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Abstract 

Background Pulmonary arterial hypertension (PAH) is a pathophysiological syndrome, characterized by pulmonary 
vascular remodeling. Immunity and inflammation are progressively recognized properties of PAH, which are crucial 
for the initiation and maintenance of pulmonary vascular remodeling. This study explored immune cell infiltration 
characteristics and potential biomarkers of PAH using comprehensive bioinformatics analysis.

Methods Microarray data of GSE117261, GSE113439 and GSE53408 datasets were downloaded from Gene Expres-
sion Omnibus database. The differentially expressed genes (DEGs) were identified in GSE117261 dataset. The propor-
tions of infiltrated immune cells were evaluated by CIBERSORT algorithm. Feature genes of PAH were selected by least 
absolute shrinkage and selection operator (LASSO) regression analysis and validated by fivefold cross-validation, 
random forest and logistic regression. The GSE113439 and GSE53408 datasets were used as validation sets and logis-
tic regression and receiver operating characteristic (ROC) curve analysis were performed to evaluate the prediction 
value of PAH. The PAH-associated module was identified by weighted gene association network analysis (WGCNA). 
The intersection of genes in the modules screened and DEGs was used to construct protein–protein interaction (PPI) 
network and the core genes were selected. After the intersection of feature genes and core genes, the hub genes 
were identified. The correlation between hub genes and immune cell infiltration was analyzed by Pearson correlation 
analysis. The expression level of LTBP1 in the lungs of monocrotaline-induced PAH rats was determined by Western 
blotting. The localization of LTBP1 and CD4 in lungs of PAH was assayed by immunofluorescence.

Results A total of 419 DEGs were identified, including 223 upregulated genes and 196 downregulated genes. 
Functional enrichment analysis revealed that a significant enrichment in inflammation, immune response, and trans-
forming growth factor β (TGFβ) signaling pathway. CIBERSORT analysis showed that ten significantly different types 
of immune cells were identified between PAH and control. Resting memory  CD4+ T cells,  CD8+ T cells, γδ T cells, M1 
macrophages, and resting mast cells in the lungs of PAH patients were significantly higher than control. Seventeen 
feature genes were identified by LASSO regression for PAH prediction. WGCNA identified 15 co-expression modules. 
PPI network was constructed and 100 core genes were obtained. Complement C3b/C4b receptor 1 (CR1), thioredoxin 
reductase 1 (TXNRD1), latent TGFβ binding protein 1 (LTBP1), and toll-like receptor 1 (TLR1) were identified as hub 
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genes and LTBP1 has the highest diagnostic efficacy for PAH (AUC = 0.968). Pearson correlation analysis showed 
that LTBP1 was positively correlated with resting memory  CD4+ T cells, but negatively correlated with monocytes 
and neutrophils. Western blotting showed that the protein level of LTBP1 was increased in the lungs of monocrota-
line-induced PAH rats. Immunofluorescence of lung tissues from rats with PAH showed increased expression of LTBP1 
in pulmonary arteries as compared to control and LTBP1 was partly colocalized with  CD4+ cells in the lungs.

Conclusion LTBP1 was correlated with immune cell infiltration and identified as the critical diagnostic maker for PAH.

Keywords Pulmonary arterial hypertension, Bioinformatics analysis, Immune infiltration, Hub gene, LTBP1

Introduction
Pulmonary hypertension (PH) is a pathophysiological 
syndrome, which is characterized by increased pulmo-
nary vascular resistance (PVR) and pulmonary vascular 
remodeling, leading to heart failure, and eventually death 
[1]. Pulmonary arterial hypertension (PAH) is Group 1 PH 
defined as a mean pulmonary arterial pressure > 20 mmHg 
at rest with a capillary wedge pressure ≤ 15  mmHg and 
PVR ≥ 3 Wood units [2, 3]. PAH-targeted therapies, 
including drugs targeting at nitric oxide pathway, endothe-
lin receptors, prostaglandin receptors, thromboxane 
receptors, and phosphodiesterase inhibitors, improve 
symptoms and hemodynamics of PAH [4]. However, the 
mortality of PAH patients remains high with a five-year 
survival rate is about 60% [5]. Thus, it’s urgent to identify 
new diagnostic biomarkers and treatment targets for PAH.

The pathological mechanism of PAH is complex and 
has not been fully understood. Immunity and inflamma-
tion are progressively recognized properties of PAH. A 
large amount of evidence has demonstrated that inflam-
mation and immunity play vital roles in the initiation and 
maintenance of pulmonary vascular remodeling in PAH 
[6–9]. An accumulation of macrophages, B and T cells, 
mast cells, and dendritic cells (DCs) was observed in the 
lungs or around the pulmonary vessels of PAH [9–13]. 
Infiltration of macrophages in the lungs and dysregulated 
RIPK3-mediated necroptosis and its triggered toll-like 
receptor (TLR) and NOD-like  receptor (NLR) pathways 
were observed in the pathogenesis of PAH in our previ-
ous studies [7, 8]. However, the immune mechanisms of 
PAH have not been well explored. Thus, it is a need to 
evaluate the proportions of immune cells and screen crit-
ical hub genes related to immune cells in the PAH using 
systematic and integrated bioinformatics methods.

