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Abstract 

Purpose Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response 
to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-
induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-
pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we 
aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway.

Methods and results Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial 
cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser 
lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group 
also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Addition-
ally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi appa-
ratus  Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) 
expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). 
Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 
pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing 
partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP.

Conclusion Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress 
via the Nrf2/HO-1 signaling pathway in vivo and in vitro.
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Introduction
Sepsis is a syndrome of dysregulated systemic inflam-
matory response triggered by infection [1]. Patients with 
sepsis are extremely sensitive to acute lung injury (ALI) 
and acute respiratory distress syndrome (ARDS) [2, 3]. 
Sepsis-induced ALI is characterized primarily by an 
uncontrolled cascade of inflammatory reactions [4–6]. 
Clinical strategies for treating sepsis-induced ALI mainly 
include symptomatic supportive methods, but specific 
drugs or therapeutic strategies are still lacking [7]. There-
fore, it is necessary to explore novel mechanisms for the 
treatment of sepsis-induced ALI.

Essential for intracellular lipid and protein transport, 
the Golgi apparatus (GA) has received increasing atten-
tion in inflammatory diseases in recent years [8, 9]. The 
concept of Golgi stress was first introduced in Free Radi-
cal Biology and Medicine in a study reporting the adap-
tive response of GA to harmful stimuli [10]. Researchers 
discovered that Golgi stress is linked to several disor-
ders, including inflammatory diseases and cancer [11, 
12]. Moreover, our previous research revealed that Golgi 
stress is implicated in sepsis-induced ALI and may be 
modulated by heme oxygenase-1 (HO-1) [13]. Therefore, 
modulation of Golgi stress may provide a novel approach 
for healing sepsis-induced ALI.

The Nrf2/HO-1 pathway provides anti-inflammatory 
and antioxidative benefits in oxidative stress diseases 
[14]. Nuclear factor red lineage-2 related factor-2 (Nrf2) 
activity is typically suppressed by specific binding to the 
cytosolic keap1 chaperone protein [15]. When stimulated 
by oxidative stress products, Nrf2 disintegrates from 
keap1, transfers from the cytoplasm to the nucleus, and 
increases the ARE response [16, 17]. As a significant pro-
tein induced by the Nrf2-ARE response, HO-1 facilitates 
heme degradation into biliverdin and CO. These endog-
enous protective chemicals control various cellular func-
tions, including oxidation and apoptosis [18].

Tetramethylpyrazine (TMP) is a bioactive alkaloid 
originating from the Chinese plant chuanxiong. TMP is 
frequently utilized in clinical practice to treat vascular 
disorders because of its multiple functions, such as anti-
platelet effects [19, 20]. Notably, TMP is progressively 
gaining attention for its anti-inflammatory and antioxi-
dative benefits [21, 22]. Jiang et al. [23] found that TMP 
could ameliorate LPS-induced ALI by suppressing apop-
tosis and pyroptosis. TMP has previously been shown to 
ameliorate motor dysfunction by stimulating the PGC-1/
Nrf2/HO-1 pathway [24]. Moreover, researchers have 
found that activating HO-1 reduces endotoxin-induced 
ALI by mitigating Golgi stress [13, 25].

Using LPS-stimulated ALI animals and the MLE12 
cell model, we aimed to investigate whether TMP pre-
treatment prevents endotoxin-induced ALI by reducing 

Golgi stress. Then, we applied Nrf2 knockout or knock-
down technologies to determine whether the Nrf2/HO-1 
signaling pathway is related to the capacity of TMP to 
decrease Golgi stress and ameliorate endotoxin-induced 
ALI.

Methods
Animal preparation
Beijing Huafukang Biotechnology Co. supplied 
6–8-week-old male C57BL/6J mice weighing 20–25 g. 
Jiangsu Huachuang Sino Pharmaceutical Technology Co. 
supplied well-characterized Nrf2-knockout (Nrf2 KO) 
male C57BL/6J mice (6–8-week-old, weighing 20–25 g). 
All animal experiments were conducted in accordance 
with Tianjin Medical Experimental Animal Care stand-
ards, and animal operations were approved by the Ani-
mal Care and Use Committee of Tianjin Nankai Hospital 
(Approval NO. NKYY-DWLL-2022–049). The mice were 
housed in their own cages in a clean and well-ventilated 
animal environment with SPF conditions of 22–24 °C and 
60–65% humidity. Mice were given unrestricted access to 
food and water and kept on a 12-h day/night cycle. All 
animals were anesthetized with 35  mg/kg intraperito-
neal injection of 0.2% pentobarbital sodium, and anes-
thesia was sustained by 1–3% isoflurane breathing. The 
absence of the skin pinch response or toe squeeze reflex 
and relaxation of the mice’s head, neck, and limb muscles 
indicated the correct level of anesthesia.

To study the effect of TMP on LPS-induced ALI, mice 
were randomly assigned to four groups (n = 6/group): 
control group, LPS group, LPS + TMP group, and TMP 
group. In addition, to study the effect of Nrf2/HO-1 
pathway in the TMP-mediated endotoxin-induced ALI, 
WT and Nrf2 KO mice were assigned to six groups 
(n = 6/group): WT + control group, Nrf2 KO + con-
trol group, WT + LPS group, Nrf2 KO + LPS group, 
WT + LPS + TMP group, and Nrf2 KO + LPS + TMP 
group. According to a previous study, 15 mg/kg LPS 
(Escherichia coli, O55:B5 Sigma USA) [26] diluted in 
0.2 ml saline was administered through the caudal vein to 
mice to create models of endotoxin-induced ALI in vivo. 
Mice in the LPS + TMP group (both WT and Nrf2 KO 
mice) were administered 50 mg/kg TMP (Harbin San-
lian Pharmaceutical Co., Ltd. Harbin, China) [27] intra-
peritoneally 1 h before LPS administration. Mice in the 
TMP group were intraperitoneally administered 50  mg/
kg TMP without LPS stimulus. Equal amounts of saline 
were administered to the control groups of WT and 
Nrf2 KO mice. The mice were sacrificed by bloodletting 
and sodium pentobarbital overdose after 12 h of careful 
observation. Serum was collected from blood samples 
centrifuged at 3000 g for 30 min at 4°C following imme-
diate heart puncture. Additionally, the lung tissues were 
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placed in liquid nitrogen or − 80°C freezing for further 
biochemical analysis or histological research. Table 1 pro-
vides an overview of mouse handling and categorization.

