RESEARCH

Effect of fracture risk in inhaled corticosteroids in patients with chronic obstructive pulmonary disease: a systematic review and meta-analysis

Shisheng Peng¹, Cong Tan¹, Lirong Du¹, Yanan Niu¹, Xiansheng Liu^{1,2} and Ruiying Wang^{1*}

Abstract

Background The fracture risk of patients with chronic obstructive pulmonary disease (COPD) treated with inhaled corticosteroids is controversial. And some large-scale randomized controlled trials have not solved this problem. The purpose of our systematic review and meta-analysis including 44 RCTs is to reveal the effect of inhaled corticosteroids on the fracture risk of COPD patients.

Methods Two reviewers independently retrieved randomized controlled trials of inhaled corticosteroids or combinations of inhaled corticosteroids in the treatment of COPD from PubMed, Embase, Medline, Cochrane Library, and Web of Science. The primary outcome was a fracture event. This study was registered at PROSPERO (CRD42022366778).

Results Forty-four RCTs were performed in 87,594 patients. Inhaled therapy containing ICSs (RR, 1.19; 95%CI, 1.04–1.37; P = 0.010), especially ICS/LABA (RR, 1.30; 95%CI, 1.10–1.53; P = 0.002) and triple therapy (RR, 1.49; 95%CI, 1.03–2.17; P = 0.04) were significantly associated with the increased risk of fracture in COPD patients when compared with inhaled therapy without ICSs. Subgroup analyses showed that treatment duration ≥ 12 months (RR, 1.19; 95%CI, 1.04–1.38; P = 0.01), budesonide therapy (RR, 1.64; 95%CI., 1.07–2.51; P = 0.02), fluticasone furoate therapy (RR, 1.37; 95%CI, 1.05–1.78; P = 0.02), mean age of study participants ≥ 65 (RR, 1.27; 95%CI, 1.01–1.61; P = 0.04), and GOLD stage III(RR, 1.18; 95%CI, 1.00–1.38; P = 0.04) were significantly associated with an increased risk of fracture. In addition, budesonide ≥ 320 ug bid via MDI (RR, 1.75; 95%CI, 1.07–2.87; P = 0.03) was significantly associated with the increased risk of fracture.

Conclusion Inhalation therapy with ICSs, especially ICS/LABA or triple therapy, increased the risk of fracture in patients with COPD compared with inhaled therapy without ICS. Treatment duration, mean age of participants, GOLD stage, drug dosage form, and drug dose participated in this association. Moreover, different inhalation devices of the same drug also had differences in risk of fracture.

Keywords Inhaled glucocorticoids, Fracture, COPD, Triple therapy

*Correspondence: Ruiying Wang wry0526@163.com Full list of author information is available at the end of the article

© The Author(s) 2023. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Chronic obstructive pulmonary disease (COPD) is a heterogeneous airway disease, characterized by persistent respiratory symptoms and gradual airflow limitation [1]. With high morbidity and mortality, COPD is the third leading cause of death in the world [2]. Repeated acute exacerbations of COPD patients increase the frequency of hospitalization and are related to poor prognosis [3]. Inhaled corticosteroids (ICSs) and long-acting β_2 -agonists (LABAs) and long-acting muscarinic receptor antagonists (LAMAs) are three independent inhaled drugs, which can be used alone or in combination in the process of the disease progression to reduce the burden of COPD [1]. But, there is still much debate on the appropriate prescription of ICS in patients with COPD. The Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) suggests ICS use has been restricted only to selected COPD patients mainly based on the risk of exacerbations, high blood eosinophilia, or asthmatic [1]. However, some discrepancies between treatment recommendations and real-life use of ICS were found in surveys performed in many countries [4-6]. The current situation of COPD treatment in different regions showed that more than 50% of newly diagnosed patients with COPD receiving ICS-based treatment from the start [5, 6]. Hence, evidences and guidelines are becoming increasingly clear about the imbalance between the risks and benefits of ICSs in patients with COPD.

Although ICS can reduce the risk of exacerbation in COPD patients, it is reported that ICS increase the risk of adverse events, such as pneumonia [7] and upper respiratory infection [8]. It has also been reported that ICSs may increase the risk of fracture events in patients with COPD [9, 10]. In particular, most COPD patients are elderly and have various complications, and with the increase in age long-term inhalation of glucocorticoid may aggravate this risk [11]. Some large randomized controlled trials (RCTs) reported the fracture events of COPD patients treated with ICS, but most of these studies failed to determine the significant difference in fracture risk between ICS treatment group and non-ICS group [12, 13]. According to the TORCH (6112 patients) study in 2007, there is no difference in fracture risk in patients with COPD treated with inhalation therapy containing fluticasone propionate compared with salmeterol and placebo [12]. The adverse event analysis of the SUMMIT trial (23,835 patients) in 2016 showed that there was no difference in fracture risk between ICS treatment group and non-ICS treatment group [13].

Currently, it is still controversial that inhaled corticosteroids increase the risk of fracture in patients with COPD. Whether inhaled glucocorticoids increase the risk of fracture in patients with COPD may depend on the timing, dose, and dosage form of the ICSs treatment. Therefore, we performed a meta-analysis of randomized controlled trials to assess the relationship between ICSs use and fracture risk in patients with COPD. We also aimed to assess the contribution of ICS/LABA and triple therapy on fracture risks.

Methods

This study was conducted according to the Preferred Reporting Item statement for system review and metaanalysis (PRISMA) [14] and was registered with PROS-PERO (CRD42022366778).

Search strategy

Two reviewers independently retrieved articles from PubMed, Embase, Medline, Cochrane Library, and Web of Science, starting in October 2022 and updating in November 2022. The text terms related to COPD and ICSs were used. RCTs published in English were included. Details of the study search terms and the specific process are shown in Table S1.

Selection criteria

Eligible studies were identified by PICOS criteria (participants, interventions, comparators, results and study design) [14]. Inclusion criteria include: (1) patients with COPD; (2) Interventions include any type of inhaled glucocorticoids, including ICSs alone or in combination with LABA and/or LAMA; (3) Non-ICSs treatments are used as the control, including placebo or other drugs that do not contain inhaled corticosteroids; (4) Trials that report fracture event data as a result, or trials that report fracture events on ClinicalTrials.GOV; (5) Only randomized controlled trials were included. Exclusion criteria included: (1) non-randomized controlled trials such as observational studies, case series, and reviews; (2) Non-English manuscripts; (3) Patients with asthma or unknown diagnosis; (4) ICS was adopted in both treatment and control groups.

Data extraction

Two reviewers independently extracted relevant data from included RCTs into standardized collection forms for results and evidence. Differences between the two investigators were resolved through discussions and a third investigator was consulted, as necessary. For articles that did not report all adverse events, we used the information published on ClinicalTrials.gov.

Risk of bias assessment and quality of evidence

Two reviewers independently performed the risk assessment using Cochrane Collaboration's bias risk tool [15]. The evaluation was performed according to the following characteristics: (1) random sequence generation;

(2) distribution concealment; (3) blinding of participant and personnel; (4) Blind method of result evaluation; (5) selective reporting; (6) incomplete of result data; (7) Other biases. Each item was assessed as low, unclear, or high risk of bias. Any differences between the two investigators were resolved through discussions and a third was consulted, as necessary.

Statistical analysis

We used Revman software (version 5.4, Cochran Collaborative Company, London, UK) and Stata software (version 17.0) to conduct meta-analysis on quantitative meta synthesis. The weight of each study was estimated by Mantel-Hanszel method. We calculated the risk ratio (RR) and 95% confidence interval (CI) of fracture risk. P<0.05 is statistically significant. The heterogeneity was tested by I^2 test, with $I^2 > 50\%$, indicating that there was significant heterogeneity. When a large amount of heterogeneity is found, the random effect model will be used; otherwise, the fixed effect model will be used. Publication bias was qualitatively evaluated by a visual funnel diagram, and quantitatively evaluated by the Egger test and the Begg test. We conduct sensitivity analysis by excluding tests that may have the risk of bias. If a *p*-value was less than 0.05 (both tails), the difference was considered statistically significant. We also used the GRADE approach to evaluate the quality of the evidence (Table S3).

Subgroup analyses

We performed several subgroup analyses based on lengths of follow-up (\geq 12 months and < 12 months); the mean age of study participants (\geq 65 and < 65 years); the severity of COPD (GOLD stage II and GOLD stage III); and whether ICS combined with LAMA or LABA (triple therapy versus LAMA/LABA, triple therapy versus control, ICS/LABA versus LABA, ICS/LABA versus LAMA/LABA).

Results

Eligible trials

A total of 44 eligible RCTs reporting information on fracture were included in the meta-analysis (Fig. 1). The characteristics of the 44 RCT were summarized in Table S2. These 44 RCTs recruited 87,594 subjects in total [12, 13, 16–57]. Of these, 31 RCTs (N=56,250) evaluated ICS/ LABA therapy vs. Controls (LAMA only, LABA only, LAMA/LABA, or placebo), and 13 RCTs (N=24,887) assessed ICS/LAMA/LABA vs. Controls (LAMA only, LABA only, LABA only, LAMA/LABA, or placebo). 7 RCTs had a followed-up of 3 months, 14 had a followed-up of 6 months, 16 had a followed-up of 12 months, 1 had a followed-up of 24 months, and 6 had a followed-up of 36 months.

Risk of bias

The results of the bias assessment are summarized in Figure S1. Two RCTs were deemed to be at high risk for performance bias. One trial was deemed to be at high risk for detection bias. Two trials were deemed to be at high risk for attrition bias. One trial was deemed to be at high risk for selection bias. Fourteen RCTs were deemed to be at low risk for bias. Information on withdrawal rates was available for all included studies. The approximate symmetry in the funnel plot indicates the absence of substantial publication bias (Figure S2). The results from the Egger test and Begg test also confirmed no published bias (Figure S3).

Risk of fractures with ICSs therapy vs. Controls

Forty-four RCTs enrolling 87,594 patients with COPD were analyzed. Compared with inhaled therapy without ICSs, inhaled therapy containing ICSs was associated significantly with a increased in fractures risk (RR, 1.19; 95%, 1.04–1.37; P=0.010; heterogeneity: I^2 =0) (Fig. 2, Table 1).

Subgroup analysis based on duration of follow-up revealed that ICSs (23 RCTs; RR, 1.19; 95%CI, 1.04–1.38; P=0.01; heterogeneity: $I^2=0$) was associated with a significantly increased the risk of fractures compared with control in patients who continue the treatment for at least 12 months (Figure S8).

Compared with control, subgroup analysis based on different types revealed that budesonide therapy (12 RCTs; RR, 1.64; 95%CI., 1.07–2.51; *P*=0.02; heterogeneity: $I^2 = 0$) and fluticasone furoate therapy (13 RCTs; RR, 1.37; 95%CI, 1.05–1.78; P=0.02; heterogeneity: $I^2=0$) was associated with a significantly increased the risk of fractures, but did not significantly increase the risk of fractures in patients who were on treatment with triamcinolone, mometasone furoate, fluticasone propionate or beclometasone dipropionate (Fig. 3). And budesonide 320 ug bid (9 RCTs; RR, 1.66; 95%CI., 1.03-2.70; P=0.04; heterogeneity: $I^2 = 0$) was associated with a significantly increased the risk of fractures (Fig. 4). Fluticasone furoate 100 ug qd (11 RCTs; RR, 1.37; 95%CI, 1.04–1.80; *P*=0.02; heterogeneity: $I^2 = 0$) was associated with a significantly increased the risk of fractures (Figure S9b). Grouping based on different inhalation devices, 320 ug bid budesonide via metered-dose inhaler (MDI) (8 RCTs; RR, 1.75; 95%CI, 1.07–2.87; P=0.03; heterogeneity: $I^2=0$) was associated with a significantly increased risk of fractures while 320 ug bid budesonide via dry powder inhaler (DPI) (4 RCTs; RR, 1.88; 95%CI, 0.66–5.40; P=0.24; heterogeneity: $I^2 = 0$) had no relationship with the increase of fracture risk (Fig. 5). Moreover, there was no difference in fracture risk between patients with different inhalation

Fig. 1 Flow of study selection

devices of fluticasone propionate and the control group (Figure S10). Because all the patients who were treated in fluticasone furoate were only absorbed by DPI inhalers, we didn't group them by inhalers.

Subgroup analysis based on mean age of patients revealed that mean age ≥ 65 (6 RCTs; RR, 1.27; 95%CI, 1.01–1.61; P=0.04; heterogeneity: $I^2=0$) was associated with a significantly increased the risk of fractures compared with LABA in patients (Fig. 6).

Subgroup analysis based on GOLD grade revealed that GOLD 3 (28 RCTs; RR, 1.18; 95%CI, 1.00–1.38; P=0.04; heterogeneity: $I^2=0$) was associated with a significantly increased the risk of fractures compared with control (Fig. 7).

Risk of fractures with different ICSs therapy vs. Controls

Of the included RCTs, 31 RCTs (56,250 patients), 13 RCTs (24,887 patients), and 12 RCTs (17,557 patients)

involved ICS/LABA, triple therapy, and mono-ICS therapy. ICS/LABA (RR, 1.30; 95%CI, 1.10–1.53; P=0.002; heterogeneity: $I^2=0$) or triple therapy (RR, 1.49; 95%CI, 1.03–2.17; P=0.04; heterogeneity: $I^2=0$), rather than mono-ICS therapy (RR, 1.07; 95%CI, 0.86–1.33; P=0.52; heterogeneity: $I^2=4$), was associated with a significantly increased the risk of fractures in patients compared with controls (Figs. 8a and 9a, Figure S4).

