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Abstract 

Background  Asthma exacerbations reduce the patient’s quality of life and are also responsible for significant dis-
ease burdens and economic costs. Machine learning (ML)-based prediction models have been increasingly devel-
oped to predict asthma exacerbations in recent years. This systematic review and meta-analysis aimed to identify 
the prediction performance of ML-based prediction models for asthma exacerbations and address the uncertainty 
of whether modern ML methods could become an alternative option to predict asthma exacerbations.

Methods  PubMed, Cochrane Library, EMBASE, and Web of Science were searched for studies published 
up to December 15, 2022. Studies that applied ML methods to develop prediction models for asthma exacerbations 
among asthmatic patients older than five years and were published in English were eligible. The prediction model risk 
of bias assessment tool (PROBAST) was utilized to estimate the risk of bias and the applicability of included studies. 
Stata software (version 15.0) was used for the random effects meta-analysis of performance measures. Subgroup 
analyses stratified by ML methods, sample size, age groups, and outcome definitions were conducted.

Results  Eleven studies, including 23 prediction models, were identified. Most of the studies were published in recent 
three years. Logistic regression, boosting, and random forest were the most used ML methods. The most common 
important predictors were systemic steroid use, short-acting beta2-agonists, emergency department visit, age, 
and exacerbation history. The overall pooled area under the curve of the receiver operating characteristics (AUROC) 
of 11 studies (23 prediction models) was 0.80 (95% CI 0.77–0.83). Subgroup analysis based on different ML mod-
els showed that boosting method achieved the best performance, with an overall pooled AUROC of 0.84 (95% CI 
0.81–0.87).

Conclusion  This study identified that ML was the potential tool to achieve great performance in predicting asthma 
exacerbations. However, the methodology within these models was heterogeneous. Future studies should focus 
on improving the generalization ability and practicability, thus driving the application of these models in clinical 
practice.
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Background
Asthma is a chronic heterogeneous disease affecting 
approximately 241 million people worldwide [1]. Despite 
many effective medicines available, a proportion of asth-
matic patients have uncontrolled asthma and asthma 
exacerbations [2, 3]. Asthma exacerbations are charac-
terized by progressive deterioration of asthma-related 
symptoms and lung function, resulting in a poor qual-
ity of life [4, 5]. Severe asthma exacerbations are also 
responsible for decreased lung function, hospitalization, 
and even death, thus leading to disease and economic 
burdens [6, 7]. Early recognition and timely intervention 
are the best strategies to prevent severe asthma exacer-
bations. Therefore, identifying patients at high risk of 
asthma exacerbations is crucial.

According to a systematic review including ten predic-
tion models for asthma exacerbations, the best prediction 
performance was achieved by logistic regression (LR) 
with a c-statistic of 0.80 [8]. However, this systematic 
review did not include models based on modern machine 
learning (ML) algorithms, such as random forest (RF), 
neural network (NN), boosting algorithms, and sup-
port vector machine (SVM). ML has become a popular 
method for developing prediction models in the medical 
field due to its ability to process complex, massive health 
data [9]. Many studies developing prediction models for 
asthma exacerbations based on ML methods have been 
published, especially in recent years [10, 11]. However, 
few systematic reviews were conducted to evaluate these 
existing ML models. Therefore, we perform a system-
atic review and meta-analysis to estimate the prediction 
performance of ML-based prediction models for asthma 
exacerbations and identify whether modern ML methods 
could become an alternative option to prediction.

Methods
Search protocol
We conducted this systematic review in accordance with 
Preferred Reporting Items for a Systematic Review and 
Meta-analysis of Diagnostic Test Accuracy Studies (The 
PRISMA-DTA Statement). The protocol of this system-
atic review was registered and published on PROSPERO 
(reference number CRD42022380059).

Search strategy
PubMed, Cochrane Library, EMBASE, and Web of Sci-
ence were searched for relevant literature published from 
the earliest available online date up to December 15, 
2022. Our search strategies used controlled terms and 
free-text terms to search for studies of the ML approach 
and asthma exacerbations. Details of the search strategy 

are given in Additional file 1. We also checked reference 
lists of previous systematic reviews for potentially rel-
evant papers.

Eligibility criteria and study selection
All search records were exported from the four data-
bases and imported to EndNote 20 (Clarivate), a refer-
ence management tool, for compiling and duplication 
checking. After removing the duplications, two reviewers 
(SQ, X and XY, J) independently screened the titles and 
abstracts to select the studies based on inclusion criteria. 
Subsequently, they screened the full texts to select eligi-
ble studies. Any discrepancies were resolved by a third 
reviewer (W, C).