With extensive use of gene profiles from Gene Expres-
sion Ominous (GEO), bioinformatics analysis can be 
used to identify potential biomarkers and mechanisms 
for PAH. Previous studies have identified potential bio-
markers and abnormal immune cell infiltration between 
PAH and normal control in different datasets down-
loaded for the GEO database using different bioinformat-
ics methods [14, 15]. Our previous studies have identified 
PNISR and HNRNPH1 may be potential biomarkers 

to provide a better diagnosis of PAH [16]. In this study, 
the GSE117261 were downloaded to screen differentially 
expressed genes (DEGs) between PAH and control and 
further explore their potential biological functions via 
enrichment analysis. LASSO, random forest (RF), and 
logistic regression (LR) were used to identify and validate 
the biomarkers of PAH in GSE113439 and GSE53408 
datasets. WGCNA and PPI network analysis were per-
formed to identify core genes related to PAH. We iden-
tified the critical hub genes that could distinguish PAH 
between control by the intersection of feature genes and 
core genes. Immune cell infiltration was investigated in 
PAH by CIBERSORT. The correlation between immune 
cells and hub genes was evaluated by Pearson correlation 
analysis. This study aimed to explore immune cell infil-
tration characteristics and potential biomarkers of PAH 
using comprehensive bioinformatics analysis.

Materials and methods
GEO dataset collection and data preprocessing
Gene expression profiles in patients with PAH were 
downloaded from the GEO database (https:// www. 
ncbi. nlm. nih. gov/ geopr ofiles/). Three datasets were 
selected, including GSE117261 [16, 17], GSE113439 
[18] and GSE53408 [19–21]. GSE117261 (58 patients 
with PAH and 25 control) was used as a training set, 
GSE113439 (15 patients with PAH and 11 control) and 
GSE53408 (12 patients with PAH and 11 control) were 
used as validation sets, and all three datasets were based 
on GLP6244 platform (Affymetrix Human Gene 1.0ST 
Array). Before and after batch correction, the gene 
expression matrix of three dataset visualized by box plot 
and PCA plot. The flow chart of data processing and 
analysis was shown in Fig. 1.

Identification of differentially expressed genes (DEGs) 
and functional enrichment analysis
The DEGs between PAH patients and control in the 
GSE117261 dataset were selected by the limma2 package. 
The ggplot2 package was used to generate the volcano 
plot of DEGs, and the pheatmap package was used to 
draw the heat map of DEGs. |log2 fold change (FC)|> 0.5, 
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adjusted P value < 0.05 was set as a cutoff for this selec-
tion. GO and KEGG enrichment analyses (http://www.
genome.jp/kegg/) [22–24] for DEGs were performed by 
R package clusterProfiler with the filter with adjusted P 
value < 0.05. The gene set enrichment analysis (GSEA) 
was also performed by clusterProfiler with filter condi-
tion as false discovery rate (FDR) < 0.25 and P value < 0.05.

Evaluation of immune cell infiltration
CIBERSORT is a method of analyzing the composition 
and abundance of immune cells in a mixed-cell popula-
tion using gene expression data based on the principle 
of linear support vector regression. The gene expres-
sion matrix was uploaded to CIBERSORT and derived a 
matrix of 22 types of immune cells. CIBERSORT P < 0.05 
was used to filter the samples. The distribution of 21 
types of immune cells in the samples was calculated and 
displayed in a bar plot and the difference in immune cells 
between the two groups was displayed in a violin plot 
using the ggplot2 package in R language. PCA results 

of immune cell infiltration matrix in GSE117261 were 
obtained using R package stats. A correlation heatmap 
was constructed to visualize the correlation of hub genes 
with 22 types of immune cells using a corrplot package.

Predictive model construction
The predictive power of gene expression of lungs between 
PAH patients and control was assessed by three machine 
learning algorithms, least absolute shrinkage and selec-
tion operator (LASSO) regression analysis, random forest 
(RF) and logistic regression (LR). The feature genes were 
screened by five-fold cross-validation and the GSE117261 
dataset was split into a training set and a test set with a 
4:1 ratio. LASSO classifier was performed on the train-
ing set. The performance of the prediction model of PAH 
was evaluated by RF and LR in the test set. The optimal 
prediction method generated by RF was selected and val-
idated in the external datasets GSE113439 and GSE53408 
and the area under the receiver operating characteristic 
(ROC) curve (AUC) was calculated after cross-validation.