Histological analysis
The acquired lung tissues were kept in a 10% paraform-
aldehyde solution for 24 h. After routine dehydration, 
cleaning, and embedding in paraffin, the tissues were cut 
into 4-mm slices and stained with hematoxylin and eosin 
(H&E). Using the BX51-P light microscope (Olympus, 
Japan), lung tissue slices were examined by H&E stain-
ing. A semiquantitative scoring system based on the fol-
lowing parameters was used to assess the level of lung 
injury: misconfiguration of the lung parenchyma, pulmo-
nary edema, neutrophil infiltration, and hemorrhage. In 
brief, the following rating scale was employed: 0 = no or 
little harm, 1 = light damage (25%), 2 = moderate dam-
age (50%), 3 = severe damage (75%), and 4 = extremely 
severe damage (approximately 100%). As previously indi-
cated, the degree of lesions was assessed for all samples, 
and the lung injury scores of the sections were calculated 
by adding the values of each criterion. Two pathologists 
who were not acquainted with the experimental setting 
assessed the lung injury scores.

Wet‑to‑dry weight (W/D) ratio
We collected the right lung tissues and cleaned their sur-
face water using filter paper. We used an electronic scale 
to calculate the weight of the tissues and calculated the 
wet weight. Then, we dried the right lung tissues in an 
oven at 70°C for 48–72 h until the weight remained con-
stant, and the measured value served as the dry weight. 

The formula for calculating W/D was W/D = wet weight/
dry weight.

TUNEL assay
Staining was performed using the DeadEndTM Fluo-
rescent TUNEL System Kit (Roche, USA). Slices were 
deparaffinized and treated for 8–10 min with protease K 
(20 g/ml in PBS). TUNEL labeling buffer (a mixture of 5 
μL nucleotide mix, 45 μL of equilibration buffer, and 1 μL 
rTdT enzyme) was administered, and the samples were 
incubated for 1 h at 37°C in a humidified lucifugal box. 
The slides were protected from light until the experi-
ment was complete. Hematoxylin was used to stain the 
cell nuclei for 10 min. Images were acquired using Image-
Proplus (Media Cybernetics, USA) after mounting the 
slides with an antifade solution.

Enzyme‑linked immunosorbent assay (ELISA) 
quantification
Using ELISA kits (SEKM-0002, SEKM-0007, and SEKM-
0034; Beijing Solarbio Science & Technology Co., Ltd., 
China), we measured the levels of IL-1, IL-6, and TNF- 
in the serum or culture supernatants. Testing was per-
formed according to the manufacturer’s instructions.

Measurement of oxidative stress
An appropriate quantity of lung tissue was collected to 
prepare lung tissue homogenate, and the supernatant was 
obtained for testing. GSH and GSSG levels were meas-
ured using a T-GSH/GSSG assay kit (A061-1; Nanjing 
Jiancheng Institute of Biological Engineering, China). 
GSH and GSSG units are reported in μmol/L. GSH/
GSSG denotes the GSH to GSSG ratio. Malondialdehyde 

Table 1 Animal experimental treatments and groupings

Abbreviations: TMP Tetramethylpyrazine, LPS lipopolysaccharide, ALI acute lung injury, Nrf2 nuclear factor erythroid 2-related factor-2, HO-1 heme oxygenase-1

Grouping Treatment

Effects of TMP on LPS-induced ALI in C57BL/6 J mice (n = 6/group)

 Control Sham operation plus normal saline

 LPS Caudal vein injection of 15 mg/kg LPS diluted in 0.2 ml saline for 12 h

 LPS + TMP 50 mg/kg TMP was pretreated intraperitoneally (i.p.) 1 h prior to LPS challenge

 TMP Sham operation plus 50 mg/kg TMP

Effects of Nrf2/HO-1 pathway on Golgi stress during TMP attenuates lung injury in Nrf2 knockout (Nrf2 KO) and WT mice (n = 6/group)

 WT + Control WT mice + Sham operation plus normal saline

 Nrf2 KO + Control Nrf2 KO mice + Sham operation plus normal saline

 WT + LPS WT mice + Caudal vein injection of 15 mg/kg LPS diluted in 0.2 ml saline for 12 h

 Nrf2 KO + LPS Nrf2 KO mice + Caudal vein injection of 15 mg/kg LPS diluted in 0.2 ml saline 
for 12 h

 WT + LPS + TMP WT mice + 50 mg/kg TMP were intraperitoneally (i.p.) administered 1 h prior to LPS 
challenge

 Nrf2 KO + LPS + TMP Nrf2 KO mice + 50 mg/kg TMP was intraperitoneally (i.p.) administered 1 h prior 
to LPS challenge
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(MDA) content in the cell supernatant was determined 
using an MDA assay kit (A003-2–2; Wuhan Swinbio Bio-
technology Co., China) and reported as nmol/ml. Super-
oxide dismutase (SOD) activity in the cell supernatant 
was determined using a SOD assay kit (A001-3, Nanjing 
Jiancheng Institute of Biological Engineering, China) and 
reported as U/ml.

