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Abstract 

Background Accurate risk stratification in pulmonary arterial hypertension (PAH), a devastating cardiopulmonary 
disease, is essential to guide successful therapy. Machine learning may improve risk management and harness clinical 
variability in PAH.

Methods We conducted a long‑term retrospective observational study (median follow‑up: 67 months) including 
183 PAH patients from three Austrian PAH expert centers. Clinical, cardiopulmonary function, laboratory, imaging, 
and hemodynamic parameters were assessed. Cox proportional hazard Elastic Net and partitioning around medoid 
clustering were applied to establish a multi‑parameter PAH mortality risk signature and investigate PAH phenotypes.

Results Seven parameters identified by Elastic Net modeling, namely age, six‑minute walking distance, red blood cell 
distribution width, cardiac index, pulmonary vascular resistance, N‑terminal pro‑brain natriuretic peptide and right 
atrial area, constituted a highly predictive mortality risk signature (training cohort: concordance index = 0.82 [95%CI: 
0.75 – 0.89], test cohort: 0.77 [0.66 – 0.88]). The Elastic Net signature demonstrated superior prognostic accuracy as 
compared with five established risk scores. The signature factors defined two clusters of PAH patients with distinct 
risk profiles. The high‑risk/poor prognosis cluster was characterized by advanced age at diagnosis, poor cardiac out‑
put, increased red cell distribution width, higher pulmonary vascular resistance, and a poor six‑minute walking test 
performance.

Conclusion Supervised and unsupervised learning algorithms such as Elastic Net regression and medoid clustering 
are powerful tools for automated mortality risk prediction and clinical phenotyping in PAH.
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Background
Pulmonary arterial hypertension (PAH) is a rare disease 
with a detrimental long-term outcome [1–4] . Hemody-
namically, PAH is defined by precapillary pulmonary 
hypertension with an elevated mean pulmonary arte-
rial pressure (mPAP) > 20 mmHg, a pulmonary arterial 
wedge pressure ≤ 15  mmHg, and an elevated pulmo-
nary vascular resistance (PVR) > 2 Wood units in right 
heart catheterization (RHC) at rest [5, 6] .

Despite the progress in therapy, which dramatically 
improved clinical outcome, complete disease control 
is often not achieved and long-term survival of PAH 
patients remains low [7, 8]. PAH treatment decisions are 
based on individualized risk assessment at diagnosis and 
follow-up [5, 9]. Still, optimal PAH risk management has 
not been achieved yet, and available PAH risk stratifica-
tion tools are highly heterogeneous, differ in the choice, 
number and weighting of used parameters, and the risk 
class definition [1, 8–13]. It has been recognized that the 
current definition of PAH includes heterogeneous patient 
phenotypes which differ in treatment responses and clini-
cal outcomes [14, 15]. Following this observation, typical 
and atypical forms of PAH have been described, whereas 
the latter term refers to a late-onset PAH in patients with 
multiple comorbidities as compared to typical PAH, 
which is found in younger patients with few comorbidi-
ties [14]. Such phenotyping of PAH is essential to further 
improve individualized risk stratification and treatment 
decisions, which is addressed by numerous recent reports 
[5]. Current research on PAH risk assessment focuses 
primarily on novel risk parameters including imaging, 
functional, genetic, and proteomic features [16, 17]. Still, 
the implementation of such new risk markers in clinical 
practice is often hindered by a lack of availability, stand-
ardization, and increasing costs. By contrast, there are 
several more easily accessible features, such as age and 
sex, PAH etiology, serological parameters, pulmonary 
function tests, cardiac and pulmonary imaging, electro-
cardiography, exercise testing, and RHC measures which 
have been shown to predict mortality in PAH but  are 
inconsistently used in currently available PAH risk scores 
[18–20]. Thus, we hypothesized that a machine learning 
approach employing e. g. Elastic Net survival modeling 
and clustering based on a broad set of easily accessible 
demographic and clinical parameters available at PAH 
diagnosis may facilitate risk stratification and identifica-
tion of clinically relevant subsets of PAH patients.