Risk of fractures with ICS/LABA vs. different controls

Of 31 RCTs for ICS/LABA therapy compared with controls, ICS/LABA compared with LABA (19 RCTs; RR, 1.24; 95%CI, 1.01–1.44; P=0.04; heterogeneity: $I^2=0$) and ICS/LABA compared with placebo (6 RCTs; RR, 1.32; 95%CI, 1.04–1.69; P=0.02; heterogeneity: $I^2=35$), rather than ICS/LABA compared with LAMA/LABA (8 RCTs; RR, 1.28; 95%CI, 0.94–2.10; P=0.10; heterogeneity: $I^2=0$) or ICS/LABA compared with LAMA (3

	ICS	5	Cont	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I M-H, Fixed, 95% Cl
Anzueto et al 2009	3	394	0	403	0.1%	7.16 [0.37, 138.16]	
Bansal et al 2021	1	400	0	400	0.1%	3.00 [0.12, 73.42]	
Beeh et al 2016 (ENERGITO)	0	431	2	436	0.7%	0.20 [0.01, 4.20]	· · · · · · · · · · · · · · · · · · ·
Bhatt et al 2017	3	135	1	295	0.2%	6.56 [0.69, 62.45]	
Burge et al 2000 (ISOLDE)	9	376	17	375	4.5%	0.53 [0.24, 1.17]	
Calverley et al 2007 (TORCH)	181	3067	156	3045	41.3%	1.15 [0.94, 1.42]	· · · · · · · · · · · · · · · · · · ·
Calverley et al 2008	6	616	3	295	1.1%	0.96 [0.24, 3.80]	
Chapman et al 2018 (SUNSET)	0	526	1	527	0.4%	0.33 [0.01, 8.18]	· · · · · · · · · · · · · · · · · · ·
Covelli et al 2016	1	310	0	313	0.1%	3.03 [0.12, 74.07]	
Doherty et al 2012	3	717	1	479	0.3%	2.00 [0.21, 19.21]	
Dransfield et al 2013	11	2437	2	818	0.8%	1.85 [0.41, 8.31]	
Ferguson et al 2008	3	394	2	388	0.5%	1.48 [0.25, 8.79]	
Ferguson et al 2017	8	605	2	613	0.5%	4.05 [0.86, 19.01]	
Ferguson et al 2018 (KRONOS)	2	1271	2	625	0.7%	0.49 [0.07, 3.48]	
Ferguson et al 2018 (TELOS)	8	1717	2	644	0.8%	1.50 [0.32, 7.05]	
Huang et al 2019	0	290	1	292	0.4%	0.34 [0.01, 8.20]	
Ichinose et al 2019	5	278	0	138	0.2%	5.48 [0.31, 98.40]	
Kerwin et al 2013	0	618	3	412	1.1%	0.10 [0.00, 1.84]	← → ↓ ↓
Kerwin et al 2019	1	282	1	174	0.3%	0.62 [0.04, 9.80]	
Lee et al 2016	1	287	0	290	0.1%	3.03 [0.12, 74,10]	
Lipson et al 2018 (IMPACT)	62	8285	10	2070	4.2%	1.55 [0.80, 3.02]	
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	2.1%	0.75 [0.26, 2.15]	
Mahler et al 2002	3	333	1	341	0.3%	3.07 [0.32, 29.38]	
Maltais et al 2020	12	141	7	142	1.8%	1.73 [0.70, 4.26]	+
Martinez et al 2013	2	816	0	408	0.2%	2.50 [0.12, 52.02]	
Ohar et al 2014	2	314	1	325	0.3%	2.07 [0.19, 22,71]	
Papi et al 2017 (EFFECT)	5	1175	2	590	0.7%	1.26 [0.24, 6.45]	
Papi et al 2018 (TRIBUTE)	2	764	3	768	0.8%	0.67 [0.11, 4.00]	
Pauwels et al 1999 (EUROSCOP)	8	634	3	643	0.8%	2.70 [0.72, 10,15]	+
Pepin et al 2014	1	127	0	130	0.1%	3.07 [0.13, 74.67]	
Rabe et al 2020 (ETHOS)	55	6389	10	2120	4.0%	1.83 [0.93, 3.57]	
Scanlon et al 2004	14	201	21	211	5.4%	0.70 [0.37, 1.34]	
Sharafkhaneh et al 2012	4	815	3	403	1.1%	0.66 [0.15, 2.93]	
Siler et al 2017	0	806	3	814	0.9%	0 14 [0 01 2 79]	· · · · · · · · · · · · · · · · · · ·
Tashkin et al 2008	1	1120	1	584	0.3%	0.52 [0.03, 8.32]	
Tashkin et al 2012	. 7	634	. 6	421	1.9%	0 77 [0 26 2 29]	
Vesto et al 2016 (SUMMIT)	72	8297	53	8271	14.0%	1 35 [0 95 1 93]	
Vestbo et al 2017 (TRINITY)	6	1614	2	1076	0.6%	2 00 [0 40 9 89]	
Vogelmeier et al 2016 (AFFIRM)	5	466	1	467	0.3%	5 01 [0 59 42 72]	
Wedzicha et al 2008 (INSPIRE)	4	658	1	665	0.3%	4 04 [0 45 36 07]	
Wedzicha et al 2016 (FLAME)	10	1682	10	1680	2.6%	1 00 [0 42 2 39]	
Welte et al 2009	0	329	1	331	0.4%	0.34 [0.01 8 20]	
Wouters et al 2005	5	155	5	138	1.4%	0.89 [0.26, 3.01]	
Zheng et al 2015	0	481	3	162	1.4%	0.05 [0.20, 0.01]	·
	0	-701	5	102	1 /0	0.00 [0.00, 0.00]	
Total (95% CI)		52630		34964	100.0%	1.19 [1.04, 1.37]	◆
Total events	532		351				
Heterogeneity: Chi ² = 41.56, df = 43	(P = 0.53)	; I ² = 0%	6				
Test for overall effect: Z = 2.58 (P = 0	0.010)						Favours [ICSs] Favours [control]

Fig. 2 Meta-analysis of included RCTs of ICSs therapy vs. Inhaled therapy without ICSs for fracture risk

RCTs: RR, 3.55; 95%CI, 0.74–17.03; P=0.11; heterogeneity: I^2 =0) were associated with a significantly increased the risk of fractures in patients compared with controls (Fig. 8b, c, Figure S5a, b).

Subgroup analysis for risk of fractures with ICS/LABA vs. LABA

Subgroup analysis based on mean age of patients revealed that mean age \geq 65 (6 RCTs; RR, 1.27; 95%CI, 1.01–1.61; P=0.04; heterogeneity: I^2 =0) was associated

with a significantly increased the risk of fractures compared with LABA in patients (Figure S6b).

Risk of fractures with triple therapy vs. different controls

Of 13 RCTs for triple therapy compared with controls, triple therapy compared with LAMA/LABA (8 RCTs; RR, 1.51; 95%CI, 1.01–2.25; P=0.04; heterogeneity: $I^2=0$) rather than triple therapy compared with LAMA (5 RCTs; RR, 1.38; 95%CI, 0.49–3.88; P=0.54; heterogeneity: $I^2=0$) was associated with a significantly increased

Table 1 Subgroup analysis and GRA	ADE evidence									
Results	No. of Participants	No. of Studies	Inhaled Th Containing	erapy g ICSs	Inhaled Th Without Io	nerapy CSs	Risk Ratio (M-H, Fixed,95% CI)	<i>P</i> value	12 (%)	GRADE evidence
			Events	Patients	Events	Patients				
Risk of fracture for ICSs vs. controls	87,594	44	532	52,630	351	34,964	1.19 (1.04,1.37)	0.010	0	Moderate
Risk of fracture for ICSs vs. Controls ac	cording to differen	t duration of	treatment							
< 12 months	19,840	21	48	11,486	29	8354	1.20 (0.79,1.81)	0.39	13	Low
≥12 months	67,387	23	489	40,970	326	26,417	1.19 (1.04,1.38)	0.01	0	High
Risk of fracture for ICSs vs. Controls ac	cording to differen	t type of trea	itment							
Triamcinolone	412	,	14	201	21	211	0.70 (0.37,1.34)	0.28	AN	Very low
Mometasone furoate	3162	e	16	1967	10	1195	0.95 (0.43,2.10)	6.0	0	Low
Beclometasone dipropionate	4222	2	8	2378	5	1844	1.26 (0.40,3.99)	0.69	0	Moderate
Budesonide	20,874	12	93	14,017	26	6857	1.64 (1.07,2.51)	0.02	0	High
160 ug bid	8256	9	20	4024	17	4232	1.17 (0.62,2.18)	0.63	0	Low
320 ug bid	14,342	6	60	8747	22	5595	166 (1.03,2.70)	0.04	0	High
Fluticasone furoate	38,021	13	170	23,319	95	14,702	1.37 (1.05,1.78)	0.02	20	Moderate
50 ug qd	2578	c	4	1186	00	1392	0.66 (0.21,2.05)	0.47	32	Moderate
100 ug qd	34,522	11	160	20,287	82	14,235	1.37 (1.04,1.80)	0.02	0	Moderate
200 ug qd	2767	3	9	1379	5	1388	1.18 (0.40,3.50)	0.77	37	Moderate
Fluticasone propionate	20,903	13	231	10,748	206	10,155	1.10 (0.92,1.32)	0.62	0	Moderate
250 ug bid	4044	5	11	1902	7	2142	1.72 (0.68,4.34)	0.25	0	Low
500 ug bid	18,898	11	225	9346	204	9552	1.10 (0.92,1.32)	0.31	0	Low
Risk of fracture for ICSs vs. Controls ac	cording to differen	t mean age								
< 65	45,519	30	183	28,000	115	17,519	1.08 (0.85,1.37)	0.53	ŝ	Low
≥ 65	42,075	14	349	24,630	236	17,445	1.26 (1.07,1.48)	0.007	0	Moderate
Risk of fracture for ICSs vs. Controls ac	cording to differen	t GOLD grad	a							
GOLD 2	28,500	12	125	15,025	96	13,475	1.26 (0.97,1.63)	0.08	22	Low
GOLD 3	56,585	28	394	36,121	247	20,464	1.18 (1.00,1.38)	0.04	0	High
Risk of fracture for different ICSs vs. co	ontrols									
Triple therapy vs controls	24,887	13	98	14,834	39	10,053	1.49 (1.03,2.17)	0.04	0	High
ICS/LABA VS controls	56,250	31	274	28,144	292	28,106	1.30 (1.10,1.53)	0.002	0	High
ICSs vs. PLACEBO	17,557	12	164	9037	149	8520	1.07 (0.86,1.33)	0.52	4	Moderate
Risk of fracture for triple therapy vs. di	ifferent controls									
triple therapy vs LAMA/LABA	19,578	80	06	11,914	35	7664	1.51 (1.01,2.25)	0.04	0	High
triple therapy vs LAMA	5309	5	00	2920	4	2389	1.38 (0.49,3.88)	0.54	0	Low
Risk of fracture for triple therapy vs. L/	AMA/LABA accordi	ng to differer	nt duration of	treatment						
6 months	2594	3	2	1304	3	1290	0.74 (0.17,3.31)	0.7	0	Low

Results	No. of Participants	No. of Studies	Inhaled Th Containin	ierapy g ICSs	Inhaled Tl Without I	nerapy CSs	Risk Ratio (M-H, Fixed,95% CI)	<i>P</i> value	12 (%)	GRADE evidence
			Events	Patients	Events	Patients				
12 months	16,984	5	88	10,610	32	6374	1.59 (1.05,2.41)	0.03	0	High
Risk of fracture for triple therapy vs.	.LAMA/LABA accord	ing to differe	nt mean age							
< 65	10,763	4	45	6459	22	4304	1.29 (0.76,2.20)	0.34	0	Moderate
≥65	8815	4	45	5455	13	3360	1.82 (0.99,3.36)	0.06	0	Low
Risk of fracture for triple therapy vs.	LAMA/LABA accord	ing to differe	nt GOLD grad	e						
GOLD 2	2317	2	1	1165	m	1152	0.42 (0.06,2.86)	0.38	0	Moderate
GOLD 3	16,616	4	87	10,416	31	6200	1.61 (1.05,2.45)	0.03	19	High
Risk of fracture for ICS/LABA vs. diffe	erent controls									
ICS/LABA VS LAMA/LABA	17,413	8	63	9703	36	7710	1.28 (0.94,2.10)	0.10	0	Moderate
ICS/LABA VS LABA	29,059	19	204	16,865	146	12,194	1.24 (1.01,1.44)	0.04	0	High
ICS/LABA VS LAMA	2203	S	9	1095	-	1108	3.55 (0.74,17.03)	0.11	0	Moderate
ICS/LABA VS PLACEBO	13,249	9	143	6878	105	6371	1.32 (1.04,1.69)	0.02	35	Moderate
Risk of fracture for ICS/LABA vs. LAB	A according to diffe	rent duration	of treatment							
3 months	1620	, -	0	806	ŝ	814	0.14 (0.01, 2.79)	0.2	NA	Low
6 months	6372	7	22	3987	6	2385	1.67 (0.83, 3.37)	0.15	7	Moderate
12 months	9450	8	36	6258	19	3192	1.07 (0.62, 1.83)	0.82	0	Low
36 months	11,617	3	146	5814	115	5803	1.26 (1.00, 1.47)	0.05	0	High
Risk of fracture for ICS/LABA vs. LAB	A according to diffe	rent mean ag	a							
< 65	14,736	13	52	9716	27	5020	1.12 (0.72, 1.76)	0.61	0	Moderate
≥ 65	14,323	9	152	7149	119	7174	1.27 (1.01, 1.61)	0.04	0	Moderate
Risk of fracture for ICS/LABA vs. LAB	A according to diffe	rent GOLD gra	ade							
GOLD 2	12,627	5	59	6733	43	5894	1.29 (0.87,1.90)	0.20	0	Moderate
GOLD 3	15,799	13	141	9708	98	6091	1.27 (0.99,1.63)	0.06	0	High

Peng et al. BMC Pulmonary Medicine (2023) 23:304

Table 1 (continued)

