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Abstract 

Background The detection of epidermal growth factor receptor (EGFR) mutations in patients with non-small cell 
lung cancer is critical for tyrosine kinase inhibitor therapy. EGFR detection requires tissue samples, which are difficult 
to obtain in some patients, costing them the opportunity for further treatment. To realize EGFR mutation prediction 
without molecular detection, we aimed to build a high-accuracy deep learning model with only haematoxylin and 
eosin (H&E)-stained slides.

Methods We collected 326 H&E-stained non-small cell lung cancer slides from Beijing Chest Hospital, China, and 
used 226 slides (88 with EGFR mutations) for model training. The remaining 100 images (50 with EGFR mutations) 
were used for testing. We trained a convolutional neural network based on ResNet-50 to classify EGFR mutation status 
on the slide level.

Results The sensitivity and specificity of the model were 76% and 74%, respectively, with an area under the curve of 
0.82. When applying the double-threshold approach, 33% of the patients could be predicted by the deep learning 
model as EGFR positive or negative with a sensitivity and specificity of 100.0% and 87.5%. The remaining 67% of the 
patients got an uncertain result and will be recommenced to perform further examination. By incorporating adeno-
carcinoma subtype information, we achieved 100% sensitivity in predicting EGFR mutations in 37.3% of adenocarci-
noma patients.

Conclusions Our study demonstrates the potential of a deep learning-based EGFR mutation prediction model for 
rapid and cost-effective pre-screening. It could serve as a high-accuracy complement to current molecular detection 
methods and provide treatment opportunities for non-small cell lung cancer patients from whom limited samples are 
available.
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Background
According to GLOBOCAN’s Global Cancer Statistics in 
2018, lung cancer is the leading cause of cancer morbid-
ity and mortality worldwide [1], and 85%-90% of them 
are non-small cell lung cancers (NSCLCs). Targeted 
therapy is an effective treatment method for NSCLC [2]. 
It requires the patient’s gene mutation status, such as the 
presence of an epidermal growth factor receptor (EGFR) 
mutation, to be determined by performing polymer-
ase chain reaction (PCR) or next-generation sequencing 
(NGS). Due to sample limits, some patients cannot be 
tested and thus are not able to receive targeted therapy.

Developments in artificial intelligence have revealed 
the applicability of deep learning in various fields, includ-
ing image classification and segmentation [3]. In recent 
years, researchers have successfully developed several 
medical diagnostic systems [4–9]. In the field of his-
topathological diagnosis, researchers have achieved 
promising results for malignant tumour detection in 
whole-slide images (WSIs) of lung [10], gastric [11], 
colon [12], prostate [13–18], and lymph node tissues 
[19–22], among others.

Unlike tumour detection, for which regions of interest 
can be annotated, EGFR mutation prediction has only 
slide-level information, presenting a weakly supervised 
learning scenario [23–25]. In a recent study, a patch-level 
EGFR mutation prediction model was developed for ade-
nocarcinoma (ADC) with a high patch-level area under 
the curve (AUC) on a test set containing frozen formalin-
fixed paraffin-embedded tissues and biopsies [10].

To further boost the clinical significance of EGFR 
mutation prediction for both ADC and squamous cell 
carcinomas (SCC), we aimed to develop a deep learning 
model with high accuracy. The model is intended to pro-
vide an accurate and cost-effective alternative to molec-
ular detection methods, particularly for patients with 
limited tissue samples. To ensure the efficacy of the deep 
learning model with slide-level information, we designed 
it to concentrate on cancerous area at the pixel level 
using the NSCLC diagnostic model proposed in our pre-
vious work [26]. Moreover, we proposed a double-thresh-
old approach to improve the applicability of the model by 
categorizing NSCLC cases into EGFR-positive, EGFR-
negative, and EGFR-uncertain groups. Meanwhile, by 
incorporating the ADC subtype information, the model 
achieved superior sensitivity and specificity.