Methods
Ethics
All participants gave written informed consent to par-
ticipate. The study data were stored and analyzed in 
anonymized form. The study was approved by the ethics 

committees of the Medical University of Innsbruck 
(approval numbers: AM2544, 239/4.12 and 273/5.7), 
the Johannes Keppler University of Linz (AN2017-
0,009,369/4.15) and the Medical University of Vienna 
(EKV516/2011) and conducted in accordance with the 
Declaration of Helsinki and European data policy.

Study population and design
We herein present a retrospective multicenter observa-
tional two-cohort study. Data of 183 PAH patients were 
analyzed. The inclusion criterion was PAH (WHO eti-
ology group I) defined by ESC/ERS (European Society 
of Cardiology/European Respiratory Society) guidelines 
and confirmed by RHC. The exclusion criterion was 
incompatibility with PAH diagnosis, e. g. post-capillary 
pulmonary hypertension or pulmonary hypertension 
group II, III, IV, or V. The participants were grouped in 
(1) the training cohort recruited at the Medical Univer-
sity of Innsbruck, Austria, (IBK, N = 100) and the (2) 
test cohort recruited at the Elisabethinen Hospital Linz, 
Austria, and the Medical University of Vienna, Austria 
(LZ/W, N = 83) (Fig. 1).

Study procedures and variables
Demographic and performance variables, blood bio-
markers, heart echocardiography, and RHC parameters 
were determined during the standard PAH diagnosis 
procedure. Capillary blood gas analysis was performed 
by puncture of the hyper-perfused earlobe (induced by 
Finalgon® application [Sanofi-Aventis, Germany]). The 
glomerular filtration rate (GFR) was calculated by the 
MDRD GFR equation, renal insufficiency was defined 
as GFR < 60  ml/min/1.73  m2. Anemia was defined 
by a hemoglobin concentration < 120  g/L for women 
and < 130 g/L for men. Impaired oxygenation was defined 
as peripheral hemoglobin oxygen saturation  (SO2) < 95%. 
The list of analyzed variables with the stratification 
scheme is presented in Supplementary Table S1.

Mortality risk‑assessment tools
The mortality risk at diagnosis was assessed by abbre-
viated versions of the ESC/ERS risk assessment tool: 
the three- and four parameter French Pulmonary 
Hypertension Registry scores (FPHR 3p and 4p), the 
Prospective Registry of Newly Initiated Therapies for 
Pulmonary Hypertension (COMPERA) tool, the Swed-
ish PAH register (SPAHR) model, and the modified 
Risk Assessment Score of PAH (mRASP) [8, 13, 21, 22] .

Statistical analysis
Statistical analysis was performed with R version 4.2.3 (R 
Foundation for Statistical Computing).
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In descriptive statistic, numeric variables are presented 
as medians with interquartile ranges (IQR). Categori-
cal variables are presented as percentages and counts for 
each category. Prior to modeling and clustering, numeric 
variables were normalized and median centered. Both 
first and second order terms for numeric variables were 
included in models to account for non-linear relationship 
with survival.

Statistical significance was assessed by Mann–Whit-
ney, χ2, log-rank and Spearman’s test for numeric vari-
ables, categorical parameters, survival and correlation, 
respectively. P values were adjusted for multiple testing 
within each analysis and cohort with the Benjamini–
Hochberg method [23] . Association of single factors 
(Supplementary Table S1) or established risk assess-
ment tools (mRASP, SPAHR, COMPERA, FPHR) with 
overall survival was investigated by univariable Cox 
proportional hazard modeling [24] . For multi-param-
eter survival modeling, the Elastic Net model [25, 26]  
was trained in the IBK cohort with the optimal lambda 
parameter obtained in 200-repetition tenfold cross-
validation. Subsequently, the Elastic Net model linear 
predictor scores were calculated for the training IBK 
and test LZ/W cohort and their association with overall 
survival was assessed by univariable Cox modeling [24, 
27, 28] . Performance of survival models was measured 
by concordance index (C) [29] , integrated Brier score 