Study or Subgroup	Events	Total	Events	Total	Weight	M-H. Fixed, 95% C	I M-H. Fixed, 95% CI
1.2.1 Triamcinolone							
Scanlon et al 2004	14	201	21	211	5.4%	0.70 [0.37, 1.34]	
Subtotal (95% CI)		201		211	5.4%	0.70 [0.37, 1.34]	
Total events	14		21				
Heterogeneity: Not applicable							
Test for overall effect: Z = 1.08 (P =	0.28)						
1.2.2 Mometasone furoate							
Calverley et al 2008	6	616	3	295	1.1%	0.96 [0.24, 3.80]	
Doherty et al 2012	3	717	1	479	0.3%	2 00 0 21 19 21	
Tashkin et al 2012	7	634	6	421	1.9%	0 77 10 26 2 201	
Subtotal (95% CI)		1967	Ŭ	1195	3.3%	0.95 [0.43, 2.10]	-
Total events	16		10				
Heterogeneity: $Chi^2 = 0.56$ df = 2 (P	= 0.76).	² = 0%					
Test for overall effect: Z = 0.12 (P =	0.90)	070					
1 2 3 Beclometasone dinronionate							
Papi et al 2018 (TRIBUTE)	. 2	764	3	768	0.8%	0.67 [0.11, 4.00]	
Vestho et al 2017 (TRINITY)	6	1614	2	1076	0.6%	2 00 [0 40 9 89]	
Subtotal (95% CI)	0	2378	-	1844	1.4%	1.26 [0.40, 3.99]	
Total events	8	2010	5			1120 [0140, 0100]	
Heterogeneity: $Chi^2 = 0.80$, df = 1 (P Test for overall effect: Z = 0.40 (P =	= 0.37); l [:] 0.69)	2 = 0%	0				
1.2.4 Budesonide							
Ferguson et al 2017	8	605	2	613	0.5%	4.05 [0.86 19.01]	+
Ferguson et al 2018 (KRONOS)	2	1271	2	625	0.7%	0.49 [0.07 3 48]	
Ferguson et al 2018 (TELOS)	8	1717	2	644	0.8%	1.50 [0.32, 7.05]	— — • — —
Huang et al 2019	0	290	1	292	0.4%	0.34 [0.01 8 20]	
Ichinose et al 2019	5	278	0	138	0.2%	5,48 [0.31 98 40]	
Kerwin et al 2019	1	282	1	174	0.3%	0.62 [0.04. 9.80]	
Lee et al 2016	1	287	0	290	0.1%	3.03 [0.12. 74.10]	
Pauwels et al 1999 (EUROSCOP)	. 8	634	3	643	0.8%	2 70 [0 72, 10 15]	<u> </u>
Rabe et al 2020 (ETHOS)	55	6389	10	2120	4.0%	1 83 [0 93 3 57]	
Sharafkhaneh et al 2012	4	815		403	1.1%	0.66 [0.15, 2.93]	
Tashkin et al 2008	1	1120	1	584	0.3%	0.52 [0.03, 8.32]	
Welte et al 2009	0	329	. 1	331	0.4%	0.34 [0.01, 8.20]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)	· ·	14017		6857	9.6%	1.64 [1.07, 2.51]	◆
Total events	93		26			• • •	
Test for overall effect: Z = 2.27 (P =	0.02)						
Anzueto et al 2009	3	304	0	403	0.1%	7 16 [0 37 139 16]	
	3	421	0	403	0.1%	0.20 [0.07, 100.10]	← → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ → ↓ →
Burge et al 2000 (ISOLDE)	٥ ٥	376	17	375	1 5%	0.53 [0.24 1 17]	
Calverley et al 2007 (TORCH)	181	3067	156	3045	41.3%	1 15 [0 94 1 42]	-
Chapman et al 2018 (SUNSET)	0	526	100	527	0.4%	0.33 [0.01 8.18]	
Eerguson et al 2008	3	304	2	388	0.4%	1 / 8 [0 25 8 70]	
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	2.1%	0 75 [0 26, 2 15]	
Mabler et al 2002	3	333	1	341	0.3%	3 07 10 32 29 381	
Obar et al 2014	2	314	1	325	0.3%	2 07 [0.02, 20.00]	
Papi et al 2017 (EFFECT)	2 5	1175	2	590	0.3%	1.26 [0.24 6 45]	
Wedzicha et al 2008 (INSPIRE)		658	- 1	665	0.3%	4 04 [0 45 36 07]	
Wedzicha et al 2016 (FLAME)	10	1682	10	1680	2.6%	1.00 [0 42 2 30]	
Wouters et al 2005	.5	155	.5	138	1.4%	0.89 [0.26, 3.01]	——————————————————————————————————————
Subtotal (95% CI)	5	10748	5	10155	55.1%	1.10 [0.92, 1.32]	*
Total events	231		206				
	P = 0.62	l² = 0%					
Heterogeneity: $Chi^2 = 9.95$, df = 12 (Test for overall effect: Z = 1.02 (P =	0.31)						
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate	0.31)						
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021	0.31) 1	400	0	400	0.1%	3.00 [0.12, 73.42]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017	0.31) 1 3	400 135	0	400 295	0.1% 0.2%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2016	0.31) 1 3 1	400 135 310	0 1 0	400 295 313	0.1% 0.2% 0.1%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2016 Dransfield et al 2013	0.31) 1 3 1 1	400 135 310 2437	0 1 0 2	400 295 313 818	0.1% 0.2% 0.1% 0.8%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2013 Kerwin et al 2013	0.31) 1 3 1 11 0	400 135 310 2437 618	0 1 0 2 3	400 295 313 818 412	0.1% 0.2% 0.1% 0.8% 1.1%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84]	· · · · · · · · · · · · · · · · · · ·
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2016 Dransfield et al 2013 Kerwin et al 2013 (IMPACT)	1 0.31) 1 3 1 11 0 62	400 135 310 2437 618 8285	0 1 0 2 3 10	400 295 313 818 412 2070	0.1% 0.2% 0.1% 0.8% 1.1% 4.2%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02]	· · · · · · · · · · · · · · · · · · ·
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2016 Dransfield et al 2013 Kerwin et al 2013 Lipson et al 2018 (IMPACT) Maltais et al 2020	1 0.31) 1 3 1 11 0 62 12	400 135 310 2437 618 8285 141	0 1 0 2 3 10 7	400 295 313 818 412 2070 142	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 1.8%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26]	· · · · · · · · · · · · · · · · · · ·
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2017 Kerwin et al 2013 Lipson et al 2013 Maltais et al 2020 Martinez et al 2013	1 0.31) 1 3 1 11 0 62 12 2	400 135 310 2437 618 8285 141 816	0 1 0 2 3 10 7 0	400 295 313 818 412 2070 142 408	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 1.8% 0.2%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2017 Covelli et al 2013 Kerwin et al 2013 Lipson et al 2013 (IMPACT) Maltais et al 2020 Martinez et al 2013 Pepin et al 2014	1 0.31) 1 11 11 0 62 12 2 1	400 135 310 2437 618 8285 141 816 127	0 1 2 3 10 7 0 0	400 295 313 818 412 2070 142 408 130	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 1.8% 0.2% 0.1%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Dransfield et al 2013 Kerwin et al 2013 Matiais et al 2013 Matiais et al 2020 Martinez et al 2013 Pepin et al 2017	1 0.31) 1 3 1 1 1 1 0 62 12 2 1 0	400 135 310 2437 618 8285 141 816 127 806	0 1 2 3 10 7 0 0 3	400 295 313 818 412 2070 142 408 130 814	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 1.8% 0.2% 0.1% 0.9%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [(0.01, 2.79]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2017 Kerwin et al 2013 Lipson et al 2013 (IMPACT) Maltais et al 2020 Martinez et al 2013 Pepin et al 2014 Siler et al 2017 Vestbo et al 2016 (SUIMMIT)	1 0.31) 1 3 1 11 0 62 12 2 1 0 72	400 135 310 2437 618 8285 141 816 127 806 8297	0 1 2 3 10 7 0 0 3 53	400 295 313 818 412 2070 142 408 130 814 8271	0.1% 0.2% 0.1% 1.1% 4.2% 1.8% 0.2% 0.1% 0.9%	3.00 [0.12, 73.42] 6.56 [0.69, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.75 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Covelli et al 2017 Covelli et al 2017 Covelli et al 2017 Kerwin et al 2013 Lipson et al 2018 (IMPACT) Maltais et al 2020 Martinez et al 2013 Pepin et al 2013 Siler et al 2014 Siler et al 2014 Siler et al 2016 (SUMMIT) Voselhei et al 2016 (AFFIRM)	1 0.31) 1 3 1 1 1 0 62 12 2 12 2 1 0 72 5	400 135 310 2437 618 8285 141 816 127 806 8297 466	0 1 2 3 10 7 0 0 3 53 53	400 295 313 818 412 2070 142 408 130 814 8271 467	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 1.8% 0.2% 0.1% 0.9% 14.0% 0.3%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42, 72]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Dransfield et al 2013 Kerwin et al 2013 Matais et al 2013 Matais et al 2020 Martinez et al 2013 Pepin et al 2014 Siler et al 2017 Vestbo et al 2016 (SUMMIT) Vogelmeier et al 2015	1 0.31) 1 3 1 1 3 1 1 1 0 62 12 2 12 2 1 0 72 5 0	400 135 310 2437 618 8285 141 816 127 806 8297 466 481	0 1 0 2 3 10 7 0 0 3 3 5 3 1 3	400 295 313 818 412 2070 142 408 130 814 8271 467 162	0.1% 0.2% 0.8% 1.1% 4.2% 1.8% 0.2% 0.1% 0.9% 14.0% 0.3%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0 n0 0.033]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Kerwin et al 2013 Lipson et al 2013 Kerwin et al 2013 Martinez et al 2013 Martinez et al 2013 Pepin et al 2014 Siler et al 2017 Vestbo et al 2016 (SUMMIT) Vogelmeier et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI)	1 0.31) 1 3 1 11 11 0 62 12 2 1 1 0 72 5 0	400 135 310 2437 618 8285 141 816 127 806 8297 466 8297 466 481 23319	0 1 0 2 3 10 7 0 0 3 5 3 1 3	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 0.2% 0.1% 0.9% 14.0% 0.3% 1.4% 25.2%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.75 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Covelli et al 2017 Covelli et al 2017 Covelli et al 2013 Kerwin et al 2013 Lipson et al 2013 Martinez et al 2013 Martinez et al 2013 Pepin et al 2014 Siler et al 2014 Siler et al 2016 (SUMMIT) Vogelmeier et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI)	1 0.31) 1 3 1 1 11 0 62 12 2 12 2 1 0 72 5 0 72	400 135 310 2437 618 8285 141 816 8297 466 481 23319	0 1 0 2 3 10 7 0 3 3 53 1 3 83	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702	0.1% 0.2% 0.8% 1.1% 4.2% 0.2% 0.1% 0.9% 14.0% 0.3% 1.4% 25.2%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2017 Kerwin et al 2013 Lipson et al 2013 (IMPACT) Mattais et al 2013 Pepin et al 2014 Siler et al 2014 Siler et al 2014 Siler et al 2016 (SUMMIT) Vogelmeier et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 14.92, df = 12	1 3 1 1 1 1 1 1 1 0 62 2 12 2 1 0 72 5 0 72 5 0 (P = 0.25)	400 135 310 2437 618 8285 141 816 127 806 8297 466 481 23319 ; ² = 205	0 1 2 3 10 7 0 0 3 5 3 1 3 8 3 6	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702	0.1% 0.2% 0.8% 1.1% 0.2% 0.1% 0.9% 14.0% 0.3% 14.0% 0.3%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Dransfield et al 2013 Kerwin et al 2013 Kerwin et al 2013 (IMPACT) Maltais et al 2013 Pepin et al 2014 Siler et al 2017 Vestbo et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 14.92, df = 12 Test for overall effect: Z = 2.31 (P =	1 3 1 1 3 1 11 0 62 2 2 12 2 1 0 72 5 0 72 5 0 (P = 0.25) 0.02)	400 135 310 2437 618 8285 141 816 127 806 8297 466 8297 466 8297 466 83297 466 83297 466 83297 466 83297 466 83319	0 1 0 2 3 10 7 0 0 3 5 3 1 3 8 3 6	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 0.1% 0.2% 0.1% 0.9% 14.0% 25.2%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Ehatt et al 2021 Ehatt et al 2017 Covelli et al 2013 Kerwin et al 2013 Matlais et al 2013 Matlais et al 2013 Matlais et al 2013 Pepin et al 2014 Siler et al 2017 Vestbo et al 2016 (SUMMIT) Vosgbineier et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 14.92, df = 12 Test for overall effect: Z = 2.31 (P = Total (95% CI)	1 3 1 3 1 1 0 62 12 2 1 2 12 2 1 0 72 5 0 (P = 0.25) 0.02)	400 135 310 2437 618 8285 141 816 8297 466 8297 466 8297 466 8297 466 8297 466 8297 466 8297 466 8297 466 8297 460 8297 461 8285 52630	0 1 0 2 3 10 7 0 0 3 5 3 1 3 8 3 6	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702 34964	0.1% 0.2% 0.1% 0.8% 1.1% 4.2% 0.1% 0.2% 0.1% 0.9% 14.0% 25.2%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.67] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	
Heterogeneity: Chi ² = 9.95, df = 12 (Test for overall effect: Z = 1.02 (P = 1.2.6 Fluticasone furoate Bansal et al 2021 Bhatt et al 2017 Covelli et al 2017 Covelli et al 2013 Kerwin et al 2013 Kerwin et al 2013 Martinez et al 2013 Martinez et al 2014 Martinez et al 2014 Siler et al 2014 Siler et al 2014 Vestbo et al 2016 (SUMMIT) Vogelmeier et al 2016 (AFFIRM) Zheng et al 2015 Subtotal (95% CI) Total events	1 3 1 3 1 1 0 62 12 2 1 2 12 2 1 0 72 5 0 (P = 0.25) 0.02)	400 135 310 2437 618 8285 141 816 127 806 8297 466 481 23319 ; ² = 205 52630	0 1 0 2 3 10 7 0 3 5 3 5 3 1 3 8 3 6 3 51	400 295 313 818 412 2070 142 408 130 814 8271 467 162 14702 34964	0.1% 0.2% 0.8% 1.1% 4.2% 0.1% 0.9% 14.0% 0.3% 14.0% 0.3% 14.0% 25.2%	3.00 [0.12, 73.42] 6.56 [0.68, 62.45] 3.03 [0.12, 74.07] 1.85 [0.41, 8.31] 0.10 [0.00, 1.84] 1.55 [0.80, 3.02] 1.73 [0.70, 4.26] 2.50 [0.12, 52.02] 3.07 [0.13, 74.2] 0.14 [0.01, 2.79] 1.35 [0.95, 1.93] 5.01 [0.59, 42.72] 0.05 [0.00, 0.93] 1.37 [1.05, 1.78]	

Fig. 4 Risk of fractures with budesonides therapy vs. Inhaled therapy without ICSs according to different doses

the risk of fractures in patients compared with controls (Fig. 9b, c).

Subgroup analysis for risk of fractures with triple therapy vs. LAMA/LABA

Subgroup analysis based on duration of follow-up revealed that triple therapy (5 RCTs; RR, 1.59; 95%CI, 1.05–2.41; P=0.03; heterogeneity: I^2 =0) was associated with a significantly increased the risk of fractures compared with LAMA/LABA in patients who continue the treatment for at least 12 months (Fig. 10a).

Subgroup analysis based on GOLD grade revealed that GOLD 3 (4 RCTs; RR, 1.61; 95%CI, 1.05–2.45; P=0.03; heterogeneity: $I^2=19\%$) was associated with a significantly increased the risk of fractures compared with LAMA/LABA (Fig. 10b).

Sensitivity analyses

When using the Mantel-Haenszel method to calculate risk ratios with the fixed-effect model, the results of the sensitivity analysis showed that four large RCTs (the TORCH trail, the SUMMIT trail, the IMPACT trail, and the ETHOS trail) accounted for a large proportion of effect on the overall effect, and two RCTs (the ISOLDE trail and the study of Scanlon et al. [44]) that reported too many fracture events in the control group compared with ICSs group also had an effect on the pooled results (Figure S7). However, excluding any one result of 44 RCTs did not significantly alter the pooled results or any heterogeneity.