Methods
Tissue specimens
A total of 326 haematoxylin and eosin (H&E)-stained 
slides, including 37 lung SCCs and 289 ADCs, were col-
lected from Beijing Chest Hospital, China. The samples 
contained 121 biopsies and 205 surgical sections (from 

lobectomy, segmental, and wedge resection surgeries). 
Traditional EGFR mutation status diagnosis was made 
by pathologists according to WHO guidelines using PCR 
or NGS, resulting in 138 positive and 188 negative cases, 
as the gold standard. The EGFR mutations considered in 
this study included L858R, 19Del, G719X, and L861Q.

Deep learning model
In a previous work, we developed a diagnostic model 
based on DeepLab v3 for NSCLC with a slide-level AUC 
of 0.988. Taking a WSI as the input, the deep learning 
model automatically outputs the NSCLC areas at the 
pixel level.

Unlike the supervised learning cancer detection 
model, in which pixel-level annotations of the cancer-
ous areas were known in the training stage, the EGFR 
mutation prediction displayed a weakly supervised sce-
nario. Specifically, the only supervised information avail-
able consisted of slide-level labels (positive or negative). 
Regarding pathology, the positive cases were WSIs with 
some regions containing an EGFR mutation but with the 
exact location unknown. The only prior knowledge avail-
able for the model was that the EGFR-mutant regions 
were malignant tumours.

We randomly selected 226 NSCLC WSIs (positive: 88, 
negative: 138; ADC: 210, SCC: 16) as the training set and 
divided them into patches with 320×320 pixels at 200× . 
As illustrated in Fig. 1, we first input the patches into the 
NSCLC diagnosis model and identified the pixel-level 
cancerous areas. Next, in order to train the EGFR muta-
tion prediction model, we assigned the slide-level label 
related to EGFR mutation status directly to the patches 
derived from the corresponding slide. In practice, to 
make the model concentrate on the pixel-level cancer-
ous area, we selected all the patches containing cancers 
and assigned them with slide-level mutation status labels. 
The patches were then input into the classification model 
(ResNet-50) in a supervised manner. The deep learn-
ing model was trained from scratch. Data augmentation, 
which included random rotation, gaussian and motion 
blurs, color jittering in brightness (0.0-0.2), saturation 
(0.0-0.25), contrast (0.0-0.2), and hue (0.0-0.04), was per-
formed during training.

The ResNet-50 model was trained and evaluated on an 
Ubuntu server with four Nvidia GTX1080Ti GPUs using 
TensorFlow. The Adam optimizer with a fixed learning 
rate of 0.001 was used. The batch size was set to 80 (20 
per GPU), and training was terminated after 20 epochs.

The test set included 100 NSCLC slides (positive: 50, 
negative: 50; ADC: 87, SCC: 13). Patch-level EGFR muta-
tion probability heatmaps were derived using the trained 
classification model. The slide-level probability was 
obtained by averaging all the patch-level predictions.
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Double‑threshold approach
If a medical case is not readily categorized as positive or 
negative during the diagnostic process, pathologists can 
actively designate the case as uncertain. Therefore, when 
making decisions, the human brain specifically identifies 
a gray area for uncertain things.

The deep learning model in this study provides a prob-
abilistic prediction. The closer the result is to 1, the more 
the model leans towards a positive outcome, and vice 
versa for a negative outcome. In previous research on 
deep learning, a threshold value was given. If the prob-
ability was greater than the threshold, the prediction 
was positive, and if the probability was lower, the predic-
tion was negative. This is called a single-threshold strat-
egy. This seemingly strict strategy does not differentiate 
between samples of varying difficulty.

We proposed a double-threshold strategy that differs 
from the traditional single-threshold strategy. In our 
approach, we defined two thresholds: M and m ( M > m ). 
Cases whose probabilities were greater than M or less 
than m were treated as positive or negative samples. 
Cases with probabilities between M and m could be 
further diagnosed using PCR or NGS. When the dou-
ble-threshold strategy was applied, the sensitivity and 
specificity were derived using near-certain cases, i.e., 
cases with a probability greater than M or less than m. 
Two thresholds were chosen on the premise of near 100% 
sensitivity and near 90% specificity. The double-threshold 
strategy not only simulates the uncertain situation that 
people could not distinguish or recognize naturally but 
also stems from our insights into the application of artifi-
cial intelligence.

