
methods.

Materials and methods
Data source and analysis
The RNA-seq fragments per kilobase million (FPKM) 
information on LUAD and related clinical data were 
obtained from University of California Santa Cruz 
(UCSC) Xena (http://​xena.​ucsc.​edu/). Preliminary pro-
cessing was performed according to the following cri-
teria: [1] genes with zero expression in more than 30 
samples were excluded; [2] samples that contained 
expression profiles but no clinical information or prog-
nostic data were excluded; and [3] samples with a follow-
up of < 30 days were removed. We screened 488 patients 
with LUAD from the UCSC Xena database as the train-
ing cohort. Mutation data were downloaded from the 
Genomic Data Commons Data Portal (https://​portal.​gdc.​
cancer.​gov/). Two datasets (GSE72094 and GSE68465) 
were also downloaded as validation cohorts from 
the Gene Expression Omnibus (GEO) (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/) database. The final GSE72094 
(n = 386) and GSE68465 (n = 427) datasets were used as 
validation cohorts (Supplementary Table 1). The clinical 
baseline characteristics of the three datasets are sum-
marized in Table  1. Ferroptosis genes were downloaded 
from the FerrDb database (http://​www.​datjar.​com:​40013/​
bt2104/) and 348 ferroptosis-related genes were screened 
(Supplementary Table 2). The study flowchart is shown in 
Fig. 1.

Selection of m6A molecules and MRFGs
We extracted 22 m6A molecules and 305 ferroptosis gene 
expression profiles from the LUAD gene expression pro-
files. The following 22 molecules were defined as m6A 
molecules: writers (METTL3, METTL14, METTL16, 
WTAP, VIRMA, ZC3H13, RBM15, and RBM15B), read-
ers (YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, 
HNRNPC, FMR1, LRPPRC, HNRNPA2B1, IGFBP2, 
IGFBP3, and RBMX), and erasers (FTO and ALKBH5). 
The correlation between the expression levels of m6A 
molecules and ferroptosis-related genes was analyzed 
using Spearman’s correlation analysis. We identified 
MRFGs based on the correlation between the expres-
sion of ferroptosis genes and the 22 m6A molecules with 
expression levels > 0.3 (|Spearman R | > 0.3 and P < 0.001).

Construction and validation of the prognostic gene 
signature
We used the UCSC-Xena dataset as the training cohort 
and the two GEO datasets as the validation cohort. 
In the training cohort, univariate Cox regression and 

http://xena.ucsc.edu/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.datjar.com:40013/bt2104/
http://www.datjar.com:40013/bt2104/
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Kaplan–Meier analyses were used to identify potential 
prognostic genes. These prognostic genes were further 
screened using Lasso regression analysis by R packages 
“glmnet” [23], and the penalty parameter lambda was 
adjusted by 10-fold cross-validation. Prognostic genes 
were identified based on the best lambda value. Finally, 
the genes obtained from the Lasso analysis were entered 
into a stepwise Cox regression analysis (direction = both) 
to screen hub prognostic genes and construct the optimal 
prognostic gene signature. The following risk score for-
mula was obtained from the gene signature:

Risk score = n
i=1

Expi ∗ βi

where n, Expi, and βi indicate the number of hub genes, 
gene expression level, and stepwise Cox regression coef-
ficient, respectively. In the training cohort, patients 
were divided into high- and low-risk groups based on 
the median risk score, and the difference in prognosis 
between the two groups was assessed using the Kaplan–
Meier analysis. We used univariate and multivariate Cox 
regression analyses between the risk score and clinical 
characteristics (gender, age, and stage) to assess whether 
the risk score was an independent prognostic factor. We 
conducted a time-receiver operating characteristic (time-
ROC) analysis and constructed a nomogram to further 
assess the prognostic predictive power of the risk score. 
In the validation cohorts, the same formula and statisti-
cal methods (Kaplan–Meier analysis and time-ROC) 

Table 1  Clinical baseline characteristics of the three cohorts

Clinical characteristics LUAD (n = 488) GSE72094 (n = 386) GSE68465 (n = 427)

Age

  <=65 238(48.8%) 115(29.8%) 223(52.2%)

  > 65 250(51.2%) 271(70.2%) 204(47.8%)

