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however, its incidence is increasing in Western devel-
oped countries, with an estimated incidence of 2.8–18 
cases per million per year [2]. The current FDA-approved 
drugs (Pirfenidone, Nintedanib) for the treatment of IPF 
have not been shown in clinical studies to prevent or 
reverse the progression of IPF or reduce mortality [3, 4]. 
Therefore, early identification of potential risk factors can 
help prevent the onset of IPF.

Vitamin D can be obtained through dietary supple-
mentation or synthesized in the human skin follow-
ing exposure to sunlight. The active hormonal form (1, 
25-hydroxyvitamin D) is synthesized in the liver and kid-
neys. It has been increasingly recognized that Vitamin D 

Background
Idiopathic pulmonary fibrosis (IPF) is a chronic lung dis-
ease characterized by progressive pulmonary fibrosis of 
unknown etiology and reduced pulmonary function [1]. 
IPF is a relatively rare and a challenging disease to man-
age due to unpredictable, difficulties in early diagno-
sis, deficient in median survival period from diagnosis; 
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Abstract
Background A prospective study of multiple small samples found that idiopathic pulmonary fibrosis (IPF) is often 
accompanied by a deficiency in Vitamin D levels. However, the causal relationship between the two remains to be 
determined. Therefore, our study aims to investigate the causal effect of serum 1,25-hydroxyvitamin D (25(OH)D) on 
the risk of IPF through a two-sample Mendelian randomization (MR) analysis.

Methods Through data analysis from two European ancestry-based genome-wide association studies (GWAS), 
including 401,460 individuals for 25(OH)D levels and 1028 individuals for IPF, we primarily employed inverse-variance 
weighted (IVW) to assess the causal effect of 25(OH)D levels on IPF risk. MR-Egger regression test was used to 
determine pleiotropy, and Cochran’s Q test was conducted for heterogeneity testing. Leave-one-out analysis was 
conducted to examine the robustness of the results.

Results 158 SNPs related to serum 25(OH)D were used as instrumental variables (IVs). The MR analyses revealed 
no evidence supporting a causal association between the level of circulating 25(OH)D and the risk of IPF. The IVW 
method [OR 0.891, 95%CI (0.523–1.518), P = 0.670]; There was no significant level of heterogeneity, pleiotropy and 
bias in IVs. Cochran’s Q test for heterogeneity (MR Egger P = 0.081; IVW P = 0.089); MR-Egger regression for pleiotropy 
(P = 0.774).

Conclusions This MR Study suggests that genetically predicted circulating vitamin D concentrations in the general 
population are not causally related to IPF.
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plays a role in physiological and pathological processes 
of the body beyond bone metabolism, including host 
defense, inflammation, immunity, and repair[5, 6]. Sev-
eral epidemiological studies have shown that patients 
with risk of respiratory diseases often have serum Vita-
min D deficiency. In patients with COPD, low levels 
of 25-OHD were significantly correlated with reduced 
forced expiratory volume in 1 s (FEV1), with more severe 
COPD stages exhibiting higher prevalence of 25-OHD 
deficiency [7]. A randomized controlled trial revealed 
that vitamin D deficiency is common in patients with 
cystic fibrosis (CF), and high-dose vitamin D therapy 
can help regulate the inflammatory response of CF by 
reducing levels of the inflammatory cytokines TNF-a and 
IL-6 [8]. Furthermore, several small-scale prospective 
studies investigating the relationship between vitamin 
D and idiopathic pulmonary fibrosis (IPF) have shown 
that plasma levels of Vitamin D are generally lower or 
deficient in IPF patients, and are closely associated with 
acute exacerbations of IPF [9, 10]. Recently, Tzilas et, al 
have investigated the potential role of vitamin D in pul-
monary fibrosis using animal models and human assess-
ment of plasma Vitamin D levels. The findings suggest 
that Vitamin D supplementation can prevent lung fibro-
sis in mice and decrease fibrotic responses in lung fibro-
blasts. Moreover, Vitamin D deficiency is associated with 
disease severity and poor prognosis in patients with IPF, 
indicating its potential as a prognostic biomarker and 
therapeutic target [11]. However, currently there is no 
large-scale randomized controlled trial (RCT) to study 
the relationship between vitamin D and IPF. Only a lim-
ited number of prospective studies with small sample 
sizes have indicated a deficiency of Vitamin D in IPF 
patients, and its potential role in improvement, but the 
lack of large-scale randomized controlled trials (RCTs) 
limits definitive conclusions.