Fig. 1 The flowchart of the bioinformatics analysis. GSE117261, GSE113439 and GSE53408 datasets were downloaded from the GEO database. 
After pre-processing and normalization of the data, the differentially expressed genes (DEGs) were identified in GSE117261 and the functional 
enrichment analyses of Gene Ontology and KEGG were performed. GSEA was conducted to investigate the potential biological pathways using 
the entire gene set. The immune landscape in the dataset was determined by the CIBERSORT algorithm. Lasso regression analysis was performed 
to identify 17 feature genes, and fivefold cross-validation was performed using RF and LR in GSE117261. ROC curve of 17 feature genes 
was performed to construct PAH prediction model in GSE53408 and GSE113439. WGCNA was performed to identify the modules associated 
with PAH. The intersection of genes in the modules screened and DEGs were used to construct PPI network and identification of the core genes. 
After the intersection of 17 feature genes and 100 core genes, four hub genes were identified. Pearson correlation analysis was performed 
to analyze the correlation between the hub genes and immune cell infiltration
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Weighted Gene Association Network Analysis (WGCNA)
The WGCNA package in R was used to construct the 
WGCNA gene expression matrix in the GSE117261 
dataset. Firstly, the correlation coefficient between genes 
was calculated, and the weighted value of the correlation 
coefficient was used to make the connection between 
genes in the scale-free network. Secondly, a hierarchical 
clustering tree was constructed according to the correla-
tion coefficients between genes. Different dendrogram 
branches represent different genes and different colors 
represented different modules. Thirdly, the module sig-
nificance (MS) was calculated and used to measure the 
correlation of traits with different modules and record 
the genes in each module. The correlation between sam-
ple traits and genes was explored by gene significance 
(GS). The modules with the strongest correlation were 
selected separately, and the GS and module membership 
(MM) values were visualized in scatter plots.

PPI network construction and core genes identification
The upregulated DEGs and downregulated DEGs were 
intersected with the genes in the dark olive green and 
dark green modules identified by WGCNA, respectively, 
and the obtained genes were used to construct a pro-
tein–protein interaction (PPI) network through STRING 
(https:// string- db. org/). The PPI network was further vis-
ualized by Cytoscape. The CytoHubba Cytospace plugin 
was used to identify core genes by the MCC algorithm.

Correlation analysis between immune cells and hub genes
Pearson correlation analysis was used to analyze the 
relationship between different immune cells and feature 
genes in R software. The plots were visualized by the 
“ggplot2” package and P < 0.05 was considered statisti-
cally significant.

Animals
The SD rats weighing 150 ± 20  g were purchased from 
Shanghai SLAC Laboratory Animal CO, Ltd.(Certificate 
No. SCXK 2017–0005). The rats were housed in the Ani-
mal Center of Fujian Medical University and received 
food and water ad  libitum. After one week of adapta-
tion, the rats were subcutaneously injected with 20 mg/
kg monocrotaline (MCT, Sigma) twice, at a 7-day interval 
or normal saline as previously described [8, 25]. The rats 
were anesthetized with 50 mg/kg sodium pentobarbital at 
week 4 after MCT injection. The right ventricular cath-
eterization was used to determine to mean pulmonary 
artery pressure (mPAP) by PE50 tube and Powerlab sys-
tem (ADInstruments, Australia). The rats were sacrificed 
after hemodynamics measurement. The right ventricular 
hypertrophy index (RVHI) was calculated as right ven-
tricule/left ventricule + septum. The lung morphology 

was evaluated by HE staining and observed with Nikon 
Eclipse E200 microscope. The pulmonary remodeling 
index (WT% and WA%) was analyzed. All procedures 
have been conducted in accordance with the ARRIVE 
guidelines and were approved by the Animal Welfare 
and Ethics Committee of Fujian Medical University (No. 
FJMU IACUC 2021–0378).

Cell experiments
Rats were deeply anesthetized with 50  mg/kg sodium 
pentobarbital and euthanized by cervical dislocation. 
Primary PASMCs were prepared from pulmonary arter-
ies using a previously described protocol [25]. The cells 
were maintained in Dulbecco’s modified Eagle’s medium/
F12 (DMEM/F12, BasalMedia, China) supplemented 
with 10% fetal bovine serum (FBS, Excell, South Amer-
ica) and 1% penicillin–streptomycin (Servicebio, China) 
at 37 °C in an atmosphere of 5% CO2. Cells were starved 
in 0.5% FBS supplemented medium for 24  h and then 
treated with 20 ng/ml PDGF-BB (Peprotech, Rocky Hill, 
NJ, United States) for 48 h. The PASMCs from generation 
3 to 5 were used in the present experiments.

Western blot
For the analysis of total proteins, lung tissues or PASMCs 
were lysed by RIPA buffer with a cocktail and PMSF 
and homogenated by tissue homogenator (Wuhan Ser-
vice Biotechnology). The lysates were centrifuged for 
15  min at 13000  g, 4℃. The concentration of total pro-
tein was determined by the BCA assay kit (Beijing Biyun-
tian Biotechnology). The lysates were eluted with 2*SDS 
buffer and boiled for 10 min at 100℃. The samples were 
loaded and separated on 10% SDS/PAGE gel, and then 
transferred onto polyvinylidene difluoride membranes 
(PVDF) (Millipore, USA). The membranes were blocked 
in 5% non-fat milk and then incubated with specific pri-
mary antibodies (anti β-actin Mouse antibody [GB12001, 
Wuhan Servicebio Technology, China], and anti-LTBP1 
antibody [ab78294, Abcam, UK]) at a dilution of 1:1000 
at 4  °C overnight. After being incubated with HRP-con-
jugated secondary antibodies, the blots were visualized 
using the ECL system (New Cell and Molecular Biotech 
Co, Ltd, China), captured by iBright 1500 (Invitrogen 
by Thermo Fisher Scientific) and analyzed by Image J 
software.