Immunofluorescence staining
Lung tissue slices were fixed in 4% paraformaldehyde for 
10 min before rinsing twice with PBS. These slices were 
incubated overnight with primary antibody and then 
for an additional hour with fluorescein-coupled second-
ary antibody. Anti-GM130 antibody (Boster, M05865-
2) and 6-diamino-2-phenylindole (DAPI) were used to 
identify GA and nuclear structures. A Nikon confocal 
fluorescence microscope was used to obtain fluorescence 
images.

Western blotting
Lung tissues or cells were homogenized using a lysis 
buffer on ice. The cell lysates were centrifuged at 12000 
rpm for 10 min at 4°C before the supernatant was col-
lected. The protein concentrations were detected with 
the BCA method (Thermo, USA). 50 μg/per well pro-
tein extracts were used for electrophoresis by 10% SDS-
PAGE and transferred to PVDF membranes (Bio-Rad, 
USA). Membranes were horizontally cut to probe pro-
teins with different molecular weights. The membranes 
were not stripped or reprobed. After blocking in Tris-
buffered saline with 5% nonfat powdered milk for 1 h 
at 37℃, the membranes were incubated with primary 
antibodies against Nrf2 (1:500, Cell Signaling, #12721), 
HO-1 (1:10000, Abcam, ab68477), GM130 (1:800, 
Boster, M05865-2), Golgin 97(1:1000, Absin, abs122617), 
ATP2C1 (1:500, Proteintech, 13310–1-AP), GOLPH3 
(1:1000, Abcam, ab98023), and β-actin (1:5000, ZSGB-
BIO, TA-09) at 4°C overnight. After three washes with 
TBST (10 min each), the blots were incubated with the 
appropriate secondary antibody for 1 h. Given its consti-
tutive expression, β-actin was used as the loading control. 
The blots were visualized with an enhanced chemilumi-
nescence system (Bio-Rad) and quantified using ImageJ 
(V1.8.0.112).

Cell treatment
The mouse lung epithelial cell line MLE12 was grown 
in the HITES medium in a 5%  CO2 atmosphere at 
37°C for 24 h before being seeded into 96-well plates 
at 5 ×  104 cells/well. Incubation was extended for 
24 h in the presence of various doses of LPS (0, 0.1, 
0.5, 1, 5, and 10  μg/ml). Different doses of TMP (0, 
2.5, 5, 10, 50, and 100  μg/ml) were added 1 h before 

LPS administration and incubated for 24 h. The Cell 
Counting Kit-8 (CCK-8) assay was performed to select 
the most effective TMP concentration for LPS-stim-
ulated cells. For additional experiments, MLE12 cells 
were cultivated in six-well plates during logarithmic 
growth. Next, these cells were randomized and split 
into five groups: Cells in the LPS group were incubated 
with LPS (5  μg/ml) for 24 h. Cells in the LPS + TMP 
group were pre-incubated with TMP (50 μg/ml) for 1 h 
prior to LPS (5 μg/ml) treatment for 24 h. The control 
group was administered an equivalent volume of saline 
solution. For 48 h, the Nrf2 siRNA + LPS + TMP and 
NC siRNA + LPS + TMP groups were transfected with 
Nrf2 and NC siRNA, respectively. Then, 50 μg/ml LPS 
was added, and 5 μg/ml LPS was added after 1 h. The 
incubation was continued for 24 h. Supernatants from 
the cultivated cells were then obtained for biochemi-
cal analysis, and the cells were collected for western 
blotting. The grouping and treatment of the cells are 
shown in Table 2.

Cell viability
To determine the viability of MLE12 cells exposed to LPS 
with or without TMP, we used the CCK-8 assay (Beyo-
time, Shanghai, China). In short, 10  μl CCK-8 solution 
was added to each well and then incubated at 37°C for 
2.5 h. After mixing the wells, absorbance was recorded 
at 450 nm using a microplate reader (Bio-Rad, Hercules, 
CA, USA).

Transient transfection with siRNA
Nrf2 and NC siRNA were designed and synthesized by 
Suzhou GenePharma Co. Ltd. For transfection experi-
ments, 5 ×  105/ml MLE12 cells were inoculated in 

Table 2 Cell experimental treatments and groupings

Abbreviations: TMP Tetramethylpyrazine, LPS lipopolysaccharide, ALI acute lung 
injury, Nrf2 nuclear factor erythroid 2-related factor-2, HO-1 heme oxygenase-1

Grouping Treatment

Effects of the Nrf2/HO-1 pathway on TMP-mediated Golgi stress 
during LPS-induced oxidative injury in Nrf2 siRNA and NC siRNA-trans-
fected MLE12 cells (n = 6 per group)

 Control Cells are cultured normally 
in medium

 LPS 5 μg/ml LPS incubated for 24 h

 LPS + TMP 50 μg/ml TMP pre-incubated 1 h 
prior to 5 μg/ml LPS for 24 h

 Nrf2 siRNA + LPS + TMP 50 μg/ml TMP pre-incubated 1 h 
prior to 5 μg/ml LPS for 24 h in Nrf2 
siRNA-transfected MLE12 cells

 NC siRNA + LPS + TMP 50 μg/ml TMP pre-incubated 1 h 
prior to 5 μg/ml LPS for 24 h in NC 
siRNA-transfected MLE12 cells
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six-well plates. Cells were transfected with siRNA mixed 
with siRNA-mate reagent in DMEM high-sugar medium 
(Wolcavi Biotechnology Co. Beijing. China). Cells were 
incubated at 37 °C and collected after 48 h to detect the 
level of gene silencing using RT-PCR.