Mendelian randomization (MR) is a widely used 
method for investigating the causal relationship between 
an exposure and an outcome. By using genetic variants 
as instrumental variables (IVs), MR helps to mitigate con-
founding and reverse causation biases that are inherent in 
observational studies. Thus, an MR study can be thought 
of as a randomized controlled trial (RCT) that allows for 
causal inference of the effect of the exposure on the out-
come [12]. Although current research suggests a possible 
association between vitamin D deficiency and IPF, the 
reliability of existing evidence is low due to the incom-
parability of study designs and methodological limita-
tions. The aim of this study is to conduct a two-sample 
MR analysis to determine the potential role of circulating 
vitamin D status in the risk of IPF.

Method
Study design and data source
In order to assess the potential causal relationship 
between 25(OH)D concentrations and IPF, we con-
ducted a two-sample Mendelian randomization (MR) 
analysis [13]. The validity of instrumental variables relies 
on meeting three key assumptions. Firstly, the genetic 
variants utilized as instrumental variables should be 
significantly associated with the exposure of interest. 
Secondly, the genetic variants should not be associated 
with any confounding factors. Thirdly, the genetic vari-
ants should only impact the outcome through the expo-
sure and not through other pathways (Fig.  1). Genetic 
data on the association between 25(OH)D and IPF were 
obtained from recently published genome-wide associa-
tion studies (GWAS). The ethical reviews and informed 
consent obtained from the original studies were also 
specific to this research. We utilized single-nucleotide 
polymorphisms (SNPs) as instrumental variables (IVs) 
from a genome-wide association study (GWAS) con-
ducted on the UK Biobank (UKB) cohort by Manousaki 
et al. [14]. A total of 401,460 participants of European 
descent from the UK Biobank were included in this study, 
with measurements taken for both 25OHD levels and 
genome-wide genotypes. Summary statistics for IPF were 
extracted from the GWAS conducted by Dhindsa et al. 
[15]. This GWAS analysis included 1028 IPF patients and 
196,986 controls.

Ethical approval
The summary statistics for MR study were obtained from 
GWAS (https://www.ebi.ac.uk). All these data got ethical 
approval and freely available.

Genetic instrumental variables
In order to fulfill the first hypothesis of Mendelian 
randomization (MR) analysis, which posits that the 
instrumental variables (IVs) are strongly linked to the 
25-hydroxyvitamin D (25OHD) biomarker, we selected 
independent IVs that were statistically significant in 
their association with 25OHD at the genome-wide level 
(P < 5 × 10 − 8, linkage disequilibrium < 0.001, genetic dis-
tance = 10,000 KB, minor allele frequency > 0.01).

To avoid potential confounding effects from genetic 
variants, we conducted a search in the PhenoScan-
ner database[16] (https://www.phenoscanner.medschl.
cam.ac.uk) to determine whether the included instru-
mental variables (IVs) were associated with any known 
confounding factors. Currently, there are established 
risk factors for idiopathic pulmonary fibrosis (IPF), 
such as smoking, exposure to dust and reflux esophagi-
tis [1]. Therefore, in this study, we excluded individuals 
with these variants were excluded if any association was 
found. Third, we calculated the F-statistic (F = beta2/se2) 

https://www.ebi.ac.uk
https://www.phenoscanner.medschl.cam.ac.uk
https://www.phenoscanner.medschl.cam.ac.uk


Page 3 of 7Lin et al. BMC Pulmonary Medicine          (2023) 23:309 

[17], since the included IVs were susceptible to weak IVs 
[18].

Statistical analysis
To ensure the reliability and validity of our findings, 
we employed a range of robust statistical methods and 
conducted sensitivity analyses to assess the potential 
impact of various sources of bias. The primary analy-
sis was conducted using an inverse-variance weighted 

(IVW) meta-analysis[19] under a random-effects model. 
To assess the robustness of the results, we performed 
four additional sensitivity analyses: the weighted-
median method [20], MR-Egger method [21], weighted 
mode [22] and simple mode [23]. The weighted-median 
method was employed to obtain valid estimates when 
more than 50% of information came from valid instru-
mental variables (IVs). The MR-Egger method was used 
to evaluate the presence of horizontal pleiotropy among 
selected IVs [21]. We also assessed heterogeneity among 
selected IVs using Cochrane’s Q-value [24]. Further-
more, we conducted a leave-one-out sensitivity analysis 
to examine whether individual single-nucleotide poly-
morphisms (SNPs) disproportionately affected the over-
all estimates [25]. We considered suggestive evidence of 
association when the p-value was between the Bonfer-
roni-corrected value and 0.05, and further confirmation 
was required. All statistical analyses were conducted 
using the “TwoSampleMR” packages in R version 4.2.3 (R 
Foundation for Statistical Computing, Vienna, Austria).