Gender

  Male 228(46.7%) 168(43.5%) 216(50.6%)

  Female 260(53.3%) 218(56.5%) 211(49.4%)

Tumor stage

  Stage I 265(54.3%) 246(63.7%) NA

  Stage II 114(23.4%) 65(16.8%) NA

  Stage III 77(15.8%) 56(14.5%) NA

  Stage IV 25(5.1%) 14(3.6%) NA

  Unknown 7(1.4%) 5(1.3%) NA

T stage

  T1 164(33.6%) NA 146(34.2%)

  T2 259(53.1%) NA 241(56.4%)

  T3 44(9.0%) NA 27(6.3%)

  T4 18(3.7%) NA 11(2.6%)

  Unknown 3(0.6%) NA 2(0.5%)

N stage

  N0 320(65.6%) NA 290(67.9%)

  N1 90(18.4%) NA 82(19.2%)

  N2 66(13.5%) NA 52(12.2%)

  N3 2(0.4%) NA 0(0%)

  Unknown 10(2.0%) NA 3(0.7%)

Tobacco smoking history

  Ever 336(68.9%) 291(75.4%) 285(66.7%)

  Never 0(0%) 30(7.8%) 49(11.5%)

  Unknown 152(31.1%) 65(16.8%) 93(21.8%)

Race

  White 384(78.7%) 365(94.6%) 282(66.0%)

  Non-white 60(12.3%) 18(4.7%) 18(4.2%)

  Unknown 44(9.0%) 3(0.7%) 127(29.7%)
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Fig. 1  Flowchart of the study methodology
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were used to validate the prognostic power of the gene 
signature.

Gene set variation analysis
Gene set variation analysis (GSVA) is used to estimate 
changes in pathway activity in a sample population in an 
unsupervised manner, allowing for a better detection of 
subtle changes in pathway activity [24]. To explore dif-
ferences in underlying molecular signaling mechanisms 
(kyoto encyclopedia of genes and genomes [25], gene 
ontology) between the high- and low-risk groups, data 
from c2.cp.kegg.v7.4.symbols and c5.go.v7.4.symbols 
were downloaded from the molecular signatures data-
base (MSigDB) (http://​www.​gsea-​msigdb.​org/​gsea/​
msigdb/​index.​jsp). GSVA was used to evaluate the dif-
ferences in biological functions between the two risk 
groups. |Log2(FC)| > 0.20 and P < 0.001 were set to indi-
cate pathway activation.

Assessing somatic mutations and tumor microenvironment 
characteristics
To explore the differences in somatic mutations between 
the high- and low-risk groups, we used the R package 
“maftool” [26] to calculate somatic mutations between 
the two groups. Using the R package “estimate” [27], we 
implemented the ESTIMATE algorithm to obtain scores 
for tumor purity, level of stromal cell presence, and level 
of immune cell infiltration in tumor tissue based on 
expression data. The ESTIMATE method was used to 
evaluate the immune/stromal/estimate scores for each 
lung cancer sample. The differences in the immune/stro-
mal/estimate scores were then compared between the 
high- and low-risk groups. The CIBERSORT algorithm is 
a deconvolution method that characterizes the cell com-
position of complex tissues using gene expression pro-
files [28]. A machine learning algorithm (linear support 
vector regression) is used to deconvolute the mixture of 
gene expression. We calculated the abundance of the 22 
immune cell infiltrates for each lung cancer sample using 
the CIBERSORT algorithm and compared the differences 
in the levels of 22 tumor immune infiltrate cells (TIICs) 
between the high- and low-risk groups.

Statistical analysis
The R (v3.6.3) software was used for data processing and 
statistical analyses. Quantitative data were compared 
between two groups using the Wilcoxon test. Quantita-
tive data among the three groups were compared using 
the Kruskal–Wallis test. Qualitative data were analyzed 
using the chi-square test or Fisher’s exact test. Spear-
man’s correlation analysis was used to analyze the corre-
lation between m6A molecules and ferroptosis genes. The 
R package “survival” [29] was used for the Kaplan–Meier 

analysis and log-rank test. Stepwise Cox regression analy-
ses and prognostic gene signature constructions were 
applied using the R package “survival”. Univariate and 
multivariate Cox regression analyses were conducted 
using the R package “survival”. ROC curves and area 
under the curve (AUC) calculations were performed 
using the R package “timeROC” [30]. A nomogram was 
constructed using the R package “rms” [31]. Calibra-
tion curves were analyzed using the bootstrap method 
to assess the predictive performance of the nomogram. 
P < 0.05 was considered statistically significant.