Statistical analysis
All values are presented as mean ± standard error of the 
mean (SEM). A paired t-test was used to compare sig-
nificant differences between the two groups. To com-
pare multiple groups, GraphPad Prism 9.2.0 (GraphPad 
Software, La Jolla, CA) was used for one-way analysis of 
variance followed by the Bonferroni post-test. Statisti-
cal significance was defined as P-values < 0.05 (*P < 0.05; 
**P < 0.01; ***P < 0.001).

Results
TMP ameliorated LPS‑driven lung injury in vivo
We investigated the pathological changes in lung 
specimens, lung injury scores, and the W/D ratio in 
each group to confirm the impact of TMP on LPS-
induced ALI. Preliminary observation of lung speci-
mens in LPS group revealed noticeable pathological 
alterations, thickening of alveolar walls, pulmonary 
edema, severe infiltration of leukocytes, and hem-
orrhage, which were all significantly ameliorated in 
TMP-pretreated mice (Fig. 1A). Two blinded patholo-
gists assessed the lung injury scores. Using the semi-
quantitative system of lung injury scoring, we obtained 
unanimous results. The lung injury score was con-
siderably higher in LPS group than in control group; 

Fig. 1 TMP pretreatment attenuated LPS-induced ALI in mice. A HE staining was applied to assess the histopathological changes in the lung 
sections of LPS-stimulated ALI mice pretreated with or without TMP (original magnification, × 200). Scale bar: 100 μm. B The lung injury scores 
were evaluated by two blinded pathologists to determine the degree of lung injury. C The lung wet/dry (W/D) weight ratio. D-F Proinflammatory 
cytokine IL-1β, IL-6, and TNF-α levels in the serum were detected using ELISA. Data for the bar graphs are presented as mean ± SEM, and multiple 
comparisons were performed using one-way ANOVA with Bonferroni coefficient (n = 6). *Significant difference compared with the control group, 
*P < 0.05; #Significant difference compared with the LPS group, P < 0.05. ALI: acute lung injury; ANOVA: analysis of variance; ELISA: enzyme-linked 
immunosorbent assay; HE: hematoxylin and eosin; LPS: lipopolysaccharide; SEM, standard error of the mean; TMP: tetramethylpyrazine
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Fig. 2 TMP pretreatment alleviated apoptosis and oxidative stress in LPS-stimulated mice. A TUNEL staining for apoptosis in lung tissues. The 
number of TUNEL-positive cells was determined by a blinded pathologist (original magnification, × 400). Scale bar: 100 μm. B, C GSH and GSSG 
levels were detected using T-GSH/GSSG assay kit. D GSH/GSSG ratio. Data for the bar graphs are presented as mean ± SEM, and multiple 
comparisons were performed using one-way ANOVA with Bonferroni coefficient (n = 6). *Significant difference compared with the control group, 
*P < 0.05; #Significant difference compared with the LPS group, P < 0.05. ANOVA: analysis of variance; GSH: glutathione; GSSG: oxidized glutathione; 
LPS: lipopolysaccharide; SEM: standard error of the mean; TMP: tetramethylpyrazine

(See figure on next page.)
Fig. 3 TMP pretreatment mitigated Golgi stress and activated the Nrf2/HO-1 pathway in the LPS-stimulated lung tissues of mice. A 
Immunofluorescence assays of GM130 protein by fluorescence microscope (original magnification, × 400). Scale bar: 100 μm. Red stood was used 
for FITC-GM130 stained sections, and blue stood was used for DAPI-stained nuclear structure. B-H Bands and semiquantification of western 
blotting to evaluate the expression of Golgi stress-related (GM130, Golgin97, ATP2C1, and GOLPH3) and pathway-related (Nrf2 and HO-1) proteins 
in the lung tissues of mice (n = 3 mice/group). The blots were cropped for improving the clarity and conciseness of the presentation. Full-length 
blots were presented in Additional file 1. Band intensity analysis on western blotting images shows their relative ratio to β-actin. Values from three 
independent samples are expressed as mean ± SEM, and multiple comparisons were performed using one-way ANOVA with the Bonferroni 
coefficient. *Significant difference compared with the control group, *P < 0.05; #Significant difference compared with the LPS group, P < 0.05. 
ANOVA: analysis of variance; DAPI: 6-diamino-2-phenylindole; HO-1: heme oxygenase-1; LPS: lipopolysaccharide; Nrf2: nuclear factor-erythroid 
2-related factor 2; SEM: standard error of the mean; TMP: tetramethylpyrazine
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Fig. 3 (See legend on previous page.)
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however, TMP pretreatment dramatically decreased 
this score (Fig. 1B). Noncardiogenic pulmonary edema 
was assessed using the lung W/D ratio. The W/D ratio 
was significantly higher in LPS group than in control 
group, and the W/D ratio was significantly lower in 
LPS + TMP group than in LPS group (Fig. 1C).

To investigate the substantial therapeutic impact 
of TMP on endotoxin-induced ALI, we measured the 
serum levels of proinflammatory cytokines IL-1β, IL-6, 
and TNF-1α. As shown in Fig.  1D-1F, exposure to LPS 
caused an apparent increase in IL-1β, IL-6, and TNF-α 
levels in mice, and TMP administration dramatically 
reduced these inflammatory factors. Therefore, we con-
cluded that TMP ameliorated LPS-induced pulmonary 
pathological damage and inflammatory responses in 
mice. No significant difference was noted between TMP 
and control groups.