Immunohistochemistry (IHC) and immunofluorescence (IF)
For IHC, the left lung tissues were fixed in 10% neu-
tral formalin for 24  h and dehydrated by ethanol from 
30 to 100% concentration. The samples were immersed 
in xylene and embedded in paraffin. Then the sec-
tions  (5  μm) were cut, deparaffinized, and rehydrated. 
After antigen retrieval with EDTA (pH9.0), the slides 

https://string-db.org/
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were incubated with 3% H2O2 for 10  min and blocked 
with 10% goat serum for 30 min. The section was incu-
bated with LTBP1 antibody (1:200 ab78294, Abcam) 
overnight at 4℃. After being washed 3 times in PBS, 
the slides were incubated with biotinylated secondary 
antibody for 1  h and then incubated with HRP-labeled 
streptavidin for another 30  min at room temperature. 
20ul DAB to 1 ml of DAB substrate was mixed by swirl-
ing, applied to tissue, and incubated for 10 min. Hema-
toxylin was used to stain the nucleus. The section was 
covered by mounting medium and observed by micro-
scope (Eclipse E200, Nikon).

For IF, the sections were blocked with 10% nonfat milk 
for 30  min after antigen retrieval and incubated with 
LTBP1 antibody (1:200, ab78294) and CD4 antibody 
(1:50, 67786–1-Ig, Proteintech, China) overnight at 4℃. 
After being washed 3 times in PBS, the slides were incu-
bated with goat anti-rabbit IgG (Alexa Fluor 488) and 
goat anti-mouse IgG (Alexa Fluor 594) for 1  h at room 
temperature. The section was covered by mounting 
medium and observed by inverted fluorescence micro-
scope (Eclipse Ts2, Nikon).

Statistical analysis
All statistical tests and visual analyses were performed 
in R software (version 3.6.1). The R package "ggpurbr" 
is used to calculate statistical parameters in visual box 
plots. Continuous variables were expressed as mean ± SD, 
and the differences between two groups were compared 

using Student’s t-test. The Wilcox-t test was used to com-
pare the differences in immune cell infiltration and gene 
expression between PAH and control groups. The sensi-
tivity and specificity of feature genes to distinguish PAH 
from control were assessed using a ROC curve. All sta-
tistical tests were two-sided and P < 0.05 was considered 
significantly different.

Results
Data processing
Three microarray raw datasets, GSE117261, GSE53408, 
and GSE113439 were selected for the present study. 
All expression values in GSE117261, GSE53408, and 
GSE113439 datasets before and after normalization were 
presented as box diagrams in Fig. 2 and the PCA charts 
were shown in Figure S1.

Identification of DEGs and functional enrichment analyses
The normalized GSE117261 was used to identify DEGs 
between PAH and normal control lung tissues. A total 
of 419 DEGs were obtained, including 223 upregu-
lated genes and 196 downregulated genes. The detailed 
information on the DEGs was listed in Table S1. The 
DEGs were visualized by the volcano map and heat map 
(Fig.  3A, B). GO function, and KEGG pathway analyses 
were performed for the DEGs. The GO annotations of 
DEGs consisted of three parts, including biological pro-
cess (BP), cellular component (CC), and molecular func-
tion (MF), which were used to analyze the functional 

Fig. 2 The box diagram of the gene expression matrix before and after normalization. A GSE113439 expression profile before and after 
normalization; B GSE113439 expression profile before and after normalization; C GSE53408 expression profile before and after normalization. The 
red color represents PAH lung tissue samples, and the blue color represents normal lung tissue samples
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Fig. 3 Screening and functional enrichment analysis of DEGs. A The volcano plot shows DEGs between PAH and normal control. The blue dots 
represent downregulated DEGs, the red dots represent upregulated DEGs and the grey dots represent the genes that were not significantly 
changed. B The DEGs were visualized by the heatmap with red color for upregulation and blue color for downregulation. The enrichment analysis 
of DEGs includes GO functional analysis (C) and KEGG pathway enrichment (D); E GSEA plot showed that top five enriched KEGG pathways were 
positively correlated to PAH; F GSEA plot showed that TCA cycle was negatively correlated to PAH
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enrichment of DEGs. The DEGs were mainly related 
to neutrophil activation involved in immune response, 
neutrophil degranulation, myeloid leukocyte migration, 
positive regulation of cytokine production and cell chem-
otaxis in GO function analysis (Fig. 3C). KEGG enrich-
ment analysis showed that the DEGs were enriched in 
inflammatory disease and complement and coagulation 
cascades (Fig. 3D). GSEA was performed to discover cru-
cial biological pathways and potential mechanism using 
gene expression profiles. According to the ranking and 
enrichment scores, the top six pathways were shown in 
Fig. 3E and F. TGFβ signaling pathway, viral myocarditis, 
Wnt signaling pathway, Hedgehog signaling pathway and 

allograft rejection were positively correlated with PAH, 
whereas the tricarboxylic acid (TCA) cycle was nega-
tively correlated with PAH.