Results
Identification of MRFGs signature
We obtained 186 MRFGs and visualized their co-expres-
sion relationships using the Sankey diagram (Fig. 2A). We 
identified 21 potential m6A-related ferroptosis progno-
sis genes using univariate Cox regression and Kaplan–
Meier analyses (Supplementary Table 3). These 21 genes 
were entered into the Lasso analysis and nine genes were 
acquired (lambda.min = 0.022) and entered into the step-
wise Cox regression analysis to identify six hub prognos-
tic genes (SLC2A1, HERPUD1, EIF2S1, ACSL3, NCOA4, 
and CISD1) and construct a prognostic model (Fig.  2B, 
C). Correlations between the 22 m6A molecules and six 
hub prognostic genes were visualized using a correlation 
heatmap (Fig. 2D). We used the GEPIA database (http://​
gepia.​cancer-​pku.​cn/​index.​html) to compare the differ-
ences in expression of the six genes between the patients 
with LUAD and normal samples. We found that SLC2A1 
was highly expressed in tumor samples (P < 0.05, Fig. 3A), 
and the expression of the other five genes was not sig-
nificantly different between tumor and normal tissues 
(P > 0.05, Fig. 3B-F).

Estimation of the prognostic value of the model 
in the training cohort
Patients were divided into high- and low-risk groups 
according to the median risk score, and worse clinical 
outcomes were seen in the high-risk group (P < 0.001, 
Fig.  4A, Supplementary Tables  4-S1). Patients were 
also divided into high- and low groups according to the 
median expression of genes, and the relationship between 
each gene and the prognosis of the patients was evalu-
ated. Four genes with high expression were associated 
with poor prognosis (SLC2A1, P < 0.001; EIF2S1, P < 0.05; 
ACSL3, P < 0.01; CISD1, P < 0.01; Supplementary Fig. 1A-
D), while two genes with high expression were associated 
with better prognosis (HERPUD1, P < 0.001; NCOA4, 
P < 0.01; Supplementary Fig.  1E, F). A time-ROC curve 
analysis was conducted to predict patients’ progno-
sis at 1, 3, and 5 years (AUC = 0.696, 0.703, and 0.682, 
respectively; Fig.  4B, Supplementary Tables  4-S1). The 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
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distribution of the risk classes and survival time between 
the high- and low-risk groups is shown in Fig. 4C (Sup-
plementary Tables 4-S1). A heatmap was used to visual-
ize the expression levels of the six genes for each patient 
(Fig.  4D, Supplementary Tables  4-S1). Univariate and 
multivariate Cox regression analyses showed that the risk 
score was an independent risk factor for prognosis (uni-
variate: HR = 1.362, 95% CI: 1.247–1.487, P < 0.001 and 
multivariate: HR = 1.360, 95% CI: 1.238–1.494, P < 0.001; 
Fig. 4E-, F, Supplementary Tables 4-S2). According to the 

prognostic analysis in the two groups stratified by gender 
(female and male), age (≤ 65 and > 65 years), and stage 
(stages I–II and III–IV), the high-risk group had worse 
outcomes (Supplementary Fig. 2A-F). To facilitate use of 
the risk score, a nomogram was constructed with the risk 
score and clinical factors (gender, age, and stage) (Fig. 4G, 
Supplementary Tables 4-S3). Calibration plots for overall 
survival at 1, 3, and 5 years were used to visualize nomo-
gram performance (Fig. 4H, Supplementary Tables 4-S3).