TMP ameliorated apoptosis and oxidative stress in mice 
with LPS‑induced ALI
We used TUNEL staining to assess apoptosis in lung tis-
sues (Fig. 2A). The quantity of TUNEL-positive cells was 
substantially lower in control and LPS + TMP groups 
than in LPS group. Thus, LPS stimulation exacerbated 
apoptosis in the lung tissue, which could be mitigated by 
TMP pretreatment.

The serum levels of GSH and GSSG and the GSH/
GSSG ratio are the most common indicators of the 
response to oxidative damage. GSH levels and the GSH/
GSSG ratio in lung tissues were lower, whereas GSSG 
levels were higher in LPS group than in control group 
(Fig.  2B-D). Compared with LPS  group, TMP precon-
ditioning markedly increased GSH levels and the GSH/
GSSG ratio and decreased GSSG levels in the lung tis-
sue. Thus, TMP decreased apoptosis and oxidative 
stress in mice exposed to LPS. In addition, the experi-
mental results of TMP group did not differ substantially 
from those of control group.

TMP alleviated Golgi stress and activated the Nrf2/HO‑1 
signaling pathway following LPS stimulation in vivo
Double immunofluorescence (IF) using GM130 anti-
body (FITC-labeling, red) and DAPI (nuclear staining, 

blue) was used to explore morphological changes in 
GA. Compared with control group, the red fluores-
cence in LPS group became weaker and more diffuse, 
whereas TMP pretreatment alleviated this change 
(Fig.  3A). Then, we evaluated GM130, Golgin97, 
ATP2C1, and GOLPH3 protein expression using 
western blotting to evaluate the level of Golgi stress. 
Compared with control group, LPS treatment down-
regulated GM130, Golgin97, and ATP2C1 protein 
expression and upregulated GOLPH3 protein expres-
sion (Fig. 3B-F). Nevertheless, TMP pretreatment par-
tially attenuated this effect. The results showed that 
TMP pretreatment ameliorated LPS-induced Golgi 
stress exacerbated by LPS. TMP without LPS stimula-
tion had no impact on these variables compared with 
control group.

To further explore whether TMP ameliorates endo-
toxin-induced ALI and Golgi stress via the Nrf2/HO-1 
pathway, we assessed Nrf2 and HO-1 protein expres-
sion. TMP pretreatment significantly upregulated Nrf2 
and HO-1 expression compared with those in LPS group 
(Fig.  3B, G, H). Thus, we surmised that the preventive 
benefits of TMP against endotoxin-induced ALI may be 
mediated via the Nrf2/HO-1 pathway.

Nrf2 KO partially offsetted the protective effects of TMP 
induced by LPS on mice
Nrf2 KO mice were treated with or without LPS or 
TMP using the same method as that used for wild-
type mice. Nrf2 KO + LPS mice showed more severe 
lung histopathological injury, increased inflamma-
tory response, and greater oxidative damage than 
WT + LPS mice. These results validated the role of 
Nrf2 as a protective regulator against endotoxin-
induced ALI.

To further elucidate whether TMP acts as a lung-pro-
tective factor via the Nrf2/HO-1 pathway, we compared 
Nrf2 KO + LPS + TMP group with WT + LPS + TMP 
group. Thickened alveolar walls, alveolar hemorrhage, 
and neutrophil infiltration were more severe in Nrf2 
KO + LPS + TMP group than in WT + LPS + TMP group 
(Fig. 4A). The lung injury scores and W/D ratio were sig-
nificantly higher in Nrf2 KO + LPS + TMP group than in 

Fig. 4 Nrf2 KO partially counteracted the TMP-mediated lung protective effects in LPS-induced lung injury in mice. A The representative 
histopathological changes (HE staining) of the lung (original magnification × 200). Scale bar: 100 μm. B The lung injury scores were evaluated 
by two blinded pathologists to determine the degree of lung injury. C The lung wet/dry (W/D) weight ratio. D-F Proinflammatory cytokines IL-1β, 
IL-6, and TNF-α levels in the serum were detected using ELISA. G-H GSH and GSSG levels were detected using T-GSH/GSSG assay kit. I The GSH/
GSSG ratio. Data for the bar graphs are presented as mean ± SEM, and multiple comparisons were performed using one-way ANOVA with Bonferroni 
coefficient (n =  6/group). ns = no statistical difference, *P < 0.05, **P < 0.01, ***P < 0.001. ANOVA: analysis of variance; ELISA: enzyme-linked 
immunosorbent assay; GSH: glutathione; GSSG: oxidized glutathione; HE: hematoxylin and eosin; KO: knockout; LPS: lipopolysaccharide; Nrf2: 
nuclear factor-erythroid 2-related factor 2; TMP: tetramethylpyrazine; WT: wild-type

(See figure on next page.)
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WT + LPS + TMP group (Fig.  4B, C). Moreover, IL-1β, 
IL-6, and TNF-α levels were increased by 2.45, 3.86, 
and 2.17 times, respectively, in Nrf2 KO + LPS + TMP 
group compared with WT + LPS + MP group (Fig. 4D–
F). The oxidative stress indicators GSH level and the 
GSH/GSSG ratio were significantly lower in Nrf2 
KO + LPS + TMP group than in WT + LPS + TMP group 
(Fig. 4G-I).

We concluded that Nrf2 KO partially counteracted the 
protective effect of TMP towards endotoxin-induced 
ALI. Specifically, TMP attenuated endotoxin-induced 
ALI via the Nrf2 pathway. Moreover, in LPS-stimulated 
Nrf2 KO mice, pretreatment with TMP still partially 
attenuated lung injury and inflammation.