(IBS) [30]  and R2 explained variance statistics. Non-
zero model coefficients in the Elastic Net model (haz-
ard ratio ≠ 1) were deemed the ‘Elastic Net signature’. 
Clustering of the IBK cohort participants in respect to 
the Elastic Net signature variables was done with PAM 
(partition around medoids) algorithm and cosine dis-
tance measure [31, 32] . The optimal cluster number was 
determined by the bend of the within-cluster sum of 
squares curve, the peak silhouette statistic [33] , and the 
largest cluster assignment accuracy in tenfold cross-
validation [34] . Cluster assignment in the LZ/W collec-
tive was accomplished by the inverse distance-weighted 
7-nearest neighbor classifier [35] . Details of statistical 
analysis are provided in Supplementary Methods. The 
analysis pipeline is available at https:// github. com/ Piotr 
Tymos zuk/ PAH- bioma rker.

Results
Characteristics of the study cohorts
The PAH study cohorts (total: N = 183, IBK: N = 100, 
LZ/W: N = 83, Fig.  1) encompassed subjects with  idi-
opathic (N = 172, 94%), hereditary (N = 3, 1.6%) and con-
nective tissue disease associated PAH (N = 8, 4.4%). The 
latter group consisted of patients with systemic sclerosis, 
systemic lupus erythematosus, Sjörgen syndrome and 
mixed connective tissue disease. The median age was 
66 years [IQR: 53 – 71] in the IBK and 70 years [IQR: 54 

Fig. 1 Flow diagram of the study analysis inclusion process. PH: pulmonary hypertension; RHC: right heart catheterization; CTEPH: chronic 
thromboembolic pulmonary hypertension

https://github.com/PiotrTymoszuk/PAH-biomarker
https://github.com/PiotrTymoszuk/PAH-biomarker
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– 74] in the LZ/W collective. The cohorts included pre-
dominately females (IBK: 64% and LZ/W: 66%) (Table 1). 
We found no significant differences in observation time 
(p = 0.30, Mann–Whitney test), overall survival (p = 0.51, 
log-rank test) and overall mortality rate (p = 0.35, χ2 
test) between the IBK and LZ/W cohorts. Accordingly, 
the median overall survival defined as follow-up time 
between the diagnosis and the last visit or death was 
70  months [IQR: 46 – 110] in the IBK and 63  months 
[IQR: 32 – 110] in the LZ/W cohort, and mortality dur-
ing follow-up was 33% in the IBK and 24% in the LZ/W 
cohort (Table 1, Supplementary Tables S1 – S2).

Univariable survival modeling
Initially, we applied univariable Cox modeling to search 
for survival-associated factors among 19 demographic, 
performance, biochemical and cardiopulmonary parame-
ters measured at diagnosis (Supplementary Table S1). By 
this approach, N-terminal pro-brain natriuretic peptide 
(NT-pro-BNP), pulmonary vascular resistance (PVR) and 
six-minute walking distance (SMWD) were identified as 
significant survival-associated factors in both the IBK 
and LZ/W cohorts. Additionally, age, mean corpuscular 
volume, right atrial area (RAA), renal insufficiency were 
linked to a worse prognosis and cardiac index (CI) was 
associated with better survival in the IBK collective. In 

the LZ/W cohort, male sex and III/IV WHO functional 
class were identified as unfavorable prognostic factors 
(Supplementary Figure S2, Supplementary Table S3).