Evaluation metrics
We mainly used sensitivity, specificity, and accuracy to 
evaluate the model performance. These metrics were 
defined as follows: Sensitivity = TP / (TP + FN); Speci-
ficity = TN / (TN + FP); Accuracy = (TP + TN) / (TP + 
FN + FP + TN); where TP, TN, FP, and TN represent the 
true positive, true negative, false positive, and false nega-
tive, respectively.

We also adopted the following metrics in this study: 
Positive Rate = (TP + FP) / (TP + FN + FP + TN); Posi-
tive Predict Value (PPV) = TP / (TP + FP); Negative Pre-
dict Value (NPV) = TN / (TN + FN); False Negative Rate 
= 1 - Sensitivity; False Positive Rate=1 - Specificity.

The receiver operating characteristic (ROC) curve was 
plotted using the matplotlib package in Python, in which 
the abscissa was 1 - Specificity and the ordinate was Sen-
sitivity. The AUC was defined as the area under the ROC 
curve; a large AUC meant improved predictive accuracy. 
In addition, we adopted χ2 analysis to measure whether 
there was a significant difference for a given hypothe-
sis. We created Python scripts to calculate χ2 and the P 
value. If P < 0.05 , a significant statistical difference was 
confirmed.

Results
Model performance
The detailed model performance is described in detail 
in Table  1. Figure  2a gives the slide-level EGFR muta-
tion prediction ROC curve on the training set. Figure 2b 
shows the ROC curve on the test set with a slide-level 
AUC of 0.82. By fixing the threshold as 0.36, we derived 
the optimal evaluation metrics of 76% sensitivity and 74% 

Fig. 1 The framework of this study
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specificity. A threshold of 0.36 indicated that all WSIs 
whose prediction probabilities were greater than 0.36 
were considered to contain EGFR mutations.

Figure  2c shows the predicted results from a surgical 
ADC and a biopsy lung SCC. The left, middle and right 
subfigures are WSIs, cancer detection, and EGFR predic-
tion heatmaps, respectively. The heatmaps are intuitive 
representations with which pathologists can accurately 
locate the specific regions correlated to EGFR mutation. 
The main subtype of the ADC case was lepidic, with the 
infiltrating area containing a few acinar tumour cells. The 
heatmap in the lepidic area is dark red, indicating a high 
EGFR mutation rate. However, most of the infiltrating 
foci were fibrotic stroma with only a few acinar adeno-
carcinoma cells, and the EGFR mutation possibility was 
low (heatmap in blue). The SCC biopsy sample revealed a 
true negative prediction.

Double‑threshold approach
For the entire NSCLC test set, we set the double thresh-
olds to 0.50 and 0.16 and achieved a sensitivity of 100.0% 
and a specificity of 87.5% (as plotted in Fig. 3).

This means that for cases with values higher than 
0.50, the false-positive rate was 0, and for cases with val-
ues lower than 0.16, the false-negative rate was 12.5%. 
After stratification, 67% of the cases lay between the 
two thresholds, which needed to be confirmed by PCR/
NGS. That is, the NSCLC EGFR mutation status could be 
determined by H&E-stained slides with high accuracy in 
33% of cases.

Subtype information
In accordance with WHO guidelines [27], we further 
divided the ADC test set into five main subtypes: lepidic, 
papillary, micropapillary, acinar, and solid. A total of 83 
cases of ADC were included; 5 cases were excluded (the 
dominant subtype of 3 cases could not be determined, 
and 2 cases were invasive mucinous adenocarcinoma, 
which is a special subtype of ADC).

By providing the ADC subtype information, the model 
performance further improved. The performance on dif-
ferent subtypes of ADC is shown in Table 2. In terms of 

the χ2 test, it was evident that the performance of the 
model on papillary subtypes was higher than on nonpap-
illary ( P < 0.05 ) subtypes; the performance was lower on 
solid subtypes than on nonsolid ( P < 0.01 ) subtypes in 
terms of EGFR-positive rates.

Because of the clinical value of every subtype, this study 
introduced subtypes into the EGFR “double-threshold” 
screening model.