Results
After the clumping process, we identified 158 SNPs 
(Additional file 1) as instrumental variables (IVs) to inves-
tigate the genetic association between Vitamin D levels 
and IPF. Removed the following SNPs for being palin-
dromic with intermediate allele frequencies: rs136224, 
rs2286779, rs2470937, rs2618487, rs589030, rs61826000, 
rs7660883 and two SNPs related smoking (rs11928368, 
rs17309874) was excluded as a confounding factor. Then 
that was displayed in a forest plot (Additional file 2). Sub-
sequently, we conducted Mendelian randomization (MR) 

Table 1 Causal effect of circulating Vitamin D levels on IPF
Exposure Outcome NO.(SNP) Method OR (95% 

CI)
P

25(OH)D IPF 158 MR Egger 0.984(0.414–
2.339)

0.971

25(OH)D IPF 158 Weighted 
median

1.504(0.634–
3.573)

0.354

25(OH)D IPF 158 Inverse 
variance 
weighted

0.891(0.523–
1.518)

0.670

25(OH)D IPF 158 Simple 
mode

1.076(0.091–
12.746)

0.954

25(OH)D IPF 158 Weighted 
mode

1.452(0.670–
3.145)

0.346

IPF: idiopathic pulmonary fibrosis; SNP: single-nucleotide polymorphism; OR: 
odds ratio; CI: confidence interval

Table 2 Pleiotropy and heterogeneity tests of MR
Test Method Effect size P
Heterogeneity Q MR Egger 181.320 0.081

Q IVW 181.415 0.089
Pleiotropy MR-Egger regression -0.002 0.774
Q: Cochran’s Q test; MR: Mendelian randomization; IVW: inverse variance 
weighted

Fig. 1 Schematic diagram of the Mendelian randomization assumptions
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analysis using the remaining 158 SNPs, and the results 
from the IVW method showed no significant causal effect 
of Vitamin D levels on IPF risk IVW (OR = 0.891, 95% CI 
0.523–1.518, P = 0.670) (Table  1). Similarly, MR-Egger 
(OR = 0.984, 95% CI 0.414–2.339, P = 0.971), weighted 
median (OR = 1.504, 95% CI 0.634–3.573, P = 0.354), sim-
ple mode (OR = 1.076, 95% CI 0.091–12.746, P = 0.954) 
and weighted mode (OR = 1.452, 95% CI 0.670–3.145, 
P = 0.346) (Table  1), all indicated no significant associa-
tion between Vitamin D level and IPF, as shown in the 
scatter plot (Fig.  2). Furthermore, we conducted sensi-
tivity analyses to verify the robustness of our findings. 
Firstly, Cochran’s Q test results showed no heterogeneity 
among the IVs (PIVW=0.089, PMR Egger=0.081, Table 2). The 
symmetry of the funnel plot also confirmed the absence 
of heterogeneity (Fig. 3). Secondly, the MR-Egger regres-
sion results indicated no overall horizontal pleiotropy 
across all IVs (P = 0.774, Table  2) suggesting that the 
IVs are unlikely to influence IPF risk through pathways 
other than Vitamin D levels. Finally, the leave-one-out 

sensitivity analysis, which involved removing one SNP at 
a time, yielded consistent results (Additional file 3).

Discussion
In the current MR analysis, we utilized summary statis-
tics from two GWAS conducted on serum 25(OH)D and 
IPF in European populations and constructed a strong 
instrumental variable for 25(OH)D using SNPs. We 
applied a range of MR methods to investigate the rela-
tionship between 25(OH)D and IPF. However, none of 
these analyses provided evidence of a causal relationship 
between 25(OH)D concentration in the general popula-
tion and IPF.

Vitamin D is an essential steroid pro-hormone for the 
regulation of calcium and phosphorus balance of bone 
and muscle, but also plays a role in lung tissue remod-
eling, maintaining lung function and immune system 
regulation [26]. As it enhances the antimicrobial effects 
of macrophages and monocytes, promotes chemotaxis 
and phagocytic capabilities of innate immune cells, and 
activates the transcription of antimicrobial peptides such 

Fig. 2 Scatter plot for the causal effect of 25(OH)D levels on IPF risk. The slope of the straight line indicates the magnitude of the causal association
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as defensin β2 and cathelicidin antimicrobial peptide. 
Additionally, Vitamin D can induce tolerogenic proper-
ties in dendritic cells (DC) to induce a more immature 
and tolerogenic state, leading to the induction of poten-
tial regulatory T cells which are crucial for controlling 
immune responses and the development of autoreactiv-
ity [27]. Vitamin D deficiency concentrations have been 
linked to elevated mortality caused by severe infections, 
including upper respiratory tract infections [28], chronic 
obstructive pulmonary disease [7]. However, clinical tri-
als have shown that Vitamin D does not improve asthma 
outcomes [29]. Respiratory tract infection is one of the 
important predisposing factors of acute exacerbation in 
IPF patients [30]. Although it has been reported Vitamin 
D supplementation can prevent acute respiratory tract 
infections [28].