Development of a multi‑parameter PAH risk signature 
with Elastic Net modeling
Multi-parameter modeling of overall survival was per-
formed with Elastic Net Cox regression [25, 26]. In the 
training IBK cohort, 7 out of 19 candidate independent 
variables, namely age, CI, NT-pro-BNP, PVR, RAA, RDW 
(red blood cell distribution width) and SMWD, contrib-
uted to risk prediction as reflected by hazard ratio ≠ 1 
and constituted the ‘Elastic Net signature’. In particular, 
age at diagnosis (linear: hazard ratio [HR] = 1.16, quad-
ratic term: HR = 1.17) and NT-pro-BNP (linear term: 
HR = 1.19) were the strongest   predictors of an  unfa-
vorable clinical course, whereas CI (linear: HR = 0.843, 
quadratic term: 0.95) and SMWD (linear: 0.902, quad-
ratic term: 0.905) were linked to better overall survival 
(Fig. 2A).

The Elastic Net signature displayed good survival pre-
diction accuracy [29, 30] in the training IBK (C = 0.82, 
R2 = 0.65, IBS = 0.098) and the test LZ/W collective 
(C = 0.77, R2 = 0.52, IBS = 0.11) (Supplementary Table 
S4). Accordingly, the linear predictor tertiles of the Elas-
tic Net signature were associated with a low, intermediate 

Table 1 Characteristics of the Innsbruck (IBK) and Linz/Vienna (LZ/W) study cohorts. Numeric variables are presented as medians with 
interquartile ranges (IQR) and ranges. Categorical variables are presented as percentages and counts within the complete observation 
set

a WHO class: WHO functional class; SMWD: six-minute walking distance; mPAP: mean pulmonary arterial pressure; PVR: pulmonary vascular resistance; OS: overall 
survival
b Numeric variables: Mann–Whitney U test with r effect size statistic; categorical variables: χ2 test with Cramer V effect size statistic; survival: log-rank test

Variablea IBK LZ/W Significanceb Effect  sizeb

Participants, n 100 83

Age, years 66 [IQR: 53—71]
19—84

70 [IQR: 54—74]
23—82

ns (p = 0.36) r = 0.093

Sex female: 64% (64)
male: 36% (36)

female: 66% (55)
male: 34% (28)

ns (p = 0.94) V = 0.024

Anemia 19% (19) 17% (14) ns (p = 0.94) V = 0.028

Renal insufficiency 35% (35) 18% (15) p = 0.043 V = 0.19

Percardial effusion 16% (16) 3.6% (3) p = 0.04 V = 0.2

WHO class I/II: 39% (39)
III/IV: 61% (61)

I/II: 53% (44)
III/IV: 47% (39)

ns (p = 0.17) V = 0.14

SMWD, m 320 [IQR: 200—400]
50—610

350 [IQR: 270—440]
50—620

ns (p = 0.11) r = 0.15

mPAP, mmHg 40 [IQR: 30—50]
26—120

39 [IQR: 31—49]
18—67

ns (p = 0.91) r = 0.024

PVR, Wood 10 [IQR: 6.7—17]
3.3—43

5 [IQR: 3.5—7.8]
1.4—20

p < 0.001 r = 0.54

5‑year mortality 21% (21) 13% (11) ns (p = 0.38) V = 0.1

OS, months 70 [IQR: 46—110]
2—230

63 [IQR: 32—110]
11—170

ns (p = 0.51)
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Fig. 2 Multi‑parameter modeling of PAH survival with Elastic Net Cox regression. The Elastic Net multi‑parameter Cox regression model with the set 
of 19 (Supplementary Table S1) independent variables and overall survival as a response was developed in the training Innsbruck cohort. Numeric 
independent variables were median centered and their first and second order terms included in the model. Numbers of complete observations 
and mortality is indicated in B. A Non‑zero Elastic Net model coefficients (Elastic Net signature) represented as hazard ratios (HR). Plot points are 
labeled with their HR values. B Association of overall survival with the Elastic Net model linear prediction score in the training IBK and test Linz/
Vienna (LZ/W) cohort was assessed by Kaplan–Meier analysis. Significance of the survival differences in the study participants stratified by the 
linear predictor score tertiles (T1: 0—33, T2: 34—66, T3: 66—100 percentile) was determined by log‑rank test adjusted for multiple testing with 
Benjamini–Hochberg method. P values are shown in the plots, numbers of complete observations and mortality are indicated in the plot captions
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and high risk of overall mortality in the Kaplan–Meier 
analysis in both cohorts indicating proper model calibra-
tion (Fig. 2B).