Fig. 2  Gene signature obtained based on the m6A-related ferroptosis gene. A Sankey diagram showing the expression network relationship 
between the 22 m6A molecules and 186 m6A-related ferroptosis genes. B Lasso coefficient profiles of the 21 m6A-related ferroptosis prognostic 
genes. C Ten-fold cross-validation for the optimal parameter selection in the Lasso regression. D Heatmap plots of the correlations of the 22 m6A 
molecules with the six prognostic m6A-related ferroptosis genes (*P < 0.05, **P < 0.01, ***P < 0.001)
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Validation model stability on the GEO dataset
To validate the prognostic stability of the gene signa-
ture, two GEO datasets (GSE72094 and GSE68465) 
were used as the validation cohorts (Supplementary 
Table  5). The same formula that was used to calculate 
the risk score for the training cohort was applied to 
the GEO cohorts. According to the median risk score, 
patients were divided into high- and low-risk groups, 
and survival analyses showed that patients in the high-
risk group had worse prognoses (GSE72094: P < 0.001 
and GSE68465: P = 0.009; Fig. 5A, B). The distribution 

of risk classes and survival times between the two 
groups are shown in Fig.  5C, D. A heatmap was used 
to visualize the expression levels of the six genes for 
each patient (Fig.  5E, F). A time-ROC curve analy-
sis was used to predict patients’ prognosis at 1, 3, and 
5 years (GSE72094: AUC = 0.622, 0.687, and 0.790, 
respectively, and GSE68465: AUC = 0.652, 0.622, and 
0.565, respectively; Fig.  5G, H). Principal component 
analysis (PCA) and t-distributed stochastic neighbor 
embedding (t-SNE) further confirmed that the risk 
score could be used to significantly distinguish between 
patients (Supplementary Fig.  3A-D). In general, the 

Fig. 3  Expression levels of six genes in tumor and normal tissues evaluated using the GEPIA database. A SLC2A1, (B) HERPUD1, (C) EIF2S1, (D) 
ACSL3, (E) NCOA4, and (F) CISD1. Green represents the tumor samples and red represents the normal samples (*P < 0.05)
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Fig. 4  Prognostic value of the risk model signature. A Kaplan–Meier analysis of the prognosis in the low- and high-risk groups. B Prognostic ability 
of the risk score according to the time-ROC curve analysis. C Distribution of risk classes and survival time between the two groups. D Heatmap of 
the expression levels of the six genes. E Univariate Cox regression analysis of the risk score. F Multivariate Cox regression analysis of the risk score. 
G Nomogram predicting 1-, 3-, and 5-year survival outcomes. H Calibration plot of the nomogram to predict 1-, 3-, and 5-year survival
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Fig. 5  Validation model stability on the GEO datasets (GSE72094 and GSE68465). A Kaplan–Meier analysis between the high- and low-risk groups 
in the GSE72094 cohort. B Kaplan–Meier analysis between the high- and low-risk groups in the GSE68465 cohort. C Distribution of risk classes 
and survival time between the two groups in the GSE72094 cohort. D Distribution of risk classes and survival time between the two groups in the 
GSE68465 cohort. E Heatmap of the expression levels of the six genes in the GSE72094 cohort. F Heatmap of the expression levels of the six genes 
in the GSE68465 cohort. G Time-ROC curve analysis of the risk score in the GSE72094 cohort. H Time-ROC curve analysis of the risk score in the 
GSE68465 cohort
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verification results showed that the gene signature had 
good stability.

GSVA
A GSVA was conducted to analyze the enriched path-
ways in the high- and low-risk groups to further explore 
the differences in participating gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways between the two groups. In c2.cp.kegg.
v7.4.symbols, we obtained the five most significantly 
correlated differential pathways based on log2(FC) val-
ues (Fig.  6A, Supplementary Tables  6-S1). We found 
that the high-risk group was mainly correlated with the 
upregulation of cell-cycle pathways (e.g., DNA repli-
cation, homologous recombination, mismatch repair, 
proteasome, cell cycle). In contrast, the low-risk group 
showed more upregulation of certain immune dis-
eases (e.g., primary bile acid biosynthesis, asthma, the 
intestinal immune network for IgA production, auto-
immune thyroid disease, and allograft rejection). In 
addition, the GO gene-set variation analysis in c5.go.
v7.4.symbols also revealed that the patients in the high-
risk group were had more upregulation of DNA replica-
tion, while the patients in the low-risk group had more 

upregulation of immune regulation (Fig. 6B-D, Supple-
mentary Tables 6-S2).