Immune infiltration analysis
The fractions of 21 types of immune cells in each sample 
of GSE117261 were presented in a histogram (Fig.  4A). 
The color represents the percentage of different immune 
cells in each sample, and the sum is 1. Figure 4B showed 
that all samples were divided into two groups by cluster-
ing the abundance of 19 types of immune cells. The PCA 
plot demonstrated that the patterns of immune cells 
in PAH and control were different (Figure S2). Pearson 

Fig. 4 The difference in immune cell infiltration between PAH and control. A The proportions of 21 immune infiltrating cells showed 
in the histogram; B The clustering of 19 types of immune cells in a heatmap; C A correlation heatmap of the proportions of 19 immune cells; D The 
violin plot showing the differences in 21 types of immune cells between PAH and normal control
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correlation analysis revealed that the monocytes were 
negatively correlated with resting mast cells and resting 
 CD4+ T cells, but positively correlated with neutrophils, 
and resting NK cells (Fig.  4C). The differences in frac-
tions of immune cells between PAH and control lung tis-
sues were presented in a violin plot (Fig. 4D). The results 
showed  CD8+ T cells, resting memory  CD4+ T cells, γδ 
T cells, M1 macrophages and resting mast cells in lungs 
of PAH patients were significantly higher than control, 
whereas  CD4+ T naive cells, resting NK cells, activated 
mast cells, monocytes, and neutrophils were lower.

Construction of prediction model for PAH 
and identification of feature genes
A dimension reduction was performed by the LASSO 
algorithm in the training set and 17 feature genes were 
identified in the prediction model of PAH (Fig.  5A, B; 
Table S2). The mRNA profiles of the 17 genes in the 
dataset GSE53408 and GSE113439 were visualized by 
heatmap in Figure S2A and B respectively. RF and LR 
were used to the evaluate effectiveness of the perdition 
model in the test set. The predictive value of the mRNA 
expression profiles was evaluated by the area under the 

Fig. 5 Establishment of PAH prediction model. A, B LASSO coefficient spectrum for identification of feature genes of PAH and control samples 
from GSE117261. C The result of ROC analysis of internal validation datasets in GSE117261 using LR and RF; D Externally validated ROC analysis 
in the GSE113439 and GSE53408 datasets. LASSO: least absolute shrinkage and selection operator; RF: random forest; LR: logistic regression
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receiver operating characteristic (ROC) curve (AUC). 
The results showed that the 17 feature genes could 
predict PAH. The AUC calculated by RF was 0.965, 

and the calculated by LR was 0.944 (Fig.  5C). The RF 
was selected for external validation, and it was found 
that the feature genes discriminated PAH from normal 

Fig. 6 Construction of WGCNA network. A Analysis of the scale-free index and mean connectivity for various soft-threshold powers (1 ~ 20). B 
Dendrogram of 15 modules of genes with different colors. C Correlation heatmap showing 15 modules of different colors associated with PAH. The 
scatter plots showing gene distribution within the dark olive green module (D) and the dark green modules (E), respectively



Page 10 of 17Lian et al. BMC Pulmonary Medicine          (2023) 23:300 

control in GSE113439 (AUC = 0.988) or GSE53408 
(AUC = 0.924) (Fig.  5D). Besides, the heatmap and 
ROC of 17 genes, including NUCB2, ZNF724P, CYLD, 
HIVEP1, TXNRD1, UTP3, UEVLD, ZRANB3, TLR1, 
ACPP, CR1, LTBP1, SULT1B1, NKD1, METRNL, HYI 
and RAPPES2 in the GSE3439 and GSE53408 datasets 
were shown in Figure S3C-F.

WGCNA
To classify and analyze the impact of the different gene 
expression profiles in the samples of the GSE117261 data-
set, the weight co-expression network was constructed 
using the WGCNA software package. The soft threshold 
(power) was determined as five based on the scale-free fit 
index and mean connectivity in Fig. 6A. A total of fifteen 
co-expression modules were identified and displayed in 
Fig. 6B. The relationship between modules and traits was 
evaluated using Pearson’s correlation analysis. As shown 
in Fig. 6C, the two most correlated modules (dark olive 
green module and dark green module) were identified, 
and the results showed that the dark olive green module 
was positively correlated with PAH (R2 = 0.64, P < 0.001), 
and the dark green module was negatively correlated with 
PAH (R2 = -0.53, P < 0.001). The GS and MM values of all 
genes in the dark olive green module and the dark green 
module were shown in the scatter plots (Fig. 6D and E). 
1,242 genes in the dark olive green (Table S3) and 4,543 
genes (Table S4) in the dark green module were obtained 
for subsequent analysis.

Construction of PPI network and identification of core genes
To further screen the core genes, the 223 upregulated 
DEGs were intersected with 1,242 genes in the dark olive 
green and 196 downregulated DEGs were intersected with 
4,543 genes in the dark green module, then 113 upregu-
lated DEGs and 116 downregulated genes were obtained 
(Fig. 7A, D). Then, the two groups of genes were respec-
tively constructed for the PPI network using the STRING 
database. The upregulated DEGs network included 82 
nodes and 141 edges (Fig.  7B) and the downregulated 
DEGs network included 87 nodes and 479 edges (Fig. 7E). 
The two networks were screened for core genes through 
the MCC algorithm in CytoHubba, and the top 50 core 
genes were selected respectively (Fig. 7C, F).