For the purpose of 100% sensitivity, as plotted in Fig. 4, 
we set double thresholds for the acinar (0.161 and 0.499), 
papillary (0.217 and 0.386), micropapillary (0.216 and 
0.355) and solid types (0.104 and 0.414). Since there was 
only one case of the adherent type, we excluded it.

The sum of positive cases (above the upper threshold) 
and negative cases (below the lower threshold) was the 
“screening number”, and the ratio of the screening num-
ber to original number was the “screening rate”.

The model performance is shown in detail in Table 3. 
The screening rates were 77.8%, 50%, 17.9% and 0, 
respectively. The screening rate of ADC (including adher-
ent type) was 37.3%. This means that 37.3% of patients 
with ADC can be predicted with high accuracy. This is 
especially helpful for patients with advanced ADC who 
do not have sufficient tissue samples.

Prediction visualization
Figure 5 shows a false negative case of the EGFR muta-
tion prediction. H&E-staining showed that most of this 
case was solid type, and a small part in left area contained 
lepidic and papillary types.

The dark red in the heatmap is mainly located on the 
left side in areas of the adherent type and papillary type; 
the solid-type area on the right is negative. Because of 
the small area of the positive region, the average result of 
the whole section was lower than the positive threshold, 
which led to a false negative.

Although this case was judged as a false negative, this 
error may not affect clinical decisions. Because the heat-
map is intuitive, if there is heterogeneity, the pathologist 
can make the corresponding judgement on the basis of 
pathological knowledge and pay sufficient attention to 
that case.

Table 1 Test data distribution and model performance

Number TP FN FP TN Positive Rate Sensitivity Specificity PPV NPV Accurracy

Subtype ADC 88 38 11 12 27 56.8% 77.6% 69.2% 76.0% 71.1% 73.9%

SCC 12 0 1 1 10 8.3% 0.0% 90.9% 0.0% 90.9% 83.3%

Specimen Surgical 70 31 7 7 25 54.3% 81.6% 78.1% 81.6% 78.1% 80.0

Biopsy 30 7 5 6 12 43.3% 58.3% 66.7% 53.8% 70.6% 63.3%

Total 100 38 12 13 37 51.0% 76.0% 74.0% 74.5% 75.5% 75.0%
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Discussion
In this research, we built a deep learning model for 
EGFR mutation prediction with an AUC of 0.82 

(sensitivity: 76%, specificity: 74%). Using the double-
threshold approach, patients with NSCLC could be clas-
sified as EGFR positive, EGFR negative, or unclear. The 

Fig. 2 Model performance. a ROC curve of the model performance on the training set. b ROC curve of the model performance on the test set. 
c Two examples for the WSI, cancer prediction heatmap, and EGFR mutation prediction heatmap. The upper case is an ADC with the main subtype 
as lepidic, and infiltrating area with a few tumor cells as acinar. The EGFR mutation prediction well reflected this feature. The lower case is an SCC 
biopsy with a true negative prediction
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EGFR mutation probabilities provided by the deep learn-
ing model could provide valuable information for further 
diagnosis and treatment.

The test set comprised 70 surgical specimens and 30 
biopsies. We found that the sensitivity, specificity, and 
accuracy of the prediction model for surgical specimens 
were better than those for biopsies (81.6% vs. 58.3%, 
78.7% vs. 66.7%, and 80.0% vs. 63.3%, respectively). This 
difference was mainly due to the small sample size of 
biopsies, leading to a small set of training data for the 
prediction model. In clinical workflows, EGFR muta-
tion prediction needs to be performed on biopsies, 
since it is impossible to perform surgical operations for 
patients with advanced NSCLC. In future research, we 
will increase the amount of training data and improve 
the prediction accuracy for biopsy samples.

Among the 12 cases of SCC, 10 were correctly pre-
dicted (accuracy: 83.33%, specificity: 90.9%, NPV: 
90.9%). For the two misclassified cases, we reviewed 

the H&E-stained slides and discovered several char-
acteristics. For the false positive, the SCC was similar 
in structure to the papillary type (small cancer nests 
with obvious vascular axes). For the false negative, the 
tumour cell mass was small and damaged.