Discussion

In this systematic review and meta-analysis based on 44 randomized controlled trials (87,594 patients), we found that compared with that without ICSs, inhalation therapy with ICSs was associated with increased risks of fracture. Considering that due to the inclusion of different types and doses of ICS, the above pooled results may not avoid heterogeneity, and then we conduct subgroup analyses. Subgroup analysis showed that the predictors of this association were treatment duration of \geq 12 months, budesonide therapy, or fluticasone furoate therapy. According to the dosage and inhalation device, we found that budesonide of 320ug bid and MDI inhalation device was related to the increased risk of fracture. But fluticasone furoate and fluticasone propionate in different inhalation devices have no relationship with the increase in fracture risk. ICS/LABA combined therapy and triple therapy were significantly related to the fracture risk of COPD patients compared with no ICS therapy, while ICS alone has no significant relationship with the increase of fracture risk compared with the placebo group. Compared with LABA alone, further subgroup analysis of ICS/LABA group showed that the subgroup with the average age \geq 65 had a

	Budeso	nides	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.2.1 160ug bid DPI							
Huang et al 2019	0	290	1	291	75.1%	0.33 [0.01, 8.18]	
Lee et al 2016	1	287	0	290	24.9%	3.03 [0.12, 74.10]	
Subtotal (95% CI)		577		581	100.0%	1.01 [0.14, 7.12]	
Total events	1		1				
Heterogeneity: Chi ² = 0.91, df = 1 ((P = 0.34);	$I^{2} = 0\%$					
Test for overall effect: Z = 0.01 (P	= 0.99)						
1.2.2 160ug bid MDI							
Ferguson et al 2018 (TELOS)	1	637	2	644	12.3%	0.51 [0.05, 5.56]	
Rabe et al 2020 (ETHOS)	17	2121	10	2020	63.1%	1.62 [0.74, 3.53]	+∎
Sharafkhaneh et al 2012	1	408	3	403	18.6%	0.33 [0.03, 3.15]	
Tashkin et al 2008	0	281	1	584	6.0%	0.69 [0.03, 16.92]	
Subtotal (95% CI)		3447		3651	100.0%	1.19 [0.61, 2.30]	•
Total events	19		16				
Heterogeneity: Chi ² = 2.44, df = 3 ((P = 0.49);	l² = 0%					
Test for overall effect: Z = 0.51 (P	= 0.61)						
1 2 3 320ug bid DPI							
Earguage at al 2018 (KDONOS)	4	201	2	COF	24 70/	0 90 [0 07 0 04]	
Ferguson et al 2018 (KRONOS)	1	301	2	623	34.7%		
Lebisson et al 2010 (TELOS)	3	219	2	420	23.3%	4.41 [0.74, 20.22]	_
	1	200	0	130	1.1%	5.96 [0.25, 144.36]	
Welte et al 2009	0	329	1	331	34.3%		
	F	990	F	1730	100.0 %	1.00 [0.00, 5.40]	
	0 (D = 0,40);	12 - 00/	c				
Heterogeneity: $Chr = 2.96$, $dr = 3$ ((P = 0.40);	1~ = 0%					
Test for overall effect: $Z = 1.18$ (P	= 0.24)						
1.2.4 320ug bid MDI							
Ferguson et al 2017	8	605	2	613	7.6%	4.05 [0.86, 19.01]	
Ferguson et al 2018 (KRONOS)	1	953	2	625	9.3%	0.33 [0.03, 3.61]	
Ferguson et al 2018 (TELOS)	4	861	2	644	8.8%	1.50 [0.27, 8.14]	
Ichinose et al 2019	4	209	0	138	2.3%	5.96 [0.32, 109.78]	
Kerwin et al 2019	1	282	1	174	4.7%	0.62 [0.04, 9.80]	
Rabe et al 2020 (ETHOS)	38	4268	10	2120	51.2%	1.89 [0.94, 3.78]	
Sharafkhaneh et al 2012	3	407	3	403	11.6%	0.99 [0.20, 4.88]	
Tashkin et al 2008	1	833	1	584	4.5%	0.70 [0.04, 11.19]	
Subtotal (95% CI)		8418		5301	100.0%	1.75 [1.07, 2.87]	-
Total events	60		21				
Heterogeneity: Chi ² = 5.22, df = 7 ((P = 0.63);	$ ^{2} = 0\%$					
Test for overall effect: Z = 2.22 (P =	= 0.03)						
							0.01 0.1 1 10 100
Test for subaroup differences: Chi ^a	² = 1.18, di	f = 3 (P =	= 0.76), l²	= 0%			Favours [Budesonides] Favours [control]

Fig. 5 Risk of fractures with budesonides therapy vs. Inhaled therapy without ICSs according to different inhalation devices

significant correlation with the increased risk of fracture. Compared with LAMA/LABA combined therapy, the further subgroup analysis of triple therapy group showed that the subgroup with GOLD grade of GOLD 3 was significantly related to the increased fracture risk of patients after treatment for more than 12 months.

The exact mechanisms by which ICSs increase the risk of fracture in COPD patients are unclear. However, due to malnutrition, inflammatory response, and previous exposure to corticosteroids, COPD patients are at risk of fracture porosity and fracture [58]. Long-term and intensive ICS therapy may lead to a small part being absorbed and have systemic effects [59], resulting in increased bone absorption and decreased bone formation. Moreover, osteoporosis is an important complication of COPD. With the growth of age, the loss of bone density will become more and more serious [60]. However, most COPD patients are elderly, and age is also an independent risk factor for COPD [61]. Taken together, these factors seem to amplify the influence of ICS on the fracture risk of the COPD population.

Previous systematic reviews have shown that ICSs are not associated with fracture risk in patients with COPD [62–65]. However, these results appear to be controversial because of the earlier and fewer articles included. Our results are consistent with those of another systematic review, where ICSs treatment duration of \geq 12 months, budesonide therapy, or fluticasone furoate therapy increases the risk of fracture in patients with COPD [9]. Compared with this previous systematic

	ICS	5	Cont	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	I	M-H, Fixed, 95% Cl
1.3.1 Mean age,yeas < 65								
Beeh et al 2016 (ENERGITO)	0	431	2	436	0.7%	0.20 [0.01, 4.20]	<	
Burge et al 2000 (ISOLDE)	9	376	17	375	4.5%	0.53 [0.24, 1.17]		
Covelli et al 2016	1	310	0	313	0.1%	3.03 [0.12, 74.07]		
Doherty et al 2012	3	717	1	479	0.3%	2.00 [0.21, 19.21]		
Dransfield et al 2013	11	2437	2	818	0.8%	1.85 [0.41, 8.31]		
Ferguson et al 2008	3	394	2	388	0.5%	1.48 [0.25, 8.79]		
Ferguson et al 2017	8	605	2	613	0.5%	4.05 [0.86, 19.01]		+
Ferguson et al 2018 (TELOS)	8	1717	2	644	0.8%	1.50 [0.32, 7.05]		
Huang et al 2019	0	290	1	292	0.4%	0.34 [0.01, 8.20]		
Kerwin et al 2013	0	618	3	412	1.1%	0.10 [0.00, 1.84]	←	
Kerwin et al 2019	1	282	1	174	0.3%	0.62 [0.04, 9.80]		
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	2.1%	0.75 [0.26, 2.15]		
Mahler et al 2002	3	333	1	341	0.3%	3.07 [0.32, 29.38]		
Martinez et al 2013	2	816	0	408	0.2%	2.50 [0.12, 52.02]		
Ohar et al 2014	2	314	1	325	0.3%	2.07 [0.19, 22.71]		
Papi et al 2017 (EFFECT)	5	1175	2	590	0.7%	1.26 [0.24, 6.45]		
Papi et al 2018 (TRIBUTE)	2	764	3	768	0.8%	0.67 [0.11, 4.00]		
Pauwels et al 1999 (EUROSCOP)	8	634	3	643	0.8%	2.70 [0.72, 10.15]		+
Rabe et al 2020 (ETHOS)	55	6389	10	2120	4.0%	1.83 [0.93, 3.57]		<u> </u>
Scanlon et al 2004	14	201	21	211	5.4%	0.70 [0.37, 1.34]		+
Sharafkhaneh et al 2012	4	815	-1	403	1.1%	0.66 [0.15, 2.93]		
Tashkin et al 2008	1	1120	1	584	0.3%	0.52 [0.03, 8.32]		
Tashkin et al 2012	7	634	6	421	1.9%	0 77 [0 26 2 29]		
Vesto et al 2017 (TRINITY)	, 6	1614	2	1076	0.6%	2 00 [0 40 9 89]		
Vogelmeier et al 2016 (AFFIRM)	5	466	1	467	0.3%	5 01 [0 59 42 72]		
Wedzicha et al 2008 (INSPIRE)	4	658	1	665	0.3%	4 04 [0 45 36 07]		
Wedzicha et al 2000 (INCI INCE)	10	1682	10	1680	2.6%	1 00 [0.40, 00.07]		_
Welte et al 2009	0	329	10	331	0.4%	0.34 [0.01 8.20]		
Wouters et al 2005	5	155	5	138	1.4%	0.89 [0.26 3.01]		
Zheng et al 2005	0	/81	3	162	1.4%		←	
Subtotal (95% CI)	0	28000	5	17519	34.7%	1 08 [0.85, 1.37]		
Total events	102	20000	115	11010	04.170	1.00 [0.00, 1.07]		ſ
Hotorogonoity: $Chi^2 = 20.76$ df = 20.7	(D = 0.43)	· 12 - 20/	115					
Test for everall effect: $Z = 0.62 (P = 0.000)$	(F = 0.43)	, 1 – 370)					
Test for overall effect: $Z = 0.62$ (P = 0	1.53)							
132 Moon and years > 65								
	2	204	0	402	0 10/	7 46 10 27 429 461		_
Anzueto et al 2009	3	394	0	403	0.1%	7.16 [0.37, 138.16]		
	1	400	0	400	0.1%	3.00 [0.12, 73.42]		
Bhatt et al 2017	3	135	1	295	0.2%	6.56 [0.69, 62.45]		
Calverley et al 2007 (TORCH)	181	3067	156	3045	41.3%	1.15 [0.94, 1.42]		
	6	616	3	295	1.1%	0.96 [0.24, 3.80]		
Chapman et al 2018 (SUNSET)	0	526	1	527	0.4%	0.33 [0.01, 8.18]		
rerguson et al 2018 (KKONOS)	2	12/1	2	625	0.7%	0.49 [0.07, 3.48]		
	5	2/8	0	138	0.2%	5.48 [0.31, 98.40]		
	1	287	0	290	0.1%	3.03 [0.12, 74.10]		
Lipson et al 2018 (IMPACT)	62	8285	10	2070	4.2%	1.55 [0.80, 3.02]		
Maltais et al 2020	12	141	7	142	1.8%	1.73 [0.70, 4.26]		
Pepin et al 2014	1	127	0	130	0.1%	3.07 [0.13, 74.67]		
Siler et al 2017	0	806	3	814	0.9%	0.14 [0.01, 2.79]		
Vestbo et al 2016 (SUMMIT)	72	8297	53	8271	14.0%	1.35 [0.95, 1.93]		
Subtotal (95% CI)		24630		17445	65.3%	1.26 [1.07, 1.48]		
I otal events	349		236					
Heterogeneity: $Chi^2 = 10.71$, df = 13	(P = 0.64)	; I ² = 0%)					
Test for overall effect: Z = 2.72 (P = 0).007)							
Total (95% CI)		52630		34964	100.0%	1.19 [1.04, 1.37]		▼
Total events	532		351					
Heterogeneity: $Chi^2 = 41.56$, df = 43	(P = 0.53)	; I² = 0%	b				0.01	0.1 1 10 100
Test for overall effect: Z = 2.58 (P = 0).010)						0.01	Favours [ICSs] Favours [control]
Test for subaroup differences: Chi ² =	1.08. df =	= 1 (P = (0.30). I ² :	= 7.4%				

Fig. 6 Risk of fractures with ICSs therapy vs. Inhaled therapy without ICSs in patients with different mean ages

review and meta-analyses [9], we conducted a more comprehensive search, including more randomized controlled trials and a larger sample size. The ARCTIC study, a large-scale cohort study in Sweden based on ICSs and the risk of osteoporosis and fracture, shows that the risk of fracture of ICSs is dose-dependent, and the risk of