The hub genes identification
The 100 core genes were further intersected with the 
17 feature genes identified by LASSO regression, then 
4 hub genes complement C3b/C4b receptor 1 (CR1), 
thioredoxin reductase 1 (TXNRD1), latent TGFβ bind-
ing protein 1 (LTBP1) and toll-like receptor 1 (TLR1) 
were obtained (Fig.  8A) and marked from the volcano 
plot (Fig.  8B). The difference in mRNA expression of 
CR1, LTBP1, TXNRD1, and TLR1 between PAH and 
the control was shown in a box plot (Fig.  8C). LTBP1 
was increased in PAH, while CR1, TXNRD1 and 
TLR1 were downregulated in comparison with con-
trol in the GSE117261 dataset. The four genes were 
used as independent indicators to test the diagnos-
tic efficacy and displayed by the ROC curve (Fig.  8D). 
The results revealed that LTBP1 (AUC = 0.968), 
TXNRD1 (AUC = 0.913), CR1 (AUC = 0.907), and TLR1 
(AUC = 0.901) have good diagnostic efficacy as inde-
pendent indicators for PAH. Among them, LTBP1 has 
the highest diagnostic efficacy.

Correlation between hub genes and infiltrating immune 
cells
To explore the roles of hub genes in PAH, Pearson cor-
relation analysis was performed between immune infil-
trating cells and the hub genes in GSE117261 dataset. 
The result was displayed in a heatmap in Fig.  9A and 
showed that CR1, TXNRD1, and TLR1 had a similar 
relationship with immune cells in contrast to LTBP1. 
Especially, the four hub genes strongly correlated with 
resting memory  CD4+ T cells, monocytes and neutro-
phils. The scatter plots showed that CR1 (monocytes 
r = 0.651; neutrophils r = 0.620; all P < 0.001), TXNRD1 
(monocytes r = 0.358; neutrophils r = 0.375; all P < 0.001) 
and TLR1 (monocytes r = 0.662; neutrophils r = 0.535; 
all P < 0.001) were positively correlated with mono-
cytes and neutrophils, repcetively, whereas negatively 
correlated with resting memory  CD4+ T cells (CR1 
r = -0.423, P < 0.001; TXNRD1 r = -0.347, P = 0.001; 
TLR1 r = -0.490, P < 0.001). LTBP1 was positively cor-
related with memory resting  CD4+ T cells (r = 0.294, 
P = 0.007), but negatively correlated with monocytes 
(r = -0.358, P < 0.001) and neutrophils (r = -0.344, 
P = 0.001) (Fig. 9B, C, D).

Fig. 7 Construction of a PPI network. A The Venn diagram of the intersection of the upregulated DEGs and the genes in the dark olive module. 
B The protein interaction network of genes in the intersection. The red color represents high weight; the blue color represents low weight. C 
Screening of 50 upregulated hub genes. D The Venn diagram of the intersection of the downregulated DEGs and the genes in dark green modules. 
E Protein interaction network of genes in the intersection. The red color represents high weight and the blue color represents low weight. F 
Screening of 50 downregulated hub genes

(See figure on next page.)
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Fig. 7 (See legend on previous page.)
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LTBP1 expression was increased in the PAH animal model 
and the (PDGF‑BB)‑induced PASMCs
Based on that LTBP1 has the highest diagnostic effi-
cacy for PAH and was consistently increased in the 
GSE117261, GSE113439 and GSE53408 datasets, we 
confirmed the expression level of LTBP1 in MCT-
induced PAH rat model. Compared with the control, the 
mPAP and RVHI were increased in PAH rats (Fig. 10A, 
B). HE staining demonstrated that pulmonary arterial 
remodeling and immune cell infiltration in the lungs of 
PAH rats (Fig.  10C). The pulmonary remodeling indi-
ces (WT% and WA%) were also increased in PAH rats 
(Fig.  10D, E). The level of LTBP1 protein was signifi-
cantly increased in the lungs of MCT-induced PAH rats 
by Western blotting (Fig. 10F). IHC analysis showed that 

LTBP1 expression was also enhanced in the pulmonary 
arteries and lungs of PAH rats (Fig. 10G). Immunofluo-
rescence of lung tissues from rats with PAH showed 
increased expression of LTBP1 in pulmonary arteries 
as compared to control and LTBP1 was partly localized 
with  CD4+ cells in the lungs (Fig.  10H). We also vali-
dated that the expression of LTBP1 protein was signifi-
cantly increased in the (PDGF-BB)-induced PASMCs by 
Western blotting (Fig. 10I).

Discussion
PAH is life-threatening disease characterized by pulmo-
nary vascular remodeling, the underlying mechanism 
and immune infiltration involved in the remodeling of 
pulmonary arteries are not fully understood. Increasing 

Fig. 8 Identification of the hub genes. A The Venn diagram of the intersection of 17 feature genes and 100 core genes; B 4 hub genes marked 
in the volcano plot of all genes. C The difference of the four key genes between PAH and control. D ROC curves of 4 hub genes as independent 
diagnostic indicators
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evidence has shown that inflammation and immune cells 
play important roles in the remodeling of pulmonary 
arteries and the development of PAH [7, 9, 25] Therefore, 
it is a need to explore the immune pathogenesis of PAH 
and search for novel effective biomarkers. In the present 
study, we used integrated bioinformatics methods to 
investigate the role of immune cell infiltration in the PAH 
and identify effective diagnostic biomarkers for PAH.