All studies should fulfill the criteria as follows:

a	 Studies must be published in English.
b	 Focused on participants aged five years and older 

with pre-existing asthma diagnoses.
c	 Utilized machine learning algorithms to generate 

prediction models.
d	 Aimed to predict patients who would suffer asthma 

exacerbations in the future.
e	 Evaluated the prediction performance of models on a 

validation dataset.
f	 Provided a clear description of ML methods and 

input features (predictors).
g	 Provided the performance metrics regarding sensi-

tivity and specificity.

We did not limit the type of publication and study 
designs.

Data extraction
Two reviewers (SQ, X and Y, J) independently read the 
full texts of eligible studies and extracted data elements, 
including (1) the paper source, (2) study information, 
(3) prediction models, (4) performance measures, (5) 
population characteristics, and (6) outcomes. Full details 
of data extraction are provided in Additional file  2. We 
defined asthma exacerbations in accordance with an Offi-
cial American Thoracic Society/European Respiratory 
Society (ATS/ERS) Statement [12]. Briefly, severe asthma 
exacerbation should include (1) at least three days of sys-
temic corticosteroid treatment or (2) a hospitalization/
emergency department visit for asthma requiring sys-
temic corticosteroids. Moderate asthma exacerbation 
should include (1) at least two days of symptoms and lung 
function deterioration, requiring increasing bronchodi-
lator use, or (2) visits for asthma not requiring systemic 
corticosteroids intervention. Using available statistics 
in the manuscripts, we manually calculated parameters 
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not reported (e.g., the number of positive cases). We also 
emailed the corresponding author(s) for missing data.

Quality and bias assessment
There are no widely accepted tools for assessing the qual-
ity of machine learning-based research in medical fields. 
In 2019, Wolff et al. [13] developed the prediction model 
risk of bias assessment tool (PROBAST), which could 
assess the risk of bias (ROB) and the applicability of pre-
diction model studies. For ROB assessment, PROBAST 
includes four domains: participants, predictors, out-
comes, and analysis. Each domain contains 2 to 9 signal-
ing questions that facilitate this domain’s ROB assessment 
(low, high, or unclear). The overall ROB assessment for a 
study is “low,” “high,” or “unclear,” based on each domain’s 
ROB classification. The first three domains with review 
questions are also used for applicability judgment (low, 
high, or unclear concern). This paper used the PROBAST 
to assess the ROB and applicability of included studies. 
Two authors (SQ, X and CH, L) independently assessed 
eligible studies, and any disagreements were resolved by 
discussion.

Data analysis
We narratively described these included studies, such 
as distribution of publication year, population charac-
teristics, popular machine learning methods, validation 
methods, and important features. For studies that were 
able to calculate the number of true positive cases, true 
negative cases, false positive cases, and false negative 
cases on the validation dataset, the overall pooled area 
under the curve of the receiver operating characteristics 
(AUROC), sensitivity, specificity, positive likelihood ratio 
(PLR), negative likelihood ratio (NLR), and diagnostic 
odds ratio (DOR) were estimated using random effects 
meta-analysis. I2 was used to describe the percentage of 
the variability in effect estimates due to heterogeneity.

A small sample size causes the risk of overfitting, which 
may lead to poor generalization of prediction models. 
Subgroup analysis was stratified by sample size (< 10000 
participants/ > 10000 participants). In addition, we per-
formed a subgroup analysis of ML methods (LR, boost-
ing, and RF), age groups (children only, children and 
adults, and adults only), and different outcome defini-
tions. Univariate and multivariate random-effects meta-
regression for sample size, ML methods, age groups, 
outcome definitions, and publication year was performed 
to explore the source of heterogeneity. For clarity, we 
referred to factors used for model development as “pre-
dictors” and the factors used for meta-regression at study 
level as “variables”. Sensitivity analyses were conducted 
to examine the robustness of the result by excluding each 
study. Deeks’ funnel plot was applied to test publication 

bias. We conducted all our analyses using Stata software 
(version 15.0). We used the MADIS module for pool-
ing performance measures and the “metareg” macro for 
conducting the meta-regression analysis. The commands 
used in the analysis are provided in Additional file 2.