Prediction of overall survival by the Elastic Net signature 
and established PAH risk assessment tools
The Elastic Net signature values correlated significantly 
with risk class assignment by mRASP, COMPERA and 
SPAHR, and a number of risk factors in the FPHR mod-
els. However, the strength of correlation of the Elastic 
Net signature with other tools (Spearman’s ρ, IBK: 0.57 
– 0.7, LZ/W: 0.7 – 0.79) tended to be lower than the cor-
relation of the established risk tools with each other (IBK: 
0.61 – 0.9, LZ/W: 0.68 – 0.9) (Supplementary Figure S2). 
This suggests that the Elastic Net signature may provide 
better risk estimates for PAH individuals with inadequate 
survival prediction by other tools.

To test for that, we compared predictive performance 
of the newly developed Elastic Net signature with the 
established risk assessment tools and an ensemble of 
the established risk scales developed with the Ridge Cox 
technique [25, 26](Supplementary Figure S4). In such 
comparison, the Elastic Net signature displayed a better 

prediction accuracy gauged by C-index, IBS and R2 than 
the best performing comparator risk scales. Furthermore, 
although the performance of the ensemble model and 
the Elastic Net signature in the IBK cohort was compa-
rable, the ensemble of established risk scales performed 
substantially worse in the LZ/W collective (Fig.  3, Sup-
plementary Table S4).

Identification of PAH risk phenotypes by clustering
Next, we investigated if the Elastic Net signature vari-
ables may be applied for definition of clinically relevant 
subsets of PAH. To this end, we assigned participants of 
the training IBK cohort  to two clusters defined by the 
PAM algorithm with cosine distance [31, 32] in respect 
to age, CI, NT-pro-BNP, PVR, RAA, RDW and SMWD. 
The clustering algorithm of choice displayed the supe-
rior reproducibility in tenfold cross-validation [34] 
(accuracy = 0.97) and high explanatory value (‘explained’ 
variance fraction = 0.56) as compared with several other 
procedures such as hierarchical or k-means algorithm. 
The two cluster solution was also optimal in terms of 
explanatory value and reproducibility as tested for PAM/
cosine distance clustering structures with varying cluster 

Fig. 3 Performance of PAH risk assessment tools. The Elastic Net signature was developed as presented in Fig. 2. The ensemble of the established 
risk assessment tools (FPHR 3p: French Pulmonary Hypertension Registry 3 parameter score, FPHR 4p: French Pulmonary Hypertension Registry 4 
parameter score, COMPERA: Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension score, mRASP: modified 
Risk Assessment Score of PAH) was developed by Ridge Cox regression as presented in Supplementary Figure S3. Predictive performance of the 
Elastic Net signature, ensemble and single PAH risk scores at predicting overall survival was assessed by concordance index (C‑index) and integrated 
Brier score (IBS). C‑indexes and IBS for the risk assessment tools in the Innsbruck (IBK) and Linz/Vienna (LZ/W) cohorts are displayed in scatter plots, 
point size and color codes for R2
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Fig. 4 Clustering of the study participants. Clustering of the training Innsbruck (IBK) cohort participants in respect to the survival‑associated factors 
identified by Elastic Net modeling (Fig. 2) was investigated by PAM (partition around medoids) algorithm with cosine distance. Numeric clustering 
features were median centered prior to the clustering. Cluster assignment in the training Linz/Vienna cohort (LZ/W) was done by an inverse 
distance weighted 7‑nearest neighbor classifier. Numbers of individuals assigned to the PAH clusters are presented in the plot captions or legends. 
A PAH cluster assignment overlaid on the 2‑dimensional cosine‑distance UMAP (Uniform Manifold Approximation and Projection for Dimension 
Reduction) layout plots. Percentages of variance associated with the components are indicated in the plot axes. B Differences in the clustering 
features between the PAH clusters were assessed by Mann–Whitney test corrected for multiple testing with Benjamini–Hochberg method. 
Normalized, median‑centered values of the clustering factors are shown in violin plots. Points represent single observations. P values are indicated 
in the Y axes. CI: cardiac index; NT‑pro‑BNP: N terminal pro brain natriuretic peptide; RDW: red blood cell distribution width; PVR: pulmonary vascular 
resistance; RAA: right atrial area; SMWD: six minute walking distance
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numbers. NT-pro-BNP, CI and RAA were found to be 
the most influential clustering factors (Supplementary 
Figures S4 – S5). The cluster assignment in the test LZ/W 
cohort was accomplished by a 7-nearest neighbors classi-
fier (Fig. 4A). In both study collectives, the smaller PAH 
cluster #1 (IBK: 46%, LZ/W: 42% participants) encom-
passed significantly younger participants with better 
cardiac function reflected by a higher CI, lower RAA 
and lower blood NT-pro-BNP levels than cluster #2 par-
ticipants. Furthermore, cluster #1 participants had lower 
PVR, lower RDW and superior SMWD in comparison 
with PAH cluster #2 (Fig.  4B). Additionally, mean pul-
monary (mPAP) and right atrial (mRAP) pressure were 
significantly higher in PAH cluster #2 than in cluster #1 
participants in both the IBK and LZ/W cohorts (Supple-
mentary Figure S6, Supplementary Tables S4 – S5).