Somatic mutations analysis
To explore differences in somatic mutations between 
the high- and low-risk groups, we used waterfall plots 
to visualize the top 20 genes with the highest mutation 
frequencies in the two groups (Fig.  7A, B, Supplemen-
tary Tables 7-S1, 2). We further compared the mutational 
differences of all genes between the two groups, and the 
results showed that TP53, TNN, LRRC7, and NOS1 had 
more mutations in the high-risk group than in the low-
risk group. The TP53 gene had the highest mutation 
rate in the high-risk group (Fig.  7C-F, Supplementary 
Tables 7-S3).

Analysis of immune infiltration in the tumor 
microenvironment
We aimed to explore differences in immune infiltration 
in the tumor microenvironment (TME) between the 
high- and low-risk groups. We used the ESTIMATE algo-
rithm to calculate the distribution between the stromal/
immune/estimate scores for patients in the high- and 
low-risk groups. Compared with the high-risk group, 

Fig. 6  Enriched pathway differences between the high- and low-risk groups by GSVA. A Enriched pathway differences of KEGG between the two 
groups in c2.cp.kegg.v7.4.symbols. B Enriched pathway differences of GO-BP between the two groups in c5.go.v7.4.symbols. C Enriched pathway 
differences of GO-CC between the two groups in c5.go.v7.4.symbols. D Enriched pathway differences of GO-MF between the two groups in c5.go.
v7.4.symbols
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the low-risk group exhibited higher immune/stromal/
estimate scores (Fig. 8A-C, Supplementary Tables 8-S1). 
The CIBERSORT algorithm showed that the high-risk 
group had higher levels of activated CD4 memory T cells, 

follicular helper T cells, resting NK cells, and M1 and 
M0 macrophages, while the low-risk group had higher 
levels of memory B cells, resting CD4 memory T cells, 

Fig. 7  Somatic mutation analyses in the high- and low-risk groups. A Waterfall plot somatic mutation in the high-risk group. B Waterfall plot 
somatic mutation in the low-risk group. C Somatic mutation differences of the TP53 gene between the two groups. D Somatic mutation differences 
of the TNN gene between the two groups. E Somatic mutation differences of the LRRC7 gene between the two groups. F Somatic mutation 
differences of the NOS1 gene between the two groups. Red represents mutation and blue represents no mutation
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monocytes, resting dendritic cells, and resting mast cells 
(Fig. 8D, Supplementary Tables 8-S2).

Discussion
LUAD is a highly heterogeneous malignancy [32] with a 
low 5-year survival rate [33]. Identifying target molecules 
and building a predictive signature of stability is condu-
cive to early intervention and can prolong the survival 
time. This study was inspired by the latest research on 
the potential association between m6A and ferroptosis 
genes. For our study, we built an m6A-related ferroptosis 

six-gene signature to predict LUAD prognosis through 
joint TCGA and GEO database mining. The six-gene 
signature showed good predictive value for LUAD in the 
validation group. In contrast to previous studies that have 
identified prognostic genetic signatures in LUAD, we are 
the first to use m6A-related ferroptosis genes. The pre-
sent study therefore provides additional directions for 
LUAD research.

We further analyzed the biological functions of 
these six genes. SLC2A1 encodes a glucose transporter 
that controls glucose uptake, which can stimulate fatty 