Results
Study selection
A total of 10434 papers were identified from four data-
bases (PubMed (2013), Cochrane library (193), Web of 
Science (4085), Embase (4083)) (see Additional file  1). 
After excluding 4210 duplicates, we browsed titles and 
abstracts of the remaining 6224 papers resulting in 109 
papers that might be eligible based on the pre-defined 
selection criteria. Then, we screened these papers’ full 
texts and supplementary materials and included 11 
papers for synthesis (Fig. 1). Two studies included partic-
ipants without age limitation, but only a tiny proportion 
of participants in these two studies were aged younger 
than five years old [14, 15].

Study characteristics
The publication year of these papers ranged from 1999 to 
2022, and more than half of them (6/11) were published 
in recent three years. Ten studies were retrospective, and 
the remaining one was prospective. The minimum and 
maximum number of included participants for predic-
tion model development were 94 and 782762, respec-
tively. The proportion of outcome events ranged from 
0.2% to 32.8% (Table 1).

Most studies (9/11) included asthmatic participants 
regardless of asthma severity, control levels, or treatment. 
Only two studies mentioned additional criteria, such as 
participants with mild-moderate asthma [19, 24] and 
stable asthma [24] (see Additional file 3). Prediction win-
dows also varied from several days to 4 years, with seven 
studies setting the prediction window within one year 
(Table 1). For outcome events (see Additional file 3), nine 
studies defined asthma exacerbations as asthma-related 
hospitalization or emergency department visit according 
to the asthma-related diagnosis code [14–18, 21], medi-
cal records [22, 23], or questionnaires [19]. Two studies 
used the definitions in accordance with the ATS/ERS rec-
ommendation [20, 24].

ML algorithms and validation methods
Eleven studies developed a total of 23 ML-based predic-
tion models. The most popular ML algorithm was LR, 
followed by RF, XGBoost, and LGBoost (Fig.  2a). Vali-
dation methods were used in 6 studies, such as cross-
validation [15, 19, 24], bagging [20], and split-sample 
validation [16] (Table 1). For the generalization test, ten 
studies used external validation. One study split a single 



Page 4 of 15Xiong et al. BMC Pulmonary Medicine          (2023) 23:278 

dataset into a training dataset and a test dataset and used 
the latter to assess the generalization ability of prediction 
models. We also included more detailed descriptions of 
the dataset and the validation method in Additional file 4 
for better clarity.

Predictors in ML models
A wide range of predictors was used in these studies, 
such as demographic factors, clinical-related factors, 
and socioeconomic factors. Clinical-related factors 
(n = 11) and demographic factors (n = 7) were used most 
in the final models, followed by social-economic factors 
(n = 3) (see Additional file 5). The number of predictors 
in best prediction models ranged from 1 to 221. Most 
studies that applied LR and classification and regres-
sion trees (CART) to develop prediction models had a 
relatively minor number of predictors. The number of 
predictors in models based on boosting and RF was 
much higher (Table 1). All studies reported the predic-
tors’ contributions or odds ratios (only in LR). Among 
these important predictors, systemic steroids use, short-
acting beta2-agonists, and emergency department visit 
were the most common predictors, followed by age, 

asthma diagnosis number, and exacerbation history 
(Fig. 2b, Additional file 5).

Risk of bias and applicability
The overall quality assessment (ROB and applicability) 
based on PROBAST is shown in Table 1. Additional file 6 
provides judgment details of each study. The overall bias 
of all studies was rated as high risk. For participants, eight 
studies were at high ROB mainly due to retrospective 
design and asthma definition that was based on asthma-
related medicine use and doctors’ diagnosis. The bias 
of predictors mainly results from subjective predictors 
(such as self-report symptoms), auxiliary examinations 
from different medical institutions, and comorbidities. 
These factors were difficult to be defined consistently. 
The definition of asthma exacerbations given by the ATS/
ERS statement is widely accepted [12]. Studies in which 
the outcome was not in accordance with ATS/ERS state-
ment were rated as high risk of bias. All studies had a 
high risk of bias in the “analysis” domain.