Finally, in line with the poorer physical performance 
and higher age, PAH cluster #2 demonstrated signifi-
cantly worse risk profile composition with a higher num-
ber of risk factors in the FPHR model and more patients 
assigned to intermediate and high-risk strata by the 
mRASP, COMPERA and SPAHR tools. Consequently, 
overall survival in PAH cluster #2 was significantly 
shorter than in PAH cluster #1 (Fig.  5, Supplementary 
Figure S6, Supplementary Tables S5 – S6).

Discussion
In PAH, standardized risk scores are used to evaluate  the 
risk of mortality at initial presentation of the disease, and 
further to guide and adjust therapy upon a follow-up risk 
re-assessment and definition of treatment goals (e. g. low-
risk status) [5]. Consequently, accurate risk assessment is 
key to the successful PAH management and various risk 
assessment strategies have been proposed [18–20]. While 
some approaches favor simple scores eligible for repetitive 
clinical evaluation, others employ numerous and some-
times not easily available parameter sets for high prediction 
accuracy [9]. Interestingly, currently available risk scores 
are mainly based on expert opinion and traditional hypoth-
esis-driven statistical tools such as logistic regression [9].

In this proof of concept study, we demonstrate the use-
fulness of supervised multi-parameter Elastic Net sur-
vival modeling [25, 26] and unsupervised PAM clustering 
[32] for search of novel biomarker combinations and 

subsets of PAH patients, which may improve PAH sur-
vival prediction. As PAH is a rare disease, patients from 
three Austrian PAH centers were included in our study. 
This design enabled us for  an external validation of the 
modeling and clustering results. Our findings corrobo-
rate previous studies, reporting high accuracy of risk pre-
diction and informative phenotyping of PAH patients by 
machine learning and clustering algorithms [15, 36, 37].

By Elastic Net regression, we generated a highly accu-
rate and reproducible model, which outcompeted sin-
gle demographic, biochemical and functional factors, 
such as the widely used COMPERA, SPAHR, mRASP 
and FPHR models [5, 8, 13, 21, 22] as well as the ensem-
ble model combining those popular risk scales [26]. The 
Elastic Net signature comprises well described risk factors 
of overall PAH mortality such as NT-pro-BNP, age, but 
also impaired functional parameters, including a reduced 
six-minute walking distance, as well as impaired hemo-
dynamics, such as poor cardiac output and high pulmo-
nary vascular resistance. However, those parameters are 
not consistently included in established risk scores [9, 15]. 
Most prominently, advanced age, which was found to be 
a strong unmodifiable mortality predictor in the analyzed 
collectives both in the uni- and multi-variable setting, 
is not part of most risk assessment schemes including 
COMPERA, SPAHR, mRASP and FPHR. Another easily 
accessible parameter, RDW, was associated with poorer 
survival in Elastic Net modeling, which underscores the 
clinically relevant link between iron turnover, inflamma-
tion, oxidative stress, erythropoiesis and PAH progression 
[38–41]. Of note, although the correlation of RDW and 
PAH mortality has been reported before [42], this risk fac-
tor is not routinely determined by automated blood count 
systems and has not been prospectively validated yet.