Nrf2 KO mice were used to identify TMP‑mediated lung 
protection by alleviating Golgi stress via the Nrf2/HO‑1 
signaling pathway
To investigate the effect of the Nrf2 pathway on TMP 
pretreatment to attenuate Golgi stress, we used dou-
ble IF with GM130 antibody and DAPI. Compared with 
WT + LPS + TMP mice, we observed decreased fluores-
cence intensity of FITC-GM130 in Nrf2 KO + LPS + TMP 
group (Fig. 5A).

The protein content of Golgi stress-related pro-
teins GM130, Golgin97, ATP2C1, and GOLPH3 was 
evaluated using western blotting. Compared with 
WT + LPS group, Nrf2 KO + LPS group had decreased 
GM130, Golgin97, and ATP2C1 levels and increased 
GOLPH3 levels, suggesting that Nrf2 KO aggravated 
LPS-induced Golgi stress (Fig.  5B-F). Compared 
with WT + LPS + TMP mice, Nrf2KO + LPS + TMP 
mice showed a more remarkable decrease in the pro-
tein content of GM130, Golgin97, and ATP2C1 and 
increased content of GOLPH3. Specifically, the allevia-
tion of Golgi stress by TMP in LPS-stimulated ALI was 
partially offset by Nrf2 knockdown. Nrf2 and HO-1 
protein expression was significantly downregulated in 
the Nrf2 KO groups compared with the WT groups 
(Fig. 5B, G, H).

We concluded that TMP acted partially via the Nrf2/
HO-1 pathway to ameliorate Golgi stress, thereby 

alleviating endotoxin-induced ALI. Notably, Nrf2-defi-
cient mice pretreated with LPS or LPS + TMP exhibited 
similar levels of attenuation of Golgi stress.

TMP attenuated inflammation and oxidative stress 
partially via the Nrf2/HO‑1 pathway in LPS‑stimulated 
MLE12 cells
In endotoxin-induced ALI, alveolar epithelial cells have 
immunomodulatory and self-renewal abilities and play 
a vital role in lung repair [28]. Therefore, using MLE12 
alveolar epithelial cells, we evaluated the effect of TMP 
on LPS-stimulated ALI in  vitro. To simulate a cellular 
model of endotoxin-induced ALI, LPS was co-cultured 
with MLE12 cells at various doses over 24 h, and the 
CCK-8 assay was used to determine cell viability. As 
the concentration of LPS increased, cell viability gradu-
ally decreased (Fig.  6A). Cell viability decreased con-
siderably when the LPS concentration was increased 
to 5 μg/ml. Therefore, 5  μg/ml was used as the LPS 
concentration in the experiments. MLE12 cells were 
treated with 5 μg/ml LPS for 24 h and pretreated with 
2.5, 5, 10, 50, or 100 μg/ml TMP for 1 h. CCK-8 assays 
were then performed (Fig.  6B). A progressive increase 
in cellular viability was detected with 2.5, 5, 10, and 
50  μg/ml TMP pretreatment. The highest effect was 
83.74 ± 1.38% with 50  μg/ml TMP in LPS-treated cells 
(P < 0.05). Thus, 50  μg/ml TMP was selected for the 
subsequent experiments.

To explore the changes in the inflammatory level in 
each group, we determined IL-1β and IL-6 levels using 
the cell supernatant. Compared with control group, 
LPS group had considerably higher levels of IL-1β and 
IL-6, whereas TMP pretreatment reduced this trend 
(Fig.  6C, D). The levels of inflammatory factors were 
higher in Nrf2 siRNA + LPS + TMP group than in 
LPS + TMP group, indicating that the effect of TMP on 
LPS-induced inflammation was partially reversed by 
Nrf2 knockdown.

MDA levels and SOD activity were measured in each 
group to determine the degree of oxidative stress dam-
age. Compared with LPS group, LPS + TMP group dem-
onstrated lower levels of oxidative stress, as shown by 

(See figure on next page.)
Fig. 5 Blocking of the Nrf2/HO-1 pathway by Nrf2 KO partially counteracted the effects of TMP-afforded preservation of Golgi stress 
in endotoxin-induced ALI. A Immunofluorescence staining to observe GM130 protein expression in lung tissue (original magnification, × 400). 
Scale bar: 100 μm. B-H Bands and semi-quantification of western blotting to evaluate the expression of Golgi stress-related (GM130, Golgin97, 
ATP2C1, and GOLPH3) and pathway-related (Nrf2 and HO-1) proteins of lung tissues in mice. The blots were cropped for improving the clarity 
and conciseness of the presentation. Full-length blots were presented in Additional file 2. Band intensity analysis on western blotting images shows 
their relative ratio to β-actin. Values from three independent samples are presented as mean ± SEM, and multiple comparisons were performed 
using one-way ANOVA with the Bonferroni coefficient. ns = no statistical difference, *P < 0.05, **P < 0.01, ***P < 0.001. ANOVA: analysis of variance; 
HO-1: heme oxygenase-1; KO: knockout; Nrf2: nuclear factor-erythroid 2-related factor 2; SEM: standard error of the mean; TMP: tetramethylpyrazine; 
WT: wild-type
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lower MDA levels and higher SOD activity (Fig. 6E, F). 
However, Nrf2 knockdown partially attenuated the anti-
oxidant stress effects of TMP in LPS-treated cells, with 
increased MDA levels and reduced SOD activity com-
pared with the LPS + TMP group.