This study explored the immune cell infiltration char-
acteristics and correlation with crucial diagnostic mark-
ers in pulmonary arterial hypertension by bioinformatics 
analysis. KEGG, GO and GSEA analysis revealed that 
a significantly enrichment in inflammation, immune 
response, and transformed growth factor β (TGFβ) sign-
aling pathway. We found that a significant difference in 
immune cell infiltration between PAH and normal con-
trol with accumulation of memory resting  CD4+ T cells, 
 CD8+ T cells, γδ T cells, M1 macrophages and resting 
mast cells, but decreased monocytes, neutrophils, naive 
 CD4+ T cells, resting NK cells, and activated mast cells 
in PAH patients. The four crucial hub genes for diagnosis 
of PAH were identified by LASSO regression, WGCNA 
and PPI network analysis. LTBP1 was increased, while 
CR1, TXNRD1 and TLR1 were decreased in PAH in 
comparison with control. CR1, TXNRD1 and TLR1 were 
positively correlated with monocytes and neutrophils, 

whereas negatively correlated with memory resting  CD4+ 
T cells. LTBP1 was negatively correlated with monocytes 
and neutrophils, but positively correlated with memory 
resting  CD4+ T cells. This study has found the immune 
cell infiltration characteristics and correlation with cru-
cial diagnostic markers in PAH.

Human and animal PAH studies have demonstrated 
various inflammatory mediators were increased in both 
PAH patients and animal models of PAH [15]. Consistent 
with previous findings, the DEGs were mainly enriched in 
immune response, such as neutrophil activation involved 
in immune response, neutrophil degranulation, myeloid 
leukocyte migration, positive regulation of cytokine pro-
duction and cell chemotaxis. KEGG enrichment analysis 
showed that the DEGs were enriched in inflammatory 
disease and complement and coagulation cascades. These 
finding suggested that immune response and inflamma-
tion participates in the pathogenesis of PAH [26]. GSEA 
was performed to discover crucial biological pathways 
and potential mechanism using gene expression profiles 
and the results demonstrated that TGFβ signaling path-
way were positively correlated with PAH. TGFβ signaling 
pathway was overactivated and leads to excessive prolif-
eration and resistance of apoptosis [27, 28]. TGF-β1 is an 
essential regulator of extracellular matrix (ECM) depo-
sition, promoting fibrosis and inflammation [29]. These 

Fig. 9 Correlation analysis between hub genes and immune cells. A A heatmap of the correlation between the hub genes and immune cells. The 
red color represents a positive correlation, and the blue color represents a negative correlation, * P < 0.05; ** P < 0.01; ***P < 0.001. B The relationship 
between resting memory CD4.+ T cells with CR1, TXNRD1, LTBP1 and TLR1; C The correlation of monocytes to CR1, TXNRD1, LTBP1 and TLR1; D The 
correlation of neutrophils to CR1, TXNRD1, LTBP1 and TLR1
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Fig. 10 LTBP1 was upregulated in monocrotaline (MCT)-induced PAH and (PDGF-BB)-induced PASMCs. A, B mPAP and RVHI were increased in rats 
of MCT-PAH. C HE staining of the lung in MCT-induced PAH rats and control (Scale bar = 25 μ m). D, E WT% and WA % of pulmonary arteries were 
calculated from HE staining. F Western blotting and quantification of LTBP1 and β-actin in the lungs of (MCT)-induced PAH (n = 9) and control 
(n = 8). G Immunohistochemistry analysis of LTBP1 in lungs, Scale bar = 50 μm. H Immunofluorescence of lung tissues with LTBP1 (green) and CD4 
(red); Scale bar = 50 μm; I Western blot and quantification of LTBP1 and β-actin in the (PDGF-BB)-induced PASMCs and control, n = 4. Data represent 
the mean ± SD and Student t-test was used to compare the two groups. ****: P < 0.0001 vs Ctrl; *: P < 0.05 vs Ctrl. MCT: monocrotaline; Ctrl: control; 
MCT-PAH: MCT-induced pulmonary arterial hypertension
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studies confirmed that the immune response and inflam-
mation play important roles in PAH.