For applicability assessment, one study was judged as 
low concerns, and the remains were rated as high con-
cerns. Two studies included asthmatic participants with 

Fig. 1  PRISMA flow diagram describing the selection process of articles
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Fig. 2  a Distribution of machine learning algorithms. b Important features among included studies

Fig. 3  The overall pooled AUROC of machine learning prediction models
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Fig. 4  The overall pooled sensitivity (a) and specificity (b) of machine learning prediction models

Table 2  The comparison of pooled performance measures in subgroups

AUROC sensitivity specificity PLR NLR DOR

Machine learning(n)

  LR (8) 0.77 (0.73–0.81) 0.54 (0.37–0.70) 0.82 (0.72–0.89) 3.06 (2.19–4.28) 0.56 (0.41–0.76) 5.47 (3.35–8.95)

  Boosting (7) 0.84 (0.81–0.87) 0.68 (0.57–0.78) 0.85 (0.77–0.90) 4.44 (3.15–6.27) 0.37 (0.28–0.50) 11.86 (7.80–18.01)

  RF (6) 0.75 (0.71–0.78) 0.67 (0.59–0.73) 0.74 (0.65–0.81) 2.54 (1.82–3.54) 0.45 (0.36–0.57) 5.59 (3.29–9.49)

Sample size (n)

   < 10000 (7) 0.68 (0.64–0.72) 0.51 (0.36–0.65) 0.77 (0.63–0.87) 2.24 (1.61–3.11) 0.64 (0.53–0.77) 3.52 (2.44–5.08)

   > 10000 (16) 0.82 (0.78–0.85) 0.64 (0.56–0.72) 0.83 (0.78–0.87) 3.71 (3.00–4.58) 0.43 (0.35–0.53) 8.62 (6.25–11.89)

Age group(n)

  Children (4) 0.72 (0.67–0.75) 0.59 (0.40–0.76) 0.75 (0.55–0.88) 2.33 (1.54–3.51) 0.55 (0.41–0.74) 4.23 (2.72–6.57)

  Children_adults(6) 0.88 (0.84–0.90) 0.53 (0.37–0.68) 0.89 (0.86–0.92) 5.02 (4.05–6.22) 0.53 (0.38–0.73) 9.49 (5.83–15.44)

  Adults (13) 0.79 (0.75–0.82) 0.65 (0.55–0.74) 0.78 (0.72–0.83) 2.95 (2.32–3.75) 0.45 (0.35–0.57) 6.56 (4.37–9.86)

Outcome(n)

  ED/HP (15) 0.81 (0.77–0.84) 0.60 (0.49–0.70) 0.84 (0.78–0.88) 3.65 (2.86–4.65) 0.48 (0.38–0.61) 7.58 (5.35–10.74)

  AE (8) 0.78 (0.74–0.81) 0.64 (0.52–0.74) 0.77 (0.70–0.84) 2.82 (2.06–3.86) 0.47 (0.35–0.63) 6.01 (3.47–10.41)
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mild to moderate asthma [19, 24], thus might reduce 
the generalizability and applicability. Six studies were 
assessed as having high concerns in the “predictors” 
domain. The applicability would reduce when predic-
tors were challenging to be defined similarly. As for the 
outcome, studies (10/11) would receive a rating of high 

concern if they did not focus on moderate to severe 
asthma exacerbations defined by the ATS/ERS statement.

Meta‑analysis
The discrimination ability of ML-based models was vari-
ous. AUROC was reported in 21 models, the best predic-
tion performance of asthma exacerbations ranged from 

Fig. 5  The overall pooled AUROC of machine learning prediction models stratified by logistic regression (a), boosting (b), and random forest (c) 
methods
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0.59 to 0.90. The specificity and sensitivity based on dif-
ferent cut-off points were reported in all included studies, 
with the range of 0.54–0.93 and 0.25–0.88, respectively. 
Negative predictive value (n = 4), positive predictive value 
(n = 4), and accuracy (n = 4) of prediction models in sev-
eral studies were also reported (Table 1).

We included 11 studies (23 models) with sufficient 
data and pooled performance measures of these stud-
ies in a random effects meta-analysis (see Additional 
file  7). The pooled AUROC for predicting asthma 
exacerbations was 0.80 (95% CI 0.76–0.83), indicat-
ing a good discrimination ability (Fig.  3). The pooled 
sensitivity and specificity were 0.61 (95% CI 0.53–
0.69, I2 = 98.71, P < 0.01) and 0.82 (95% CI 0.77–0.86, 
I2 = 99.95, P < 0.01), respectively (Fig.  4). Other values 
were as follows: PLR 3.33 (95% CI 2.73–4.07, I2 = 99.58, 
P < 0.01), NLR 0.47 (95% CI 0.39–0.57, I2 = 98.89, 
P < 0.01), and DOR 7.02 (95% CI 5.20–9.47, I2 = 100.00, 
P < 0.01) (see Additional file 8).