TMP attenuated LPS‑stimulated ALI by alleviating Golgi 
stress via the Nrf2/HO‑1 pathway in vitro
To further explore the mechanisms underlying the 
above findings, GM130, Golgin97, ATP2C1, and 
GOLPH3 expression and pathway-related protein 
Nrf2 and HO-1 expression were determined. Com-
pared with LPS group, TMP pretreatment in LPS-
stimulated cells significantly upregulated GM130, 
Golgin97, and ATP2C1 protein expression and down-
regulated GOLPH3 protein expression (Fig.  7A-E). 
Nrf2 siRNA + LPS + TMP group exhibited significantly 
higher levels of Golgi stress, as evidenced by decreased 
GM130, Golgin97, and ATP2C1 protein expression 
and increased GOLPH3 protein expression, compared 
with LPS + TMP group. TMP pretreatment upregu-
lated Nrf2 and HO-1 protein expression, whereas Nrf2 
knockdown reduced this effect (Fig.  7A, F-G). The 
above results demonstrated that TMP attenuated Golgi 
stress to alleviate endotoxin-induced ALI via the Nrf2/
HO-1 pathway in vitro.

Discussion
Our findings suggested that TMP alleviated endotoxin-
induced ALI by reducing Golgi stress via the Nrf2/
HO-1 signaling pathway. Previous research has shown 
that TMP can reduce ALI in sepsis via a variety of path-
ways, such as suppression of endoplasmic reticulum 
(ER) stress, apoptosis, and pyroptosis [23, 29]. Relevant 
research has not yet revealed the precise mechanism of 
the preventive impact of TMP on endotoxin-induced 
ALI. For the first time, we found that TMP attenuated 
LPS-stimulated pulmonary inflammation and oxidative 
stress damage via alleviating Golgi stress. In addition, 

the lung protective effect of TMP was partially carried 
out through Nrf2/HO-1 pathway (Fig.  8). Our find-
ings may provide new approaches for the treatment of 
endotoxin-induced ALI.

TMP alleviates LPS‑induced ALI by inhibiting Golgi stress
ALI from sepsis can rapidly develop into increased pul-
monary inflammation and damage to the alveolar-cap-
illary barrier, even progressing to ARDS [30]. Previous 
studies have linked oxidative stress to the pathogenesis 
of sepsis and ALI [31–33]. Sepsis-induced ALI/ARDS, 
for which effective clinical treatment strategies are 
not available, is associated with a high mortality rate. 
Without exception, our research showed severe path-
ological damage, increased proinflammatory factors 
(TNF-1α, IL-1β, and IL-6), and greater oxidative stress 
(decreased GSH content and the GSH/GSSG ratio and 
increased GSSG content) in the LPS-stimulated ALI 
model. Therefore, identification of new treatments 
or mechanisms to treat endotoxin-induced ALI is 
urgently needed.

Golgi apparatus (GA), a complex and essential orga-
nelle in the cytoplasm, has received increasing atten-
tion based on its morphological and functional changes 
in several oxidative stress-related diseases [10, 12, 34]. 
GA response to oxidative stress has been labeled "Golgi 
stress" and is characterized as a stress-repair mecha-
nism comparable to ER stress [10]. GM130 is a curved 
rod-shaped protein located in GA. It is required for 
several biological processes, including vesicle trans-
port and mitosis [35, 36]. The trans-Golgi reticulum 
protein Golgin97 is required for Golgi stability and 
vesicle transport [13]. Both GM130 and Golgin97 par-
ticipate in maintaining GA structure and are consid-
ered markers of Golgi stress. ATP2C1 is a  Ca2+/Mn2+ 
ATPase specifically expressed in GA, and its depletion 
leads to an imbalance in intracellular  Ca2+ homeo-
stasis, increased oxidative stress, GA fragmentation, 
Golgi stress, and even cell death [10]. The reduction 
in ATP2C1 leads to an imbalance in  Ca2+ homeostasis 

Fig. 6 Nrf2 knockdown counteracted the effects of TMP-mitigated LPS-stimulated inflammation and oxidative damage in MLE12 cells. MLE12 
cells were incubated with different LPS concentrations for 24 h, followed by a CCK-8 assay to determine cell viability. Data from five individual 
experiments were analyzed using one-way ANOVA and Bonferroni correction. Significant differences from the LPS = 0 group: *P < 0.05, **P < 0.01, 
***P < 0.001. B CCK-8 assay was used to analyze the viability of MLE12 cells cultivated with different TMP concentrations prior to LPS treatment. 
Data from five individual experiments were analyzed using a one-way ANOVA and Bonferroni correction. Significant difference from TMP = 0 
and LPS = 0 group: *P < 0.05. Significant difference from TMP = 0 and LPS 10 ug/ml group: #P < 0.05. C, D Levels of proinflammatory factors IL-1β 
and IL-6 in the cell supernatant in each group. E, F The levels of MDA and SOD activity indicated the oxidative stress status of each group. Data 
in (C)-(F) are expressed as mean ± SEM, and multiple comparisons were performed using one-way ANOVA with the Bonferroni coefficient (n = 6). 
*Significant difference compared with the control group, P < 0.05; #Significant difference compared with the LPS group, P < 0.05; &Significant 
difference from the LPS + TMP group, P < 0.05. ANOVA: analysis of variance; CCK-8: Cell Counting Kit-8; HO-1, heme oxygenase-1; KO, knockout; LPS, 
lipopolysaccharide; MDA: malondialdehyde; Nrf2: nuclear factor-erythroid 2-related factor 2; SOD: superoxide dismutase; TMP, tetramethylpyrazine

(See figure on next page.)
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and fragmentation of GA. GOLPH3 is a peripheral 
membrane protein that is localized to the trans-GA 
[37]. Increased GOLPH3 expression has been noted in 
ischemia–reperfusion injury [38]. Elevated GOLPH3 
expression further stimulates stress-related autophagy 
and ROS production. As a Golgi stress-inducible pro-
tein, GOLPH3 is positively associated with the degree 
of oxidative stress.