	ICS	S	Cont	rol		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H, Fixed, 95% Cl	
1.4.1 GOLD 2									
Bansal et al 2021	1	400	0	400	0.1%	3.00 [0.12, 73.42]			
Beeh et al 2016 (ENERGITO)	0	431	2	436	0.7%	0.20 [0.01, 4.20]	←		
Bhatt et al 2017	3	135	1	295	0.2%	6.56 [0.69, 62.45]			
Chapman et al 2018 (SUNSET)	0	526	1	527	0.4%	0.33 [0.01, 8.18]			
Ferguson et al 2018 (KRONOS)	2	1271	2	625	0.7%	0.49 [0.07, 3.48]			
Ferguson et al 2018 (TELOS)	8	1717	2	644	0.8%	1.50 [0.32, 7.05]		<u> </u>	
Maltais et al 2020	12	141	7	142	1.9%	1.73 [0.70, 4.26]			
Pauwels et al 1999 (EUROSCOP)	8	634	3	643	0.8%	2.70 [0.72, 10.15]			
Scanlon et al 2004	14	201	21	211	5.6%	0.70 [0.37, 1.34]			
Siler et al 2017	0	806	3	814	0.9%	0.14 [0.01, 2.79]	←		
Vestbo et al 2016 (SUMMIT)	72	8297	53	8271	14.4%	1.35 [0.95, 1.93]		+ - -	
Vogelmeier et al 2016 (AFFIRM)	5	466	1	467	0.3%	5.01 [0.59, 42.72]			_
Subtotal (95% CI)		15025		13475	26.8%	1.26 [0.97, 1.63]		•	
Total events	125		96						
Heterogeneity: Chi ² = 14.06, df = 11	(P = 0.23)	; l² = 22%	6						
Test for overall effect: Z = 1.72 (P = 0	0.08)								
1.4.2 GOLD 3									
Anzueto et al 2009	3	394	0	403	0.1%	7.16 [0.37, 138.16]		<u> </u>	\longrightarrow
Burge et al 2000 (ISOLDE)	9	376	17	375	4.6%	0.53 [0.24, 1.17]			
Calverley et al 2007 (TORCH)	181	3067	156	3045	42.5%	1.15 [0.94, 1.42]		—	
Calverley et al 2008	6	616	3	295	1.1%	0.96 [0.24, 3.80]			
Covelli et al 2016	1	310	0	313	0.1%	3.03 [0.12, 74.07]			
Doherty et al 2012	3	717	1	479	0.3%	2.00 [0.21, 19.21]			
Dransfield et al 2013	11	2437	2	818	0.8%	1.85 [0.41, 8.31]			
Ferguson et al 2008	3	394	2	388	0.5%	1.48 [0.25, 8.79]			
Ferguson et al 2017	8	605	2	613	0.5%	4.05 [0.86, 19.01]			
Kerwin et al 2013	0	618	3	412	1.1%	0.10 [0.00, 1.84]	←		
Lee et al 2016	1	287	0	290	0.1%	3.03 [0.12, 74.10]			
Lipson et al 2018 (IMPACT)	62	8285	10	2070	4.3%	1.55 [0.80, 3.02]		+	
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	2.2%	0.75 [0.26, 2.15]			
Mahler et al 2002	3	333	1	341	0.3%	3.07 [0.32, 29.38]			
Martinez et al 2013	2	816	0	408	0.2%	2.50 [0.12, 52.02]			
Ohar et al 2014	2	314	1	325	0.3%	2.07 [0.19, 22.71]			
Papi et al 2017 (EFFECT)	5	1175	2	590	0.7%	1.26 [0.24, 6.45]		<u> </u>	
Papi et al 2018 (TRIBUTE)	2	764	3	768	0.8%	0.67 [0.11, 4.00]			
Pepin et al 2014	1	127	0	130	0.1%	3.07 [0.13, 74.67]			
Rabe et al 2020 (ETHOS)	55	6389	10	2120	4.1%	1.83 [0.93, 3.57]			
Sharafkhaneh et al 2012	4	815	3	403	1.1%	0.66 [0.15, 2.93]			
Tashkin et al 2008	1	1120	1	584	0.4%	0.52 [0.03, 8.32]	-		
Vestbo et al 2017 (TRINITY)	6	1614	2	1076	0.7%	2.00 [0.40, 9.89]			
Wedzicha et al 2008 (INSPIRE)	4	658	1	665	0.3%	4.04 [0.45, 36.07]			-
Wedzicha et al 2016 (FLAME)	10	1682	10	1680	2.7%	1.00 [0.42, 2.39]			
Welte et al 2009	0	329	1	331	0.4%	0.34 [0.01, 8.20]			
Wouters et al 2005	5	155	5	138	1.4%	0.89 [0.26, 3.01]			
Zheng et al 2015	0	481	3	162	1.4%	0.05 [0.00, 0.93]	←	· .	
Subtotal (95% CI)		36121		20464	73.2%	1.18 [1.00, 1.38]		•	
Total events	394		247						
Heterogeneity: Chi ² = 24.82, df = 27	(P = 0.58)	; l² = 0%							
Test for overall effect: Z = 2.01 (P = 0	0.04)								
T-4-1 (05% OI)		54440		00000	100.001	4 00 14 05 4 003			
Total (95% CI)		51146		22828	100.0%	1.20 [1.05, 1.38]		▼	
	519		343				L		
Heterogeneity: $Chi^2 = 39.06$, df = 39	(P = 0.47)	; I² = 0%					0.01	0.1 1 10	100
Test for overall effect: $Z = 2.62$ (P = 0	J.009)							Favours [ICSs] Favours [Control]	
Test for subaroup differences: Chi ² =	0.17. df =	= 1 (P = 0	.68). I ² =	= 0%					

Fig. 7 Risk of fractures with ICSs therapy vs. Inhaled therapy without ICSs in patients with different severities

fracture is associated with the risk of osteoporosis [10]. This is consistent with our results, which showed a significant association between higher doses of budesonide (\geq 320 ug bid) and an increased risk of fracture. In addition, some studies have shown that different inhalation devices are ultimately related to different lung deposition

and absorption [66]. Our results showed that, compared with control groups, 320 ug bid budesonide via MDI was significantly associated with an increased risk of fracture while 320 ug bid budesonide via DPI was not associated with an increased risk of fracture. It seems that different inhalation devices have different effects on the

а		ICS/L	ABA	Cont	rol		Risk Ratio	Risk Ratio	
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H, Fixed, 95% Cl	
	Anzueto et al 2009	3	394	0	403	0.2%	7.16 [0.37, 138.16]		→
	Beeh et al 2016 (ENERGITO®)	0	431	2	436	1.1%	0.20 [0.01, 4.20]	· · · · · · · · · · · · · · · · · · ·	
	Bhatt et al 2017	3	135	1	295	0.3%	6.56 [0.69, 62.45]	_	_
	Calverley et al 2007 (TORCH)	97	1533	156	3045	44.3%	1.24 [0.97, 1.58]		_
	Covelli et al 2016	1	310	0	313	0.2%	3.03 [0.12, 74.07]		
	Donerty et al 2012	2	464	1	479	0.4%	2.06 [0.19, 22.69]		
	Dransfield et al 2013	11	2437	2	818	1.3%	1.85 [0.41, 8.31]		
	Ferguson et al 2008	3	394	2	388	0.9%	1.48 [0.25, 8.79]		
	Forguson et al 2017 (KPONOS)	0	632	2	625	0.0%			
	Ferguson et al 2018 (TELOS)	7	1511	2	644	1.2%	1 49 [0.04, 3.44]		
	Ichinose et al 2019	4	130	2	138	0.2%	8 94 10 49 164 411		→
	Kenvin et al 2013	4	412	3	412	1.5%	0.34 [0.43, 104.41]	· · · · · · · · · · · · · · · · · · ·	
	Kerwin et al 2019	0	88	1	174	0.4%	0.66 [0.03 15 93]		
	Lipson et al 2018 (IMPACT)	24	4134	10	2070	5.7%	1.20 [0.58, 2.51]		
	Mahler et al 2002	2	165	1	341	0.3%	4.13 [0.38, 45,26]		
	Maltais et al 2020	12	141	7	142	3.0%	1.73 [0.70, 4.26]	+	
	Ohar et al 2014	2	314	1	325	0.4%	2.07 [0.19, 22.71]		
	Papi et al 2017 (EFFECT)	5	1175	2	590	1.1%	1.26 [0.24, 6.45]		
	Pepin et al 2014	1	127	0	130	0.2%	3.07 [0.13, 74.67]		_
	Rabe et al 2020 (ETHOS)	19	2131	11	2120	4.7%	1.72 [0.82, 3.60]	<u>+</u>	
	Sharafkhaneh et al 2012	4	815	3	403	1.7%	0.66 [0.15, 2.93]		
	Siler et al 2017	0	806	3	814	1.5%	0.14 [0.01, 2.79]		
	Tashkin et al 2008	0	845	1	584	0.8%	0.23 [0.01, 5.65]	· · · · · · · · · · · · · · · · · · ·	
	Tashkin et al 2012	4	424	6	421	2.6%	0.66 [0.19, 2.33]		
	Vestbo et al 2016 (SUMMIT)	37	4140	53	8271	15.0%	1.39 [0.92, 2.12]		
	Vogelmeier et al 2016 (AFFIRM)	5	466	1	467	0.4%	5.01 [0.59, 42.72]		
	Wedzicha et al 2008 (INSPIRE)	4	658	1	665	0.4%	4.04 [0.45, 36.07]		
	Wedzicha et al 2016 (FLAME)	10	1682	10	1680	4.2%	1.00 [0.42, 2.39]		
	Wouters et al 2005	5	155	5	138	2.2%	0.89 [0.26, 3.01]		
	Zheng et al 2015	0	481	3	162	2.2%	0.05 [0.00, 0.93]		
			28111		28106	100.0%	1 30 [1 10 1 53]	•	
	Total overte	274	20144	202	20100	100.078	1.50 [1.10, 1.55]	•	
	Heterogeneity: $Chi^2 = 27.82$ df = 1	2/4 30 (P = 0.5	58): l ² = (292				· · · · · · · · · · · · · · · · · · ·	
	Test for overall effect: $Z = 3.09$ (P	= 0.002	<i>,</i> - (570				0.01 0.1 1 10	100
		0.002)						Favours [ICS/LABA] Favours [control]	
1									
b		ICS/LA	BA	LAB	A		Risk Ratio	Risk Ratio	
b	Study or Subaroup	ICS/LA Events	BA Total	LAB Events	A Total	Weight	Risk Ratio M-H. Fixed, 95% C	Risk Ratio M-H, Fixed, 95% Cl	
b -	Study or Subgroup Anzueto et al 2009	ICS/LA Events 3	BA Total 394	LAB Events 0	A Total 403	Weight 0.3%	Risk Ratio M-H. Fixed, 95% C 7.16 [0.37, 138,16]	Risk Ratio	→
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017	ICS/LA Events 3 3	BA Total 394 135	LAB Events 0 1	A Total 403 154	Weight 0.3% 0.6%	Risk Ratio M-H. Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51]	Risk Ratio	→
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH)	ICS/LA Events 3 3 97	BA <u>Total</u> 394 135 1533	LAB Events 0 1 78	A Total 403 154 1521	<u>Weight</u> 0.3% 0.6% 50.3%	Risk Ratio <u>M-H. Fixed. 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65]	Risk Ratio	→
b _	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012	ICS/LA Events 3 3 97 2	BA 394 135 1533 464	LAB Events 0 1 78 0	A <u>Total</u> 403 154 1521 243	Weight 0.3% 0.6% 50.3% 0.4%	Risk Ratio <u>M-H. Fixed. 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43]	Risk Ratio	→ -
b _	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013	ICS/LA Events 3 3 97 2 11	BA 394 135 1533 464 2437	LAB. <u>Events</u> 0 1 78 0 2	A Total 403 154 1521 243 818	Weight 0.3% 0.6% 50.3% 0.4% 1.9%	Risk Ratio <u>M-H. Fixed. 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31]	Risk Ratio	→ -
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferquson et al 2008	ICS/LA <u>Events</u> 3 97 2 11 3	BA 394 135 1533 464 2437 394	LAB. <u>Events</u> 0 1 78 0 2 2	A <u>Total</u> 403 154 1521 243 818 388	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3%	Risk Ratio <u>M-H. Fixed. 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79]	Risk Ratio	→ -
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Dransfield et al 2013 Ferguson et al 2017 Ferguson et al 2017	ICS/LA Events 3 3 97 2 11 3 8	BA 394 135 1533 464 2437 394 605	LAB. <u>Events</u> 0 1 78 0 2 2 2 2	A Total 403 154 1521 243 818 388 613	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01]	Risk Ratio	→ -
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2018 (TELOS)	ICS/LA Events 3 3 97 2 11 3 8 7	BA 394 135 1533 464 2437 394 605 1511	LAB. <u>Events</u> 0 1 78 0 2 2 2 2 2 2	A Total 403 154 1521 243 818 388 613 644	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.8%	Risk Ratio <u>M-H. Fixed. 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16]	Risk Ratio	→ -
b 	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2017 Ferguson et al 2018 (TELOS) Kerwin et al 2013	ICS/LA Events 3 3 97 2 11 3 8 7 0	BA <u>Total</u> 394 135 1533 464 2437 394 605 1511 412	LAB. Events 0 1 78 0 2 2 2 2 2 1	A Total 403 154 1521 243 818 388 613 644 205	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.8% 1.3%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 9.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06]	Risk Ratio	→ -
b _	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2017 Kerwin et al 2013 Mahler et al 2002	ICS/LA Events 3 3 97 2 11 3 8 7 0 2	BA 394 135 1533 464 2437 394 605 1511 412 165	LAB. <u>Events</u> 0 1 78 0 2 2 2 2 2 1 1	A Total 403 154 1521 243 818 388 613 644 205 160	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.8% 1.3% 0.7%	Risk Ratio MH, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18]	Risk Ratio	-
b _	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Preguson et al 2013 Ferguson et al 2013 Ferguson et al 2017 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2002 Maltais et al 2020	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 12	BA 394 135 1533 464 2437 394 605 1511 412 165 141	LAB. Events 0 1 78 0 2 2 2 2 2 2 1 1 7	A Total 403 154 1521 243 818 388 613 644 205 160 142	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.8% 1.3% 0.7% 4.5%	Risk Ratio <u>MH. Fixed, 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.71 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26]	Risk Ratio	-
b _	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2017 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2002 Maltais et al 2020 Ohar et al 2014	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 2 12 2	BA Total 394 1533 464 2437 394 605 1511 412 165 141 314	LAB. Events 0 1 78 0 2 2 2 2 2 2 1 1 1 7 1	A Total 403 154 1521 243 818 388 613 644 205 160 142 325	Weight 0.3% 0.6% 50.3% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71]	Risk Ratio	-
b 	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2010 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2002 Mahlais et al 2020 Ohar et al 2014 Papi et al 2017 (EFFECT)	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 2 12 2 2 5	BA Total 394 1355 1533 464 2437 394 605 1511 412 165 141 314 1175	LAB. Events 0 1 78 0 2 2 2 2 2 2 1 1 7 1 2	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590	Weight 0.3% 0.6% 50.3% 1.9% 1.3% 1.3% 1.8% 1.3% 4.5% 0.6% 1.7%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45]	Risk Ratio	
b 	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2017 Mahier et al 2002 Mahate et al 2002 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 12 2 5 3	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815	LAB. Events 0 1 78 0 2 2 2 2 2 2 1 1 7 1 7 1 2 3	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403	Weight 0.3% 0.6% 50.3% 0.4% 1.3% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 1.7% 2.6%	Risk Ratio <u>MH, Fixed, 95% C</u> 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2017 Ferguson et al 2017 Kerwin et al 2013 Mahler et al 2002 Maltais et al 2020 Ohar et al 2014 Papi et al 2017 Sharafkhaneh et al 2012 Siler et al 2017	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 12 2 5 3 0	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815 806	LAB. Events 0 1 78 0 2 2 2 2 2 2 2 1 1 7 1 7 1 2 3 3	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403 814	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.6% 2.2%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.44 [0.01, 2.79]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2010 Kerwin et al 2013 (TELOS) Kerwin et al 2013 Mahler et al 2013 Mahler et al 2010 Ohar et al 2014 Papi et al 2014 Papi et al 2014 Siler et al 2017 Tashkin et al 2008	ICS/LA Events 3 3 97 2 111 3 8 7 0 2 2 12 2 5 3 0 0 0	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 816 806 845	LAB. Events 0 1 78 0 2 2 2 2 2 2 2 2 1 1 7 1 2 3 3 1	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403 814 284	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 1.7% 2.6% 2.2% 1.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.45 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 (TELOS) Kerwin et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2002 Mahtais et al 2020 Ohar et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008	ICS/LA Events 3 3 97 2 11 3 8 8 7 0 2 12 2 5 3 3 0 0 0 4	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 816 806 845 424	LAB. Events 0 1 78 0 2 2 2 2 2 2 2 1 1 7 1 2 3 3 1 5	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403 814 284 209	Weight 0.3% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 1.7% 2.6% 2.2% 1.4% 4.3%	Risk Ratio MH, Fixed, 95% C 7.16 [0.37, 138,16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54,43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.14, 0.6] 1.94 [0.14, 201] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.78] 0.39 [0.11, 1.45]	Risk Ratio	
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Ferguson et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2014 Mahier et al 2002 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008 Tashkin et al 2012 Vestbo et al 2016 (SUMMIT)	ICS/LA Events 3 3 7 2 11 3 8 7 0 2 12 2 5 3 3 0 0 0 4 3 7	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815 806 845 424 4140	LAB. Events 0 1 78 0 2 2 2 2 2 1 1 7 1 2 3 3 3 1 5 30	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403 814 284 209 4140	Weight 0.3% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 1.4% 2.6% 2.2% 1.4% 19.3%	Risk Ratio <u>MH, Fixed, 95% C</u> 7.16 [0.37, 138,16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2002 Mahtais et al 2020 Ohar et al 2014 Papi et al 2017 Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008 Tashkin et al 2012 Vestbo et al 2016 (SUMMIT)	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 2 12 2 2 2 2 2 3 3 0 0 4 4 37 5	BA 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815 806 845 424 4140 155	LAB. Events 0 1 78 0 2 2 2 2 1 1 7 1 2 3 3 1 5 30 5	A Total 403 154 1521 243 818 613 644 205 160 142 325 590 403 814 289 4140 138	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.8% 1.3% 0.7% 2.6% 2.2% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahler et al 2013 Mahler et al 2002 Matais et al 2020 Ohar et al 2014 Papi et al 2017 Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008 Tashkin et al 2018 Vestbo et al 2016 (SUMMIT) Wouters et al 2005	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 12 2 5 3 0 0 0 4 37 5	BA Total 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815 806 845 424 4140 155	LAB. Events 0 1 78 0 2 2 2 2 2 2 2 2 2 2 2 2 2	A Total 403 154 1521 243 818 388 613 644 205 160 142 325 590 403 814 284 209 4140 138	Weight 0.3% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 2.6% 1.7% 2.2% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.45 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 92.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01]	Risk Ratio	_ _
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2017 Kerwin et al 2013 Mahier et al 2002 Mahitas et al 2002 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012 Silier et al 2017 Tashkin et al 2018 Tashkin et al 2018 Vestbo et al 2016 (SUMMIT) Wouters et al 2005	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 12 2 5 3 0 0 0 4 37 5	BA Total 394 135 1533 464 2437 394 605 1511 412 165 141 314 1175 815 806 845 424 4140 155 16865	LAB Events 0 1 78 0 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 7 7 1 2 3 3 3 1 5 30 5	A Total 403 154 1521 243 818 818 818 818 818 818 613 644 205 590 4142 2590 401 4142 209 4140 138 142 152 162 162 162 162 162 162 162 16	Weight 0.3% 0.6% 50.3% 0.4% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 1.4% 2.6% 2.2% 1.4% 3.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138,16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54,43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 1.406] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Ferguson et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2017 Mahier et al 2010 Mahier et al 2002 Matais et al 2002 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2016 Tashkin et al 2016 (SUMMIT) Wouters et al 2015 Total (95% CI)	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 2 12 2 5 3 0 0 0 4 37 5 204	BA Total 394 135 1533 464 2437 394 605 1511 412 165 1511 412 165 806 845 806 845 155	LAB Events 0 1 7 8 0 2 2 2 2 2 2 2 2 2 1 1 7 7 1 2 3 3 1 5 300 5	A Total 403 154 1521 1521 243 818 818 8388 613 6613 663 160 142 3255 160 403 814 205 403 814 209 4140 138 814 209 413 209 413 209 413 201 413 201 413 201 413 413 413 413 413 413 413 41	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 1.7% 2.6% 1.4% 4.3% 1.9% 3.4%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.49 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2013 Ferguson et al 2018 (TELOS) Kerwin et al 2013 (TELOS) Kerwin et al 2013 Mahler et al 2013 Mahler et al 2010 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008 Tashkin et al 2018 Vestbo et al 2016 (SUMMIT) Wouters et al 2005 Total (95% CI) Total events	ICS/LA Events 3 3 97 2 11 3 8 7 0 2 2 12 2 5 3 0 0 0 4 37 5 204 18 (P = 0	BA Total 394 135 1533 464 2437 394 605 1511 412 165 1511 412 141 314 1175 806 845 424 4140 155 16865 59); I ² =	LAB Events 0 1 7 8 0 2 2 2 2 2 2 2 2 1 1 7 1 2 3 3 3 1 5 30 5 5 146	A Total 403 154 1521 1521 1521 243 818 818 613 644 205 590 403 814 284 209 4140 138 12194	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 0.6% 2.2% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.88 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio	→ - 100
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 (TELOS) Kerwin et al 2018 (TELOS) Kerwin et al 2018 (TELOS) Mahler et al 2002 Mahler et al 2002 Matias et al 2020 Ohar et al 2017 Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2008 Tashkin et al 2012 Vestbo et al 2016 (SUMMIT) Wouters et al 2005 Total (95% Cl) Total events Heterogeneity: Chi ² = 16.04, df = Test for overall effect: Z = 2.02 (F	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 2 12 2 5 3 0 0 0 4 37 5 2 204 4 18 (P = 0 2 = 0.04)	BA Total 394 1353 1533 464 2437 1511 412 2437 1511 415 165 141 1175 815 845 424 4140 155 16865 59); I ² =	LAB Events 0 1 78 0 2 2 2 2 2 2 2 2 2 2 2 2 1 1 7 7 1 2 3 3 3 1 5 30 5 5 146	A Total 403 154 1521	Weight 0.3% 0.6% 50.3% 0.4% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 9.01] 1.49 [0.31, 7.16] 0.77 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.49] 0.13 [0.02, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio	→ - 100
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Ferguson et al 2013 Ferguson et al 2018 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahier et al 2002 Mahitas et al 2002 Mahitas et al 2002 Ohar et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2012 Vestbo et al 2016 (SUMMIT) Wouters et al 2015 Total (95% CI) Total events Heterogeneity: Chi ² = 16.04, df = Test for overall effect: Z = 2.02 (F	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 12 2 5 5 3 0 0 0 4 37 5 204 18 (P = 0 2 = 0.04)	BA Total 394 1353 464 2437 394 465 1511 412 165 165 141 314 417 5806 845 424 4140 155 16865 59); I ² =	LAB Events 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 7 7 1 2 3 3 3 5 30 5 5 146 6 0%	A Total 403 154 1521 243 818 613 644 205 160 142 325 325 325 343 814 284 209 4140 138 12194	Weight 0.3% 0.6% 50.3% 0.4% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 1.4% 2.6% 2.2% 1.4% 3.4%	Risk Ratio M-H, Fixed, 95% C 7.16 [0.37, 138,16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54,43] 1.85 [0.41, 8.31] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.18, 21, 18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio M-H. Fixed. 95% CI	-
b	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2007 (TORCH) Doherty et al 2012 Ferguson et al 2013 Ferguson et al 2018 Ferguson et al 2017 Ferguson et al 2018 (TELOS) Kerwin et al 2013 Mahier et al 2002 Ohar et al 2014 Papi et al 2017 (EFFECT) Sharafkhaneh et al 2012 Siler et al 2017 Tashkin et al 2012 Vestbo et al 2016 (SUMMIT) Wouters et al 2005 Total (95% CI) Total events Heterogeneity: Chi ² = 16.04, df = Test for overall effect: Z = 2.02 (F	ICS/LA Events 3 3 97 2 11 3 8 7 0 0 2 12 2 5 3 0 0 0 4 4 37 5 204 18 (P = 0 2 = 0.04)	BA Total 394 1353 464 2437 394 605 1511 412 165 165 141 314 4175 806 845 424 4140 155 16865 1658 1658 1658 1658 1658 1658 16577 1657 1657 1657 1657 16577 16577 16577 16577 16	LAB Events 0 1 7 8 0 2 2 2 2 2 2 2 1 1 7 1 2 3 3 1 5 300 5 5 146 5 0%	A Total 403 154 1521 243 818 613 644 205 590 160 142 325 590 403 814 209 4140 138 12194	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 1.7% 2.6% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.17 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 22.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.49 [0.01, 2.79] 0.11 [0.00, 2.75] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.89 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio M-H, Fixed. 95% Cl	→ - 100
b 	Study or Subgroup Anzueto et al 2009 Bhatt et al 2017 Calverley et al 2007 (TORCH) Doherty et al 2012 Dransfield et al 2013 Ferguson et al 2018 (TELOS) Kerwin et al 2018 (TELOS) Kerwin et al 2018 (TELOS) Karwin et al 2013 Mahler et al 2012 Ohar et al 2014 Papi et al 2017 Tashkin et al 2012 Siler et al 2017 Tashkin et al 2012 Vestbo et al 2016 (SUIMIT) Wouters et al 2005 Total (95% Cl) Total events Heterogeneity: Chi ² = 16.04, df = Test for overall effect: Z = 2.02 (F	ICS/LA Events 3 3 97 2 11 1 3 8 7 0 0 2 12 2 5 3 0 0 0 4 37 5 2 24 18 (P = 0 2 = 0.04)	BA Total 394 1353 464 2437 412 1511 412 165 141 1175 815 806 845 424 4140 155 16865 59); I ^p =	LAB Events 0 1 78 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 1 1 7 7 1 2 3 3 3 1 5 30 5 5	A Total 403 154 1521 243 818 613 644 205 160 142 205 5590 403 814 209 4140 138 12194	Weight 0.3% 0.6% 50.3% 0.4% 1.9% 1.3% 1.3% 1.3% 0.7% 4.5% 0.6% 2.2% 1.4% 4.3% 19.3% 3.4%	Risk Ratio M-H. Fixed. 95% C 7.16 [0.37, 138.16] 3.42 [0.36, 32.51] 1.23 [0.92, 1.65] 2.62 [0.13, 54.43] 1.48 [0.25, 8.79] 4.05 [0.86, 19.01] 1.49 [0.31, 7.16] 0.47 [0.01, 4.06] 1.94 [0.18, 21.18] 1.73 [0.70, 4.26] 2.07 [0.19, 42.71] 1.26 [0.24, 6.45] 0.49 [0.10, 2.44] 0.14 [0.01, 2.79] 0.39 [0.11, 1.45] 1.23 [0.76, 1.99] 0.88 [0.26, 3.01] 1.24 [1.01, 1.52]	Risk Ratio M-H. Fixed. 95% CI	→ - 100