Accumulation of multiple immune cells, such as T 
cells, B cells, macrophages, mast cells and DCs were 
also observed around the remodeled pulmonary ves-
sels or near plexiform lesions in animal models and PAH 
patients [7, 9]. A single-cell study of two rat PH models 
revealed that a significant increase in the cell fractions of 
interstitial macrophage in MCT-induced rats and alveo-
lar macrophage in hypoxia/su5416 induced rats [13]. The 
comprehensive infiltration characteristics of immune 
cells in the lungs of PAH were investigated in our study 
and ten significantly different types of immune cells 
between PAH and control were identified by CIBER-
SORT algorithm. Similar to previous studies, the propor-
tions of  CD8+ T cells, resting  CD4+ T cells, γδ T cells, 
M1 macrophages and resting mast cells were significantly 
increased in lungs of PAH patients. However naive  CD4+ 
T cells, resting NK cells, activated mast cells, monocytes 
and neutrophils were significantly decreased in PAH 
patients compared to control [15, 30]. Differently, a pre-
vious study observed significantly higher proportion of 
naive  CD4+ T cells and central memory T cells but lower 
proportions of cytotoxic T cells, exhausted T cells, type 
17  T helper cells, effector memory T cells, NK T cells, 
NK cells, γδT cells, and  CD8+ T cells in PAH by another 
tool ImmuCellAI  (Immune Cell Abundance Identifier) 
[31]. The inconsistency of the results may be due to use of 
different datasets and analysis methods. Thus, the explo-
ration of novel biomarkers related to immune cell infil-
tration  via  an integrated bioinformatics analysis shows 
promise for the treatment of PAH.

We identified 17 feature genes for the prediction of 
PAH by LASSO regression. The two most significantly 
related modules were found by WGCNA and the genes in 
the two modules were intersected with DEGs. The genes 
in the intersection were used to construct PPI network 
and then 100 core genes were screened. Four hub genes 
CR1, TXNRD1, TLR1 and LTBP1 were identified in the 
insection of 17 feature genes and 100 core genes. CR1, 
TXNRD1 and TLR1 were decreased in PAH, whereas 
LTBP1 was increased in PAH. CR1/CD35, a member 
of the receptors of complement activation (RCA) fam-
ily, plays important roles in the immune response and 
complement cascade. At present, CR1 has not yet been 
reported in PAH. In our study, CR1 was downregulated 
in PAH and positively correlated with monocytes and 
neutrophils, but negatively correlated with memory rest-
ing  CD4+ T cells, which provided some evidence for 
future investigation of the mechanism of CR1-associ-
ated immune cell infiltration in PAH. TXNRD1, a mem-
ber of the thioredoxin (Trx) system that catalyzes Trx1 

reduction, plays a vital role in redox homeostasis [32]. In 
our study, it was shown that TXNRD1 mRNA was sig-
nificantly decreased in human PAH lung samples by bio-
informatics, which is consistent with previous reports 
[6, 33]. TXNRD1 was also downregulated in the serum 
of PAH patients and lungs of MCT-induced PAH rats [6, 
34]. Knockdown of TXNRD1 inhibited platelet-derived 
growth factor (PDGF)-BB promoted pulmonary arterial 
smooth muscle cells (PASMCs) proliferation and migra-
tion. We also found TXNRD1 was positively correlated 
with monocytes and neutrophils, whereas negatively cor-
related with memory resting  CD4+ T cells. TLR1 plays a 
key role in the innate immune system. As a member of 
the TLRs family, TLR1 also plays a fundamental role in 
pathogen recognition and activation of innate immunity. 
Our previous study demonstrated that TLR2 was upregu-
lated in lung of MCT-induced PAH rats and dysregulated 
TLR and NLR pathways was identified in the progression 
of pulmonary vascular remodeling in PAH [7]. However 
TLR1 was decreased in the lung of human PAH patients 
and has a positive correlation with monocytes and neu-
trophils in the study. TLR1 may contribute to PAH via 
regulation of monocytes and neutrophils-related immune 
response and inflammation.

LTBP1, belonging to the family of LTBPs, targets latent 
complexes of TGFβ to ECM and regulation TGFβ activa-
tion. Leppäranta et  al. [35] reported that LTBP1 was sig-
nificantly upregulated inidiopathic pulmonary fibrosis 
(IPF) patient lungs and modulated TGF-β availability and 
activation in different pulmonary compartments in the 
fibrotic lung. TGFβ signaling pathway was overactivated 
in PAH and lead to excessive proliferation, the resistance 
of apoptosis and ECM deposition [29, 30]. ECM deposi-
tion in remodeling pulmonary arteries is thought to be a 
key characteristic of PAH. Our study demonstrated LTBP1 
was increased in human PAH samples by bioinformat-
ics analysis. According to the ROC curve, the values of 
the AUC of LTBP1 was 0.968 with a highest ability to dis-
criminate PAH from the control. We also confirmed that 
LTBP1 was upregulated in lung and pulmonary arteries of 
PAH rats. The correlation coefficient between LTBP1 and 
 CD4+ T cells r = 0.294, but the difference was significant. 
IF results showed that LTBP1 was partly colocalized with 
CD4 in lungs of PAH. These results indicate that LTBP1 
was correlated to immune cells and may regulate immune 
cell function and thus play an important role in the process 
of PAH. Since LTBP1 is one component of ECM and regu-
lates TGFβ signaling pathway and related to immunity and 
inflammation, it was considered as a candidate biomarkers 
of PAH. Furthermore, further studies are needed to inves-
tigate the role of LTBP1 in the development of PAH in vivo 
and in vitro.
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Conclusion
In conclusion, LTBP1 is upregulated and correlated to 
immune infiltration in PAH, identified as a new criti-
cal biomarker for PAH. Our study suggests that LTBP1 
is involved in the development of PAH and serves as a 
potential diagnostic and therapeutic target for PAH.
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