Unfortunately, there is a lack of large-scale clinical tri-
als of IPF and Vitamin D, and several prospective stud-
ies have shown a possible association between Vitamin D 
deficiency and acute exacerbation of IPF. A prospective 
study by Yang et al. found that decreased serum 25(OH)

D was associated with an increased risk of acute exacer-
bation in patients with IPF including clinical data from 72 
patients with IPF (31 stable IPF and 41 acute exacerba-
tion) [10]. In another prospective study of nutritional sta-
tus assessment in patients with IPF, Vitamin D deficiency 
was observed in 56.3% of cases [9].

In a recent study, Tzilas et al. observed a deficiency in 
serum vitamin D concentrations among patients with 
idiopathic pulmonary fibrosis (IPF) in a clinical sample. 
This deficiency was found to be closely associated with 
disease severity and clinical prognostic indicators of 
respiratory function progression in these patients. Fur-
thermore, they demonstrated through animal experi-
ments inducing lung fibrosis with bleomycin that 
Vitamin D has a preventive effect against pulmonary 
fibrosis. Specifically, they observed that pre-treatment 
with vitamin D significantly reduced the responsiveness 
of mouse lung fibroblasts (MLFs) to pro-fibrotic stimuli, 
as indicated by significant reductions in hydroxyproline, 
collagen, and alpha-smooth muscle actin (α-SMA). This 
effect was found to be associated with the role of vitamin 

Fig. 3 Funnel plot for the overall heterogeneity in the effect of 25(OH)D levels on IPF risk

 



Page 6 of 7Lin et al. BMC Pulmonary Medicine          (2023) 23:309 

D in restoring downregulated downregulation of vitamin 
D-receptor mRNA levels induced by TGFB1 [11]. IPF is 
generally considered to be caused by persistent stimula-
tion of genetic or environmental factors that damage lung 
epithelial cells and activate fibroblasts, leading to lung 
interstitial remodeling [31]. However, the pathogenesis 
of idiopathic pulmonary fibrosis (IPF) involves a com-
plex interplay of cell types and signaling pathway [32]. 
Although all these studies have identified vitamin D defi-
ciency in patients with IPF, these observational studies 
are vulnerable to potential confounding or reverse cau-
sality. Moreover, the bleomycin-induced mouse model of 
pulmonary fibrosis is questionable as a representative of 
IPF.

Nonetheless, there are some restrictions to the study. 
Our research was constrained to European ancestry pop-
ulations. While this may mitigate the bias resulting from 
population stratification, it remains uncertain whether 
the outcomes can be extrapolated to other populations. 
Additionally, we cannot completely disregard the pos-
sibility of diet-gene or gene-environment interactions 
influencing our findings. Our study has several strengths. 
First, this is the first MR Study to assess Vitamin D lev-
els and IPF risk and that the association is causal. Second, 
this MR Study was based on two large sample GWAS 
data from a European population, which provided us 
with sufficient power to estimate causality. Third, the MR 
Analysis revealed no causal association of Vitamin D lev-
els with IPF, which is unlikely to be affected by confound-
ing factors.

In addition, the study has several limitations. First, 
our findings, which are based primarily on participants 
of European ancestry, may not apply to populations 
of other ethnic groups. Second, although we did not 
find the presence of horizontal pleiotropy, there may 
be residual bias because the exact function of most of 
these SNPS is unknown. Third, because our study used 
GWAS summary data rather than individual-level data, 
we were unable to stratifying our analyses according to 
other factors such as age and sex. Fourth, as epidemics 
and diagnostic technologies advance, the diagnosis of IPF 
is likely to experience transformations. Currently, in the 
UK Biobank dataset, IPF diagnosis relies solely on diag-
nostic codes. However, this approach may lack the nec-
essary specificity for accurately identifying IPF and could 
inadvertently encompass other Interstitial Lung Diseases 
(ILD) that have distinct pathophysiological mechanisms. 
The presence of these diverse ILDs within the dataset 
may lead to variations in associations with vitamin D lev-
els, potentially influencing the outcomes of our study.

Conclusions
In general, our research indicates that there is no signifi-
cant association between Vitamin D levels and the devel-
opment of IPF. However, the exact mechanisms between 
Vitamin D and IPF remain unclear, and further patho-
logical and biochemical studies are needed to explore this 
issue.
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