In addition to the EGFR mutation status of ADC [10], 
we investigated different types of lung cancer (ADC 
and SCC) and five subtypes of ADC. For 88 ADC cases, 
the sensitivity, specificity, PPV, and NPV of the predic-
tion model were 77.6%, 69.2%, 76.0%, 71.1%, and 73.9%, 
respectively.

With the information on ADC subtypes, we were 
able to make improved accurate and detailed predic-
tions. The sensitivity of the EGFR prediction model for 
ADC increased from 77.6% to 79.2%, and the specificity 
increased from 69.2% to 71.4%.

Current artificial intelligence systems can assist 
pathologists in diagnosing routine samples more effi-
ciently, but they lack the ability to handle challenging 

Fig. 3 Dot chart of the EGFR mutation predictions for all the cases

Table 2 Performance of our model on different subtypes of ADC. The χ2 is computed by comparing with other subtypes of ADC

Subtype Number TP FN FP TN Positive Rate Sensitivity Specificity Accurracy χ
2 P‑value

Lepidic 1 1 0 0 0 100% 100% - 100% - -

Papillary 27 21 3 0 3 77.8% 87.5% 100% 88.9% 6.53 0.01

Micropapillary 8 4 3 0 1 50% 57.1% 100 62.5% 0.223 0.64

Acinar 28 11 3 7 7 64.3% 78.6% 50% 64.3% 0.722 0.40

Solid 19 1 1 3 14 21.1% 50% 82.4% 78.9% 13.67 0.00

Total 83 38 10 10 25 57.8% 79.2% 71.4% 75.9% - -
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cases. For these samples, it is more meaningful to sub-
mit them to the pathologist for a definitive diagnosis. 
Artificial intelligence serves pathologists rather than 
replacing them. We should focus on the combined 

effectiveness of humans and artificial intelligence, 
rather than solely on human improvement.

We applied the double-threshold to the entire 
NSCLC test set and each subtype of ADC. For the 

Fig. 4 Dot charts of model predictions for cases with different ADC subtypes

Fig. 5 ADC case with small mutational regions. In the H&E-stained slide, we find most of the ADC to be solid; only the left side area has lepidic and 
papillary subtypes. The dark red regions in the predicted heatmap appear to be lepidic and papillary. Due to the low proportion, the probability is 
0.35, lower than the threshold to be positive
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entire NSCLC test set, we set the double thresholds to 
0.50 and 0.16 and achieved a sensitivity of 100.0% and 
a specificity of 87.5%. After stratification, the NSCLC 
EGFR mutation status could be determined from 
H&E-stained slides with high accuracy in 33% of cases. 
Sixty seven percent of the cases were between the two 
thresholds and needed to be confirmed by PCR/NGS.

For subtypes of ADC, the double-threshold filtered 
out 37.3% of the samples with 100% sensitivity. For 
the cases between the two thresholds, we reviewed 
the H&E-stained slides and did not find obvious visual 
characteristics.

This study is based on the lung cancer recognition 
model we established earlier, which used ADC, SCC, 
small cell carcinoma and normal lung tissue as labels. 
The lung cancer detection model could not identify 
subtypes of ADC. In this study, the dominant subtypes 
of ADC were determined by pathologists, which intro-
duced a certain degree of subjectivity. In future work, 
we aim to build models using subtypes as additional 
training information.

One important limitation of this study pertains to 
the small sample size employed for training and testing 
the deep learning model. The dataset used in this study 
consisted of 326 participants, which may limit the gen-
eralizability of the deep learning model. In future work, 
we will address this limitation by conducting studies 
with a larger sample size obtained from multiple medi-
cal centers.

Conclusion
In summary, the proposed EGFR mutation predic-
tion model shows great promise for clinical application 
under circumstances where the sample is insufficient or 
the patient’s medical condition is poor. In pathological 
diagnosis, subjectivity and inconsistency exist in classify-
ing ADC and estimating the cancerous area from WSIs. 
In future work, we will establish a combined frame-
work to integrate diagnosis, quantitative analysis, and 
EGFR mutation prediction into one complete pipeline to 
enhance the model performance and clinical applicability.
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