 Events
 Total
 Events
 Total
 Weight
 M-H. Fixed.
 95% CI

 3
 135
 0
 141
 0.5%
 7.31 [0.38, 140.18]

 97
 1533
 78
 1544
 71.8%
 1.25 [0.94, 1.67]
Study or Subgroup M-H. Fixed. 95% Cl Bhatt et al 2017 Calverley et al 2007 (TORCH) 2 165 4 424 37 4140 Mahler et al 2002 0 181 0.4% 5.48 [0.27, 113.36] 2.00 [0.22, 17.78] 1.61 [0.96, 2.70] 0.05 [0.00, 0.93] Tashkin et al 2012 1 212 1.2% Vestbo et al 2016 (SUMMIT) Zheng et al 2015 23 4131 21.3% 0 481 4.8% 162 3 Total (95% CI) 6878 6371 100.0% 1.32 [1.04, 1.69] Total events 143 Heterogeneity: Chi² = 7.75, df = 5 (P = 0.17); l² = 35% 105 0.01 0.1 1 10 Favours [ICS/LABA] Favours [Placebo] 100 Test for overall effect: Z = 2.26 (P = 0.02)

100

10

u	Triple Th	erapy	Cont	rol		Risk Ratio			Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C		M-H	, Fixed, 95%	CI	
Bansal et al 2021	1	400	0	400	1.0%	3.00 [0.12, 73.42]					
Chapman et al 2018 (SUNSET)	0	526	1	527	3.0%	0.33 [0.01, 8.18]					
Ferguson et al 2018 (KRONOS)	1	639	2	625	4.1%	0.49 [0.04, 5.38]			-		
Huang et al 2019	0	290	1	292	3.0%	0.34 [0.01, 8.20]					
Ichinose et al 2019	1	139	0	138	1.0%	2.98 [0.12, 72.49]					
Kerwin et al 2019	1	194	1	174	2.1%	0.90 [0.06, 14.23]			-		
Lee et al 2016	1	287	0	290	1.0%	3.03 [0.12, 74.10]					
Lipson et al 2018 (IMPACT)	43	4151	10	2070	27.1%	2.14 [1.08, 4.26]				-	
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	16.3%	0.75 [0.26, 2.15]					
Papi et al 2018 (TRIBUTE)	2	764	3	768	6.1%	0.67 [0.11, 4.00]			-	-	
Rabe et al 2020 (ETHOS)	36	4258	10	2120	27.2%	1.79 [0.89, 3.60]					
Vestbo et al 2017 (TRINITY)	6	1614	2	1076	4.9%	2.00 [0.40, 9.89]					
Welte et al 2009	0	329	1	331	3.0%	0.34 [0.01, 8.20]					
Total (95% CI)		14834		10053	100.0%	1.49 [1.03, 2.17]			•		
Total events	98		39								
Heterogeneity: Chi ² = 7.90, df = 12 (P = 0.79); P	² = 0%								10	400
Test for overall effect: Z = 2.10 (P =	0.04)						U.UT Favor	U.1 Ire [Triple The	T Tanvi Favour	10 [control]	100

b

a

		Triple Th	herapy	LAMA	LABA		Risk Ratio	Risk Ratio
_	Study or Subgroup	Events	Total	Events	Tota	l Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
	Chapman et al 2018 (SUNSET)	0	526	1	527	3.5%	0.33 [0.01, 8.18]	· · · · · · · · · · · · · · · · · · ·
	Ferguson et al 2018 (KRONOS)	1	639	2	625	6 4.7%	0.49 [0.04, 5.38]	
	Ichinose et al 2019	1	139	0	138	1.2%	2.98 [0.12, 72.49]	
	Kerwin et al 2019	1	194	1	174	2.5%	0.90 [0.06, 14.23]	
	Lipson et al 2018 (IMPACT)	43	4151	10	2070	31.2%	2.14 [1.08, 4.26]	
	Magnussen et al 2014 (WISDOM)	6	1243	8	1242	18.7%	0.75 [0.26, 2.15]	
	Papi et al 2018 (TRIBUTE)	2	764	3	768	7.0%	0.67 [0.11, 4.00]	
	Rabe et al 2020 (ETHOS)	36	4258	10	2120	31.2%	1.79 [0.89, 3.60]	—
	Total (95% CI)		11914		7664	100.0%	1.51 [1.01, 2.25]	◆
	Total events	90		35				
	Heterogeneity: Chi ² = 5.73, df = 7	(P = 0.57); l ²	² = 0%					
	Test for overall effect: Z = 2.01 (P	= 0.04)						Eavours [Triple Therapy] Eavours [LAMA/LABA]
С								
•		Triple The	rapy	LAM	4		Risk Ratio	Risk Ratio
_	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% C	M-H. Fixed, 95% Cl
	Bansal et al 2021	1	400	0	400	7.8%	3.00 [0.12, 73.42]	
	Huang et al 2019	0	290	1	292	23.4%	0.34 [0.01, 8.20]	
	LEE et al 2016	1	287	0	290	7.8%	3.03 [0.12, 74.10]	
	Vestbo et al 2017(TRINITY)	6	1614	2	1076	37.6%	2.00 [0.40, 9.89]	
	Welte et al 2009	0	329	1	331	23.4%	0.34 [0.01, 8.20]	
			2020		2200	100.0%	4 20 10 40 2 001	
	10tal (95% CI)		2920		2309	100.0%	1.30 [0.49, 3.88]	
	- · · ·	•						