We also performed subgroup analysis stratified by ML 
methods, sample size, age group, and outcome defini-
tions. As shown in Table  2, the overall pooled AUROC 
of boosting-based prediction models (0.84) was the high-
est, followed by studies using LR (0.77) and RF (0.75) 
(Table 2, Fig. 5). DOR, another measure of overall diag-
nostic ability, was also highest in studies applying boost-
ing method (11.86). In studies with a large sample size 
(> 10000), the pooled AUROC and DOR were relatively 
high, with the number of 0.82 and 8.62, respectively 

(Table 2, Fig. 6). We classified outcome events as either 
emergency department visit/hospitalization (ED/HP) or 
in accordance with ATS/ERS statement (AE) definitions 
and performed subgroup analysis. The pooled AUROC 
in the two groups were similar, and the diagnostic odds 
ratio (DOR) was 7.58 for the ED/HP group and 6.01 for 
the AE group (Table 2, Fig. 7). Studies involving partici-
pants with children and adults had the highest pooled 
AUROC (0.88) and DOR (9.49) (Table  2, Fig.  8). Forest 
plots were shown in Additional file 9.

We perform the meta-regression analysis of the logit 
transformation of DOR due to the high level of hetero-
geneity. Univariate meta-regression analysis indicated 
that sample size and publication year contributed to the 
prediction power. However, only the coefficient of out-
come definitions reached statistical significance in the 
multivariate model (Table  3). We included the outcome 
variable in the meta-regression analysis. The adjusted 
R-squared improved from 18.72% to 39.61%, and the 
Tau2 decreased from 0.4198 to 0.3118, indicating that the 
outcome variable could explain 25.7% heterogeneity.

Publication bias and sensitivity analysis
Deeks’ funnel plot was applied to test publication bias. 
As shown in Fig. 9, the funnel plot was symmetrical, indi-
cating no publication bias (P = 0.29). Sensitivity analysis 
showed exclusion of any study did not affect the pooled 
estimations, suggesting the stability of the meta-analysis 
(see Additional file 10).

Fig. 6  The overall pooled AUROC of machine learning prediction models stratified by different sample sizes. a Sample size < 10000. b Sample 
size > 10000
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Discussion
Principal findings
This study systematically reviewed the ML-based predic-
tion models for asthma exacerbations, which have not 
been discussed before. Eleven studies generated 23 ML 
prediction models, which were various in study design, 
data source, participants, outcome definitions, and ML 

algorithms. 6/11 studies were published in the recent 
three years, indicating a popular trend in applying ML 
algorithms in asthma. The overall pooled AUROC (0.8, 
95% CI 0.76–0.83) and DOR (7.02, 95% CI 5.20–9.47) 
indicated that ML-based prediction models for asthma 
exacerbation could achieve good discrimination. ML 
prediction models could forecast patients at high risk of 

Fig. 7  The overall pooled AUROC of machine learning prediction models stratified by different age groups. a Children. b Children and adults. c 
Adults
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exacerbation from several days to years, helping identify 
patients needing closer management.

LR, boosting, and RF are the top three popular algo-
rithms for asthma exacerbation prediction. According to 
the subgroup analysis, boosting-based prediction models 
had the highest pooled AUROC with a pooled AUROC 
of 0.84(95% CI 0.81–0.87), and the confidence interval of 
pooled AUROC was non-overlap with LR (0.77, 95% CI 
0.73–0.81) and RF (0.75, 95% CI 0.71–0.78). Bridge et al. 
[8] conducted a systemic review and found that LR had 
a higher pooled c-statistic than optimal action points 
and CART in predicting asthma exacerbations. However, 
the authors did not include other ML methods. In this 

article, we found that boosting could also achieve good 
performance. It was potentially an alternative method 
in asthma exacerbation prediction, and more candidate 
models developed by ML should be tested.

The sample size is crucial for model performance. 
Compared with robust techniques like LR and CART, 
modern ML methods need higher times of events per 
variable to achieve stable performance [25]. Our sub-
group analysis also showed that compared with pre-
diction models with a smaller sample size (< 10000 
participants), models developed in a big sample size 
(> 10000 participants) showed relatively high pooled 
AUROC (0.82, 95% CI 0.78–0.85 vs. 0.68, 95% CI 

Fig. 8  The overall pooled AUROC of machine learning prediction models stratified by different outcome events. a Emergency department visits/ 
hospitalization for asthma. b Asthma exacerbation definition in accordance with ATS/ERS statement