Our clustering scheme utilizing Elastic Net signature 
variables reproduces previously published phenotypes 
of typical and atypical PAH and demonstrates significant 
differences in the long-term follow-up of these patients 
[14]. In detail, PAH cluster #2 encompassed mainly the 
elderly and, presumably, comorbid individuals with a 
shorter overall survival as compared to typical PAH 
patients preferentially assigned to cluster #1.

Our study has some limitations. First, as PAH is a rare 
condition, our study followed a multi-center retrospective 

(See figure on next page.)
Fig. 5 Risk assessment and survival differences in the PAH clusters. Risk assessment strata distribution and overall survival was compared between 
the study participant clusters with and log‑rank test, respectively. P values were adjusted for multiple testing with Benjamini–Hochberg method. 
Numbers of individuals assigned to the clusters are presented in the Y axes or in the plot legends. A – E Risk assessment strata frequencies in the 
PAH clusters presented in stack plots. All differences were significant with p < 0.001. F Differences in overall survival in the PAH clusters visualized 
in Kaplan–Meier plots. P values are indicated in the plots. Numbers of complete observations and deaths are shown in the plot captions. FPHR 
3p: French Pulmonary Hypertension Registry 3 parameter score, FPHR 4p: French Pulmonary Hypertension Registry 4 parameter score, COMPERA: 
Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension score, mRASP: modified Risk Assessment Score of PAH; 
int.: intermediate
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design, which yielded only moderate size cohorts. Hence, 
the Elastic Net signature and PAH clustering scheme devel-
oped and tested in the IBK and LZ/W cohort need to be 
validated in larger prospective studies. A larger cohort size 

and algorithms robustly handling interactions between 
explanatory variables such as neuronal networks or tree 
models [36, 37] may improve the survival model accuracy 
even further. Second, although we screened a relatively large 

Fig. 5 (See legend on previous page.)
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set of 19 explanatory factors compared with previous PAH 
risk analyses, we were not able to investigate some biomark-
ers of potential clinical relevance. For instance, diffusion 
capacity of carbon monoxide [15], was only available in the 
IBK cohort, and thus could not be included in the externally 
validated model. Additionally, we were not able to investi-
gate new biomarkers, such as proteome profiling, as these 
parameters were not available for the presented cohorts 
[16, 17]. Although implementation of such new param-
eters may improve survival prediction or identify subsets 
of PAH patients at higher risk, their usefulness is limited by 
costs, need for worldwide standardization and scarce medi-
cal resources. Thus, we herein focused on broadly available 
candidate risk factors, rather than entirely new biomarkers. 
Still, our Elastic Net signature may be easily expanded and 
adapted toadditional explanatory variables, thus providing a 
fast-track analysis tool for potential new biomarker sets in 
comparison to currently available risk models. Finally, our 
analysis included individuals at PAH diagnosis. Dynamics 
of the PAH clusters and modification of the risk predicted 
by Elastic Net modeling at follow-up and during treatment 
needs to be addressed by future research.

Conclusions
We herein provide proof of principle, that supervised 
and unsupervised learning algorithms may improve risk 
assessment, and identify  clinically relevant subsets of 
patients, hence contributing to a better understanding of 
biologically distinct PAH phenotypes (Fig.  6). This may 
pave the way to effective individualized risk management 
and treatment in PAH.
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