Fig. 8  Analysis of tumor immune infiltration cells in the tumor microenvironment. A Differences in stromal scores among the high- and 
low-risk groups. B Differences in immune scores among the high- and low-risk groups. C Differences in ESTIMATE scores among the high- and 
low-risk groups. D Abundance of the 21 tumor immune infiltration cells in the high- and low-risk groups (ns, no significance, *P < 0.05, **P < 0.01, 
***P < 0.001)
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acid synthesis and ultimately lead to cellular lipid 
peroxidation-dependent ferroptosis [34]. Studies have 
found that the m6A reader YTHDC1 is involved in 
suppressing the expression of SLC2A1 [35]. Correla-
tion analysis has shown that YTHDC1 is negatively 
correlated with SLC2A1 (r = -0.15, P < 0.01). SLC2A1 
overexpression can promote the growth and prolifera-
tion of various tumor cells [36–39] and is associated 
with poor prognosis in lung cancer [36]. In this study, 
SLC2A1 overexpression was associated with poorer 
clinical prognoses in patients with LUAD (P < 0.001). 
HERPUD1 is an endoplasmic reticulum protein pro-
cessing-encoding gene. Studies have reported that 
HERPUD1 overexpression can promote apopto-
sis of various cancer cells (e.g., gastric, prostate, and 
endometrial cancer) induced by endoplasmic reticu-
lum stress [40–42]. The results of this study showed 
a better prognosis for patients with lung cancer that 
have high HERPUD1 expression. EIF2S1 (eIF2α) is a 
translation initiation factor that causes global arrest 
in protein synthesis via phosphorylation in eukary-
otic cells [43, 44]. Avitan-Hersh et  al. confirmed that 
eIF2α is involved in the occurrence and treatment 
resistance of melanoma [45]. Bai et  al. demonstrated 
that activation of the eIF2α/ATF4 pathway is involved 
in radioresistance in triple-negative breast can-
cer [46]. Additionally, Jeon et  al. verified that TIPRL 
can prolong survival in patients with lung cancer by 
inducing autophagy through the eIF2α-ATF4 axis 
[47]. Increased eIF2α phosphorylation is associated 
with poor prognosis in patients with LUAD [48]. Our 
results indicate a worse prognosis for patients with 
LUAD who have high expression of EIF2S1. ACSL3 
plays an important role in fatty acid metabolism [49] 
and can inhibit ferroptosis to protect the cells [50]. 
ACSL3 overexpression results in worse clinical prog-
nosis in high-grade NSCLC [51]. NCOA4 is a selec-
tive cargo receptor for the autophagic degradation of 
ferritin that weakens ferroptosis [52]. Studies have 
reported that high expression of NCOA4 is associated 
with prolonged overall tumor survival [53, 54]. The 
results of this study also showed that highly expressed 
NCOA3 is associated with better clinical prognosis, 
though the mechanism is still unclear. CISD1 mediates 
mitochondrial lipid peroxidation to inhibit ferropto-
sis [55], which plays an important role in promoting 
cancer cell proliferation and supporting tumor devel-
opment and metastasis [56]. However, the biological 
functions of CISD1 in LUAD remain unclear.

GSVA and immune infiltration analysis showed 
higher immune activity in the low-risk group than 
in the high-risk group. Studies have reported that the 

mechanism of immune checkpoint inhibitors involves 
unblocking certain inhibitory pathways, thereby 
enhancing the immune system to produce antitumor 
activity [57]. Somatic mutation analysis showed the 
TP53 gene had the most significant mutation rate in the 
high-risk group compared to the low-risk group. TP53 
mutations in LUAD have been associated with signifi-
cantly higher levels of antitumor immune features than 
TP53 wild-type cancers [58].

The CIBERSORT algorithm was used to analyze dif-
ferences in TIICs between the high- and low-risk 
groups. Both groups had higher levels of resting CD4 
memory cells and M0 macrophages relative to other 
infiltrating cells. Compared with the high-risk group, 
the low-risk group had higher levels of resting CD4 
memory T cells and lower levels of M0 macrophages. 
Quiescent CD4 memory T cells have been found to dif-
ferentiate and confer multiple functions, such as assist-
ing CD8 + T cells with performing antitumor functions 
[59]. An increased number of M0 macrophages is asso-
ciated with poor prognosis in LUAD at an early clinical 
stage [60]. These results suggest that the tumor immune 
response mechanisms may differ between the two 
groups.

This study has some limitations. First, the clinical sam-
ples (three cohorts) used for prognostic feature construc-
tion and validation were sourced from public databases. 
This gene signature would be more reliable if tested in a 
prospective clinical trial cohort. Secondly, the biological 
mechanisms of action of m6A molecules associated with 
the six ferroptosis genes have not been elucidated, and 
further experimental evidence is needed to validate the 
association of m6A with these six core prognostic genes 
and ferroptosis’ regulatory function in LUAD.

Conclusions
In conclusion, our study identified a robust m6A-related 
ferroptosis six-gene signature that predicts LUAD prog-
nosis. Notably, we validated the reliability and applica-
bility of the signature using two independent validation 
cohorts. Our findings provide useful biomarkers for 
LUAD prognostic prediction and insights for identifying 
new molecules or targets for LUAD therapy.
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