Table 3  Univariate and multivariate outcomes of the random effects meta-regression

Variables Univariate analysis Multivariate analysis

Coeff SE P 95%CI Coeff SE P 95%CI

Boosting 1.01 0.53 0.073 (-0.10, 2.12) 0.69 0.51 0.196 (-0.40, 1.78)

LR 0.22 0.52 0.670 (-0.87, 1.33) 0.01 0.47 0.987 (-1.00, 1.02)

RF 0.27 0.56 0.636 (-0.94, 1.44) 0.06 0.51 0.908 (-1.03, 1.15)

Sample size 0.83 0.31 0.016 (0.17, 1.48) -0.89 0.96 0.365 (-2.93, 1.14)

Outcome 0.26 0.34 0.443 (-0.43, 0.96) 0.79 0.34 0.036 (0.06, 1.52)

Age group 0.16 0.18 0.394 (-0.22, 0.53) 0.27 0.17 0.134 (-0.09, 0.63)

Publication year -0.39 0.17 0.037 (-0.75, -0.02) -0.89 0.50 0.099 (-1.97, 0.19)
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0.64–0.72) in the test dataset. This suggests that ML 
methods would be preferable for prediction models only 
if a large dataset is available [25].

As for predictors, the most important features were 
systemic steroids, short-acting beta2-agonists, age, ED 
visit, asthma diagnosis number, exacerbation history, 
race, BMI, duration, blood eosinophils, and smoking. 
Most of these factors were consistent with the risk factor 
identified in GINA (https://​ginas​thma.​org/​wp-​conte​nt/​
uploa​ds/​2021/​04/​GINA-​2021-​Main-​Report_​FINAL_​21_​
04_​28-​WMS.​pdf ) and previous studies [26, 27]. Other 
biomarkers, such as volatile organic compounds and sin-
gle nucleotide polymorphisms were also used as input 
features to predict asthma exacerbations [19, 20]. How-
ever, these studies were performed with a small sample 
size of participants resulting in a high risk of overfitting. 
In addition, these factors require advanced equipment, 
limiting application in practice. Socioeconomic factors 
were included in only three studies but were identified 
as insignificant. Environmental factors, such as air pol-
lutants, are also crucial for asthma exacerbation [28]. 

However, none of these studies focus on environmental 
factors.

Strengths and limitations
This study has several strengths. Firstly, we described 
included studies in detail and used logical methodology, 
which could provide a clear understanding of ML mod-
els in asthma exacerbation prediction. Additionally, the 
number of models allows us to conduct a meta-analysis 
of performance measures and compare different ML 
algorithms.

Despite the excellent prediction power of ML-based 
models confirmed in this study, several limitations are 
also identified. The main limitation was heterogene-
ity within studies. The difference in sample sizes, par-
ticipants, feature selection, and prediction windows 
might affect the prediction ability of each model. Thus, 
the results analyzed in this study should be applied pru-
dently. In addition, we did not include papers published 
in non-English, and we might not include all ML-based 
prediction models in the field of asthma exacerbations.

Fig. 9  Deeks’ funnel plot of publication bias

https://ginasthma.org/wp-content/uploads/2021/04/GINA-2021-Main-Report_FINAL_21_04_28-WMS.pdf
https://ginasthma.org/wp-content/uploads/2021/04/GINA-2021-Main-Report_FINAL_21_04_28-WMS.pdf
https://ginasthma.org/wp-content/uploads/2021/04/GINA-2021-Main-Report_FINAL_21_04_28-WMS.pdf
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Future direction
ML methods are a potential way to achieve excellent per-
formance in asthma exacerbation prediction, and more 
ML methods should be tested in the future. Although 
many models were developed, few of them were applied 
in practice. Therefore, improving the generalizability of 
prediction models in large separate datasets is crucial. 
Practicability is another critical factor. Simple models 
with a few predictors and using predictors that are easy 
to access could improve prediction models’ practicability. 
Moreover, bundling ML algorithms to software or system 
would benefit in translating research into practice appli-
cations. Besides, randomized control studies are war-
ranted to evaluate whether these models could benefit 
asthmatic patients by preventing asthma exacerbations.

Conclusion
Early identification of asthmatic patients at high risk of 
asthma exacerbations guides physicians to take closer 
management and timely intervention. This study showed 
that ML could achieve great performance in predict-
ing asthma exacerbations. Future studies should focus 
on improving models’ generalizability and practicability, 
thus driving the application of these models in clinical 
practice.
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