Fig. 9 Risk of fractures with triple therapy vs. Controls. (a:Risk of fractures with triple therapy vs. Control; b: Risk of fractures with triple therapy vs. LAMA/LABA; c: Risk of fractures with triple therapy vs. LAMA)

fracture risk of ICSs treatment. Several researchers found that fluticasone furoate had a greater potency than other ICSs [67, 68]. Our results showed that fluticasone furoate was significantly associated with an increased risk of fracture. Due to fewer studies and samples included in the 200 ug bid fluticasone group, it did not show a dosedependent relationship. In a post-hoc analysis based on the TORCH study, there were no significant differences in BMD between the ICS/LABA (SAL/FP) and LABA (SAL) alone [69]. However, our results show that ICS/

Heterogeneity: $Chi^2 = 2.17$, df = 4 (P = 0.70); $I^2 = 0\%$

Test for overall effect: Z = 0.61 (P = 0.54)

LABA is significantly associated with an increased risk of fracture in patients with COPD compared with LABA. The ETHOS study results showed no differences in fracture risk between triple therapy and LAMA/LABA [54]. However, our combined results from eight randomized controlled trials showed that triple therapy significantly increased the risk of fracture in patients with COPD. In addition, subgroup analyses based on the baseline characteristics of patients showed that patients with COPD with a mean age greater than 65 years and GOLD 3 were

. 0.01 0.1

Favours [Triple Therapy] Favours [LAMA]

b

2	Triple Th	erapy	LAMA/L	.ABA		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.3.1 GOLD 2							
Chapman et al 2018 (SUNSET)	0	526	1	527	3.6%	0.33 [0.01, 8.18]	
Ferguson et al 2018 (KRONOS)	1	639	2	625	4.9%	0.49 [0.04, 5.38]	
Subtotal (95% CI)		1165		1152	8.5%	0.42 [0.06, 2.86]	
Total events	1		3				
Heterogeneity: Chi ² = 0.04, df = 1 (F	° = 0.85); l²	= 0%					
Test for overall effect: Z = 0.88 (P =	0.38)						
1.3.2 GOLD 3							
Lipson et al 2018 (IMPACT)	43	4151	10	2070	32.4%	2.14 [1.08, 4.26]	
Magnussen et al 2014 (WISDOM)	6	1243	8	1242	19.4%	0.75 [0.26, 2.15]	
Papi et al 2018 (TRIBUTE)	2	764	3	768	7.3%	0.67 [0.11, 4.00]	
Rabe et al 2020 (ETHOS)	36	4258	10	2120	32.4%	1.79 [0.89, 3.60]	
Subtotal (95% CI)		10416		6200	91.5%	1.61 [1.05, 2.45]	-
Total events	87		31				
Heterogeneity: Chi ² = 3.70, df = 3 (F	° = 0.30); l ²	= 19%					
Test for overall effect: Z = 2.20 (P =	0.03)						
Total (95% CI)		11581		7352	100.0%	1.51 [1.00, 2.27]	◆
Total events	88		34				
Heterogeneity: Chi ² = 5.42, df = 5 (F	P = 0.37); l ²	= 8%					
Test for overall effect: Z = 1.96 (P =	0.05)						Eavours [Triple Therapy] Eavours [LAMA/LABA]
Test for subaroup differences: Chi ²	= 1.78. df =	1 (P = 0.	.18). I² = 4	3.9%			

Fig. 10 Subgroup analysis of risk of fractures with triple therapy vs. LAMA/LABA (a: Risk of fractures with triple therapy vs. LAMA/LABA based on duration; b: Risk of fractures with triple therapy vs. LAMA/LABA based on GOLD grade)

significantly associated with an increased risk of fracture. Older people were usually associated with increased risks of osteoporosis and fractures [11]. Similarly, GOLD 3 OPD subjects were usually older and sedentary. Both age and disease severity contributed to the increased risks of osteoporosis and fracture.

There was no increase in fracture risk with ICS alone compared to the placebo control group. This result should be interpreted cautiously. Some studies that included ICS and placebo did not report fracture events. Moreover, in the ISOLDE trial [48] in 2000 and the study by Scanlon et al [44] in 2004, too many fracture events were reported in the placebo therapy group compared with the ICS therapy group. In addition, inhaled bronchodilators may have a synergistic effect on inhaled glucocorticoids, and inhaled bronchodilators amplify the effect of inhaled glucocorticoids [70]. A previous clinical study found that inhaled long-acting β_2 -agonists enhanced glucocorticoid receptor nuclear translocation in patients with COPD [71]. These may be reasons why the risk of fractures was significantly associated with the ICS combination therapy compared with the non-ICS inhalation therapy.

Limitations and Strengths

There are some limitations in our thesis. First, RCTs with different complications might have different effects on fracture risk, and our study did not consider the baseline complications of RCTs. Second, RCTs with different medical histories might also lead to different fracture risks. Third, We did not classify different fractures. Perhaps specific ICSs treatment is associated with an increased risk of specific fracture types. Finally, manual retrieval inevitably produced publication bias, although the Egger test and Begg test did not show publication bias.

Despite these limitations, our study is of great clinical significance to the current work. First, as far as we know, this paper is the largest meta-analysis of randomized controlled trials so far, which comprehensively evaluated the fracture risks related to ICSs treatment. Second, fracture and osteoporosis are common complications of COPD, and ICS inhalation therapy is a commonly used drug to prevent and alleviate the acute attack of COPD patients. At present, the two require higher evidence-based medical shreds of evidence to establish the connection. However, several large-scale randomized controlled trials have failed to solve the problem directly. Against this background, our results demonstrate that ICS inhalation therapy, especially ICS/LABA and triple therapy, significantly increased the risk of fracture in COPD patients. Third, most RCTs exclude patients with severe fracture porosity and fractures, and some RCTs do not report fracture events. Therefore, the impact of ICSs on fracture risk in patients with COPD may be significantly greater in the real-world environment than in RCTs.

Conclusions

Inhalation therapy containing ICS, especially ICS/ LABA and triple therapy, significantly increases the fracture risk of patients with chronic obstructive pulmonary disease compared with non-ICS inhalation therapy. Treatment duration \geq 12 months, mean age of study participants \geq 65 months, and GOLD stage III were significantly associated with an increased risk of fracture. In addition, budesonide and fluticasone furoate were associated with this risk. Budesonide in high doses and via MDI was significantly associated with an increased risk of fracture. However, the excess risk of fracture should be balanced against their benefits. ICS/LABA or triple therapy can improve the patient's condition, reduce the frequency of aggravated hospitalization, and improve the quality of life of patients. Therefore, for elderly patients with severe COPD requiring long-term ICSs therapy the application of ICSs in the treatment requires clinicians to weigh the advantages and disadvantages to prevent excessive use of ICSs.

Abbreviations

COPD	Chronic obstructive pulmonary disease
GOLD	Global Initiative for Chronic Obstructive Pulmonary Disease
ICS	Inhaled corticosteroid
LAMA	Long-acting muscarinic antagonists
LABA	Long-acting β_2 -agonists
PRISMA	Preferred Reporting Items for System Review and Meta-Analysis
RCT	Randomized controlled study
RR	Risk ratio
CI	Confidence interval
MDI	Metered-dose inhaler
DPI	Dry powder inhaler

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s12890-023-02602-5.

Additional file 1: Table S1. Search strategy.

Additional file 2: Table S2. Baseline Characteristics.

Additional file 3: Table S3. GRADE summary of findings.

Additional file 4: Figure S1. The result of the bias assessment: a: Risk of bias summary; b: Risk of bias graph.

Additional file 5: Figure S2. The approximate symmetry in the funnel plot of publication bias.

Additional file 6: Figure S3. The results from the Egger test and Begg test: a) Begg's test publication plot; b)Egger's test publication plot; c) Test of publication bias of Begg's test and Egger's test).

Additional file 7: Figure S4. Riskof fractures with mono-ICS therapy vs. Placebo.

Additional file 8: Figure S5. Risk of fractures with ICS/LABA therapy vs. Controls: a) Risk of fractures with ICS/LABA therapy vs. LAMA/LABA; b) Risk of fractures with ICS/LABA therapy vs. LAMA.

Additional file 9: Figure S6. Subgroup analysis of risk of fractures with ICS/LABA vs. LABA: a) Risk of fractures with ICS/LABA therapy vs. LABA based on duration; b) Risk of fractures with ICS/LABA therapy vs. LABA based on mean age; c) Risk of fractures with ICS/LABA therapy vs. LABA based on GOLD grade.

Additional file 10: Figure S7. The result of the sensitivity analyses.

Additional file 11: Figure S8. Risk of fractures with ICSs therapy vs. Inhaled therapy without ICSs according to different treatment duration.

Additional file 12: Figure S9. a. Risk of fractures with fluticasone propionate vs. control according to different doses; b. Risk of fractures with fluticasone propionate vs. control according to different doses.

Additional file 13: Figure S10. Risk of fractures with fluticasone propionate vs. control according to different inhalation device.

Acknowledgements

Not applicable.

Authors' contributions

Study design: Shisheng Peng; Drafting of the manuscript: Shisheng Peng, Xiansheng Liu, and Ruiying Wang; Literature search: Shisheng Peng, Lirong Du, and Cong Tan; Risk of bias assessment: Shisheng Peng, Lirong Du, and Cong Tan; Statistical analysis: Shisheng Peng and Yanan Niu. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

All datasets generated and analysed during this study are included in this published article and its supplementary information files.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Author details

¹Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China. ²Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Received: 8 May 2023 Accepted: 9 August 2023 Published online: 17 August 2023

References

- 1. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report. https://goldcopd.org/2023-gold-report-2/.
- GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–210. https://doi.org/10.1016/S0140-6736(17)32152-9.
- Spencer S, Calverley PMA, Burge PS, Jones PW. Impact of preventing exacerbations on deterioration of health status in COPD. Eur Respir J. 2004;23(5):698–702. https://doi.org/10.1183/09031936.04.00121404.
- Jochmann A, Neubauer F, Miedinger D, Schafroth S, Tamm M, Leuppi JD. General practitioner's adherence to the COPD GOLD guidelines: baseline data of the Swiss COPD Cohort Study. Swiss Med Wkly. 2010;140:https://doi. org/10.4414/smw.2010.13053. https://doi.org/10.4414/smw.2010.13053.
- Corrado A, Rossi A. How far is real life from COPD therapy guidelines? An Italian observational study. Respir Med. 2012;106(7):989–97. https://doi. org/10.1016/j.rmed.2012.03.008.
- Zeng Y, Cai S, Chen Y, et al. Current Status of the Treatment of COPD in China: A Multicenter Prospective Observational Study. Int J Chron Obstruct Pulmon Dis. 2020;15:3227–37. https://doi.org/10.2147/COPD.S274024.
- Singh S, Amin AV, Loke YK. Long-term use of inhaled corticosteroids and the risk of pneumonia in chronic obstructive pulmonary disease: a metaanalysis. Arch Intern Med. 2009;169(3):219–29. https://doi.org/10.1001/ archinternmed.2008.550.
- Chen H, Feng Y, Wang K, Yang J, Du Y. Association between inhaled corticosteroids and upper respiratory tract infection in patients with chronic obstructive pulmonary disease: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2020;20(1):282. https://doi.org/10.1186/ s12890-020-01315-3.
- Yk L, R C, S S. Risk of fractures with inhaled corticosteroids in COPD: systematic review and meta-analysis of randomised controlled trials and observational studies. Thorax. 2011;66(8). https://doi.org/10.1136/thx. 2011.160028.
- Janson C, Lisspers K, Ställberg B, et al. Osteoporosis and fracture risk associated with inhaled corticosteroid use among Swedish COPD patients: the ARCTIC study. Eur Respir J. 2021;57(2):2000515. https://doi.org/10. 1183/13993003.00515-2020.
- Battaglia S, Cardillo I, Lavorini F, Spatafora M, Scichilone N. Safety considerations of inhaled corticosteroids in the elderly. Drugs Aging. 2014;31(11):787–96. https://doi.org/10.1007/s40266-014-0213-1.
- Calverley PMA, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356(8):775–89. https://doi.org/10.1056/NEJMoa063070.
- 13. Vestbo J, Anderson JA, Brook RD, et al. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomised controlled

trial. Lancet. 2016;387(10030):1817–26. https://doi.org/10.1016/S0140-6736(16)30069-1.