Based on previous studies, we selected GM130, Gol-
gin97, ATP2C1, and GOLPH3 as markers of Golgi 
stress, and the changes in their expression levels indi-
cated that Golgi stress was exacerbated or alleviated. 
Researchers have found that excessive Golgi stress 
may accelerate disease progressions, such as heterozy-
gotes and skeletal muscle dysfunction [37, 39]. Nota-
bly, Golgi stress has been shown to have an important 
role in the pathological phase of endotoxin-induced 
ALI [13]. Interestingly, we found reduced GM130, Gol-
gin97, and ATP2C1 expression and elevated GOLPH3 
expression in the LPS-stimulated lung injury model. 
These findings implied that exacerbated Golgi stress 
is involved in LPS-stimulated lung injury. Therefore, 
drugs that target Golgi stress should be investigated to 
treat endotoxin-induced ALI.

TMP is a bioactive ingredient obtained from the tra-
ditional Chinese medicine chuanxiong, which was arti-
ficially synthesized in the 1970s [39]. TMP has been 
clinically applied in the treatment of stroke, heart attack, 
pulmonary hypertension, and other cardiovascular and 
cerebrovascular diseases owing to its vasodilation and 
inhibition of platelet aggregation effects [19, 40, 41]. 
Studies have demonstrated that TMP alleviates endo-
toxin-induced ALI in experimental models by exerting 
anti-inflammatory, antioxidative, and anti-apoptotic 
actions, but the mechanism has not been thoroughly 
elucidated [23, 41]. Our study found that TMP pretreat-
ment attenuated LPS-stimulated ALI, as demonstrated 
by reduced lung pathology, decreased lung injury scores, 
lower levels of proinflammatory factors, and increased 
levels of oxidative stress. Furthermore, TMP pretreat-
ment upregulated GM130, Golgin97, and ATP2C1 pro-
tein expression but downregulated GOLPH3 expression. 

Therefore, we concluded that TMP alleviated LPS-
induced ALI by inhibiting Golgi stress.

Nrf2/HO‑1 pathway is implicated in TMP‑mediated 
alleviation of Golgi stress and endotoxin‑induced ALI
Nrf2 regulates intracellular protective antioxidants and 
redox reactions [42, 43]. Nrf2 activation is a critical 
mechanism for inhibiting ROS production and control-
ling oxidative stress. Furthermore, Nrf2 is considered 
an important moderator of ALI [44–46]. Activated 
Nrf2 enters the nucleus to bind to AREs and initiates 
the expression of downstream genes, including HO-1. 
HO-1 and its derivatives (carbon monoxide and biliver-
din) have been proven to protect against inflammation 
and oxidative stress [47–49]. Moreover, researchers have 
found that HO-1 helps to protect the lungs by regulat-
ing Golgi stress [13]. According to our findings, TMP 
pretreatment enhanced Nrf2 and HO-1 expression and 
decreased LPS-induced lung damage. TMP exerted a 
pulmonary protective effect via the Nrf2/HO-1 pathway.

We used Nrf2 KO mice and Nrf2 siRNA-transfected 
MLE12 cells for further studies. Nrf2 knockout or knock-
down partially reversed the protective effect of TMP pre-
treatment, based on increased pulmonary pathological 
injury, higher lung injury scores, and increased inflam-
matory and oxidative stress responses. Additionally, sim-
ilar to GM130, Golgin97, and ATP2C1 expression, HO-1 
protein expression was remarkably downregulated and 
GOLPH3 expression was upregulated in Nrf2 deletion 
models. These findings suggested that the Nrf2/HO-1 
pathway is implicated in TMP-mediated alleviation of 
Golgi stress and endotoxin-induced ALI.

In conclusion, TMP pretreatment acted, at least par-
tially, via the Nrf2/HO-1 pathway to inhibit Golgi stress 
to mitigate LPS-stimulated ALI in vivo and in vitro. TMP 
is clinically administered by intravenous infusion for 
10–15 days as a course [39, 50], whereas a single intra-
peritoneal injection method of TMP was used in this 
experiment. Although the translational efficacy of TMP 
is debatable, this preclinical trial laid the framework for 
the use of TMP as a viable option for the prevention of 
sepsis-related lung injury.

(See figure on next page.)
Fig. 7 Nrf2 knockdown partially counteracted the Golgi stress-alleviating effect of TMP in LPS-stimulated MLE12 alveolar epithelial cells. A-G 
Representative western blotting and semi-quantification of Golgi stress-related (GM130, Golgin97, ATP2C1, and GOLPH3) and pathway-related 
(Nrf2 and HO-1) proteins. The blots were cropped for improving the clarity and conciseness of the presentation. Full-length blots were presented 
in Additional file 3. Band intensity analysis on western blotting images shows their relative ratio to β-actin. Data were expressed as mean ± SEM, 
and multiple comparisons were performed using one-way ANOVA with the Bonferroni coefficient (n = 3). *Significant difference compared 
with the control group, P < 0.05; #Significant difference compared with the LPS group, P < 0.05; &Significant difference from the LPS + TMP group, 
P < 0.05. ANOVA: analysis of variance; HO-1, heme oxygenase-1; LPS: lipopolysaccharide; Nrf2: nuclear factor-erythroid 2-related factor 2; SEM: 
standard error of the mean; TMP: tetramethylpyrazine
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Conclusion
In conclusion, the key findings of our investigation were 
as follows: TMP attenuated LPS-stimulated pulmonary 
inflammation and oxidative stress damage by alleviat-
ing Golgi stress via the Nrf2/HO-1 pathway in vivo and 
in  vitro. Selective suppression of Nrf2/HO-1 pathway 
reduced LPS-stimulated Golgi stress and inflammation. 
These data suggested that TMP is a viable therapeutic 
option for endotoxin-induced ALI.
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