- Shamseer L, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;350:g7647. https://doi.org/10.1136/bmj. g7647.
- Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343(oct18 2):d5928–d5928. https://doi.org/10.1136/bmj.d5928.
- Kerwin EM, Scott-Wilson C, Sanford L, et al. A randomised trial of fluticasone furoate/vilanterol (50/25 μg; 100/25 μg) on lung function in COPD. Respir Med. 2013;107(4):560–9. https://doi.org/10.1016/j.rmed.2012.12.014.
- Siler TM, Nagai A, Scott-Wilson CA, Midwinter DA, Crim C. A randomised, phase III trial of once-daily fluticasone furoate/vilanterol 100/25 μg versus once-daily vilanterol 25 μg to evaluate the contribution on lung function of fluticasone furoate in the combination in patients with COPD. Respir Med. 2017;123:8–17. https://doi.org/10.1016/j.rmed.2016.12.001.
- Bhatt SP, Dransfield MT, Cockcroft JR, et al. A randomized trial of oncedaily fluticasone furoate/vilanterol or vilanterol versus placebo to determine effects on arterial stiffness in COPD. Int J Chron Obstruct Pulmon Dis. 2017;12:351–65. https://doi.org/10.2147/COPD.S117373.
- Kerwin EM, Ferguson GT, Mo M, DeAngelis K, Dorinsky P. Bone and ocular safety of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler in COPD: a 52-week randomized study. Respir Res. 2019;20(1):167. https://doi.org/10.1186/s12931-019-1126-7.
- Ferguson GT, Papi A, Anzueto A, et al. Budesonide/formoterol MDI with co-suspension delivery technology in COPD: the TELOS study. Eur Respir J. 2018;52(3). https://doi.org/10.1183/13993003.01334-2018.
- Sharafkhaneh A, Southard JG, Goldman M, Uryniak T, Martin UJ. Effect of budesonide/formoterol pMDI on COPD exacerbations: a double-blind, randomized study. Respir Med. 2012;106(2):257–68. https://doi.org/10. 1016/j.rmed.2011.07.020.
- Ferguson GT, Tashkin DP, Skärby T, et al. Effect of budesonide/formoterol pressurized metered-dose inhaler on exacerbations versus formoterol in chronic obstructive pulmonary disease: The 6-month, randomized RISE (Revealing the Impact of Symbicort in reducing Exacerbations in COPD) study. Respir Med. 2017;132:31–41. https://doi.org/10.1016/j.rmed.2017. 09.002.
- Ferguson GT, Anzueto A, Fei R, Emmett A, Knobil K, Kalberg C. Effect of fluticasone propionate/salmeterol (250/50 microg) or salmeterol (50 microg) on COPD exacerbations. Respir Med. 2008;102(8):1099–108. https://doi.org/10.1016/j.rmed.2008.04.019.
- Anzueto A, Ferguson GT, Feldman G, et al. Effect of fluticasone propionate/salmeterol (250/50) on COPD exacerbations and impact on patient outcomes. COPD. 2009;6(5):320–9. https://doi.org/10.1080/1541255090 3140881.
- Maltais F, Schenkenberger I, Wielders PLML, et al. Effect of once-daily fluticasone furoate/vilanterol versus vilanterol alone on bone mineral density in patients with COPD: a randomized, controlled trial. Ther Adv Respir Dis. 2020;14:1753466620965145. https://doi.org/10.1177/1753466620965145.
- Mahler DA, Wire P, Horstman D, et al. Effectiveness of fluticasone propionate and salmeterol combination delivered via the Diskus device in the treatment of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(8):1084–91. https://doi.org/10.1164/rccm.2112055.
- Doherty DE, Tashkin DP, Kerwin E, et al. Effects of mometasone furoate/ formoterol fumarate fixed-dose combination formulation on chronic obstructive pulmonary disease (COPD): results from a 52-week Phase III trial in subjects with moderate-to-very severe COPD. Int J Chron Obstruct Pulmon Dis. 2012;7:57–71. https://doi.org/10.2147/COPD.S27320.
- Tashkin DP, Doherty DE, Kerwin E, et al. Efficacy and safety of a fixed-dose combination of mometasone furoate and formoterol fumarate in subjects with moderate to very severe COPD: results from a 52-week Phase III trial. Int J Chron Obstruct Pulmon Dis. 2012;7:43–55. https://doi.org/10. 2147/COPD.S27319.
- Vogelmeier C, Paggiaro PL, Dorca J, et al. Efficacy and safety of aclidinium/ formoterol versus salmeterol/fluticasone: a phase 3 COPD study. Eur Respir J. 2016;48(4):1030–9. https://doi.org/10.1183/13993003.00216-2016.
- 30. Tashkin DP, Rennard SI, Martin P, et al. Efficacy and safety of budesonide and formoterol in one pressurized metered-dose inhaler in patients with moderate to very severe chronic obstructive pulmonary disease: results

of a 6-month randomized clinical trial. Drugs. 2008;68(14):1975–2000. https://doi.org/10.2165/00003495-200868140-00004.

- Zheng J, de Guia T, Wang-Jairaj J, et al. Efficacy and safety of fluticasone furoate/vilanterol (50/25 mcg; 100/25 mcg; 200/25 mcg) in Asian patients with chronic obstructive pulmonary disease: a randomized placebocontrolled trial. Curr Med Res Opin. 2015;31(6):1191–200. https://doi.org/ 10.1185/03007995.2015.1036016.
- Covelli H, Pek B, Schenkenberger I, Scott-Wilson C, Emmett A, Crim C. Efficacy and safety of fluticasone furoate/vilanterol or tiotropium in subjects with COPD at cardiovascular risk. Int J Chron Obstruct Pulmon Dis. 2016;11:1–12. https://doi.org/10.2147/COPD.S91407.
- Lee SD, Xie CM, Yunus F, et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium compared with tiotropium alone in patients with severe or very severe COPD: A randomized, multicentre study in East Asia. Respirology. 2016;21(1):119–27. https://doi.org/10.1111/resp.12646.
- Welte T, Miravitiles M, Hernandez P, et al. Efficacy and tolerability of budesonide/formoterol added to tiotropium in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2009;180(8):741–50. https://doi.org/10.1164/rccm.200904-0492OC.
- Papi A, Vestbo J, Fabbri L, et al. Extrafine inhaled triple therapy versus dual bronchodilator therapy in chronic obstructive pulmonary disease (TRIB-UTE): a double-blind, parallel group, randomised controlled trial. Lancet. 2018;391(10125):1076–84. https://doi.org/10.1016/S0140-6736(18) 30206-X.
- Martinez FJ, Boscia J, Feldman G, et al. Fluticasone furoate/vilanterol (100/25; 200/25 μg) improves lung function in COPD: a randomised trial. Respir Med. 2013;107(4):550–9. https://doi.org/10.1016/j.rmed.2012.12.016.
- Papi A, Dokic D, Tzimas W, et al. Fluticasone propionate/formoterol for COPD management: a randomized controlled trial. Int J Chron Obstruct Pulmon Dis. 2017;12:1961–71. https://doi.org/10.2147/COPD.S136527.
- Ohar JA, Crater GD, Emmett A, et al. Fluticasone propionate/salmeterol 250/50 µg versus salmeterol 50 µg after chronic obstructive pulmonary disease exacerbation. Respir Res. 2014;15(1):105. https://doi.org/10.1186/ s12931-014-0105-2.
- Wedzicha JA, Banerji D, Chapman KR, et al. Indacaterol-Glycopyrronium versus Salmeterol-Fluticasone for COPD. N Engl J Med. 2016;374(23):2222–34. https://doi.org/10.1056/NEJMoa1516385.
- Pepin JL, Cockcroft JR, Midwinter D, Sharma S, Rubin DB, Andreas S. Long-acting bronchodilators and arterial stiffness in patients with COPD: a comparison of fluticasone furoate/vilanterol with tiotropium. Chest. 2014;146(6):1521–30. https://doi.org/10.1378/chest.13-2859.
- Ichinose M, Fukushima Y, Inoue Y, et al. Long-Term Safety and Efficacy of Budesonide/Glycopyrrolate/Formoterol Fumarate Metered Dose Inhaler Formulated Using Co-Suspension Delivery Technology in Japanese Patients with COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:2993–3002. https://doi.org/10.2147/COPD.S220861.
- Pauwels RA, Löfdahl CG, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. European Respiratory Society Study on Chronic Obstructive Pulmonary Disease. N Engl J Med. 1999;340(25):1948–53. https://doi.org/10.1056/NEJM199906243402503.
- Chapman KR, Hurst JR, Frent SM, et al. Long-Term Triple Therapy Deescalation to Indacaterol/Glycopyrronium in Patients with Chronic Obstructive Pulmonary Disease (SUNSET): A Randomized, Double-Blind, Triple-Dummy Clinical Trial. Am J Respir Crit Care Med. 2018;198(3):329– 39. https://doi.org/10.1164/rccm.201803-0405OC.
- 44. Scanlon PD, Connett JE, Wise RA, et al. Loss of bone density with inhaled triamcinolone in Lung Health Study II. Am J Respir Crit Care Med. 2004;170(12):1302–9. https://doi.org/10.1164/rccm.200310-1349OC.
- Dransfield MT, Bourbeau J, Jones PW, et al. Once-daily inhaled fluticasone furoate and vilanterol versus vilanterol only for prevention of exacerbations of COPD: two replicate double-blind, parallel-group, randomised controlled trials. Lancet Respir Med. 2013;1(3):210–23. https://doi.org/10. 1016/S2213-2600(13)70040-7.
- Lipson DA, Barnhart F, Brealey N, et al. Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med. 2018;378(18):1671–80. https://doi.org/10.1056/NEJMoa1713901.
- Calverley PMA, Rennard S, Nelson HS, et al. One-year treatment with mometasone furoate in chronic obstructive pulmonary disease. Respir Res. 2008;9(1):73. https://doi.org/10.1186/1465-9921-9-73.

- Burge PS, Calverley PM, Jones PW, Spencer S, Anderson JA, Maslen TK. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ. 2000;320(7245):1297–303. https:// doi.org/10.1136/bmj.320.7245.1297.
- Vestbo J, Papi A, Corradi M, et al. Single inhaler extrafine triple therapy versus long-acting muscarinic antagonist therapy for chronic obstructive pulmonary disease (TRINITY): a double-blind, parallel group, randomised controlled trial. Lancet. 2017;389(10082):1919–29. https://doi.org/10. 1016/S0140-6736(17)30188-5.
- Bansal S, Anderson M, Anzueto A, et al. Single-inhaler fluticasone furoate/ umeclidinium/vilanterol (FF/UMEC/VI) triple therapy versus tiotropium monotherapy in patients with COPD. NPJ Prim Care Respir Med. 2021;31(1):29. https://doi.org/10.1038/s41533-021-00241-z.
- Huang K, Guo Y, Kang J, et al. The efficacy of adding budesonide/formoterol to ipratropium plus theophylline in managing severe chronic obstructive pulmonary disease: an open-label, randomized study in China. Ther Adv Respir Dis. 2019;13:1753466619853500. https://doi.org/ 10.1177/1753466619853500.
- Beeh KM, Derom E, Echave-Sustaeta J, et al. The lung function profile of once-daily tiotropium and olodaterol via Respimat([®]) is superior to that of twice-daily salmeterol and fluticasone propionate via Accuhaler([®]) (ENERGITO([®]) study). Int J Chron Obstruct Pulmon Dis. 2016;11:193–205. https://doi.org/10.2147/COPD.S95055.
- Wedzicha JA, Calverley PMA, Seemungal TA, Hagan G, Ansari Z, Stockley RA. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med. 2008;177(1):19–26. https://doi.org/10.1164/rccm. 200707-973OC.
- 54. Rabe KF, Martinez FJ, Ferguson GT, et al. Triple Inhaled Therapy at Two Glucocorticoid Doses in Moderate-to-Very-Severe COPD. N Engl J Med. 2020;383(1):35–48. https://doi.org/10.1056/NEJMoa1916046.
- 55. Ferguson GT, Rabe KF, Martinez FJ, et al. Triple therapy with budesonide/glycopyrrolate/formoterol fumarate with co-suspension delivery technology versus dual therapies in chronic obstructive pulmonary disease (KRONOS): a double-blind, parallel-group, multicentre, phase 3 randomised controlled trial. Lancet Respir Med. 2018;6(10):747–58. https://doi.org/10.1016/S2213-2600(18)30327-8.
- Wouters EFM, Postma DS, Fokkens B, et al. Withdrawal of fluticasone propionate from combined salmeterol/fluticasone treatment in patients with COPD causes immediate and sustained disease deterioration: a randomised controlled trial. Thorax. 2005;60(6):480–7. https://doi.org/10. 1136/thx.2004.034280.
- Magnussen H, Disse B, Rodriguez-Roisin R, et al. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N Engl J Med. 2014;371(14):1285–94. https://doi.org/10.1056/NEJMoa1407154.
- Okazaki R, Watanabe R, Inoue D. Osteoporosis Associated with Chronic Obstructive Pulmonary Disease. J Bone Metab. 2016;23(3):111–20. https:// doi.org/10.11005/jbm.2016.23.3.111.
- Maijers I, Kearns N, Harper J, Weatherall M, Beasley R. Oral steroid-sparing effect of high-dose inhaled corticosteroids in asthma. Eur Respir J. 2020;55(1):1901147. https://doi.org/10.1183/13993003.01147-2019.
- 60. Akyea RK, McKeever TM, Gibson J, Scullion JE, Bolton CE. Predicting fracture risk in patients with chronic obstructive pulmonary disease: a UK-based population-based cohort study. BMJ Open. 2019;9(4):e024951. https://doi.org/10.1136/bmjopen-2018-024951.
- Wang C, Xu J, Yang L, et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. The Lancet. 2018;391(10131):1706–17. https://doi.org/10.1016/S0140-6736(18)30841-9.
- 62. Miravitlles M, Auladell-Rispau A, Monteagudo M, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev. 2021;30(160):210075. https://doi.org/10.1183/ 16000617.0075-2021.
- Drummond MB, Dasenbrook EC, Pitz MW, Murphy DJ, Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300(20):2407–16. https://doi.org/10.1001/jama.2008.717.
- 64. Chang YP, Lai CH, Lin CY, et al. Mortality and vertebral fracture risk associated with long-term oral steroid use in patients with chronic obstructive

pulmonary disease: A systemic review and meta-analysis. Chron Respir Dis. 2019;16:1479973119838280. https://doi.org/10.1177/1479973119 838280.

- Caramori G, Ruggeri P, Arpinelli F, Salvi L, Girbino G. Long-term use of inhaled glucocorticoids in patients with stable chronic obstructive pulmonary disease and risk of bone fractures: a narrative review of the literature. Int J Chron Obstruct Pulmon Dis. 2019;14:1085–97. https://doi. org/10.2147/COPD.S190215.
- Lavorini F, Mannini C, Chellini E, Fontana GA. Optimising Inhaled Pharmacotherapy for Elderly Patients with Chronic Obstructive Pulmonary Disease: The Importance of Delivery Devices. Drugs Aging. 2016;33(7):461– 73. https://doi.org/10.1007/s40266-016-0377-y.
- Rossios C, To Y, To M, et al. Long-acting fluticasone furoate has a superior pharmacological profile to fluticasone propionate in human respiratory cells. Eur J Pharmacol. 2011;670(1):244–51. https://doi.org/10.1016/j. ejphar.2011.08.022.
- Daley-Yates P, Brealey N, Thomas S, et al. Therapeutic index of inhaled corticosteroids in asthma: A dose-response comparison on airway hyperresponsiveness and adrenal axis suppression. Br J Clin Pharmacol. 2021;87(2):483–93. https://doi.org/10.1111/bcp.14406.
- Ferguson GT, Calverley PMA, Anderson JA, et al. Prevalence and progression of osteoporosis in patients with COPD: results from the TOwards a Revolution in COPD Health study. Chest. 2009;136(6):1456–65. https://doi. org/10.1378/chest.08-3016.
- Altonsy MO, Mostafa MM, Gerber AN, Newton R. Long-acting β2-agonists promote glucocorticoid-mediated repression of NF-κB by enhancing expression of the feedback regulator TNFAIP3. Am J Physiol Lung Cell Mol Physiol. 2017;312(3):L358–70. https://doi.org/10.1152/ajplung.00426. 2016.
- Haque R, Hakim A, Moodley T, et al. Inhaled long-acting β2 agonists enhance glucocorticoid receptor nuclear translocation and efficacy in sputum macrophages in COPD. J Allergy Clin Immunol. 2013;132(5):1166–73. https://doi.org/10.1016/j.jaci.2013.07.038.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

