
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Wei et al. BMC Pulmonary Medicine          (2023) 23:370 
https://doi.org/10.1186/s12890-023-02663-6

BMC Pulmonary Medicine

†Shuxing Wei, Yongsheng Zhang contributed equally to this work.

*Correspondence:
Guang Zhang
zgpap2015@126.com
Shubin Guo
shubin007@yeah.net

Full list of author information is available at the end of the article

Abstract
Background  Acute kidney injury (AKI) can make cases of acute respiratory distress syndrome (ARDS) more complex, 
and the combination of the two can significantly worsen the prognosis. Our objective is to utilize machine learning 
(ML) techniques to construct models that can promptly identify the risk of AKI in ARDS patients.

Method  We obtained data regarding ARDS patients from the Medical Information Mart for Intensive Care III (MIMIC-
III) and MIMIC-IV databases. Within the MIMIC-III dataset, we developed 11 ML prediction models. By evaluating 
various metrics, we visualized the importance of its features using Shapley additive explanations (SHAP). We then 
created a more concise model using fewer variables, and optimized it using hyperparameter optimization (HPO). The 
model was validated using the MIMIC-IV dataset.

Result  A total of 928 ARDS patients without AKI were included in the analysis from the MIMIC-III dataset, and among 
them, 179 (19.3%) developed AKI after admission to the intensive care unit (ICU). In the MIMIC-IV dataset, there were 
653 ARDS patients included in the analysis, and among them, 237 (36.3%) developed AKI. A total of 43 features were 
used to build the model. Among all models, eXtreme gradient boosting (XGBoost) performed the best. We used 
the top 10 features to build a compact model with an area under the curve (AUC) of 0.850, which improved to an 
AUC of 0.865 after the HPO. In extra validation set, XGBoost_HPO achieved an AUC of 0.854. The accuracy, sensitivity, 
specificity, positive prediction value (PPV), negative prediction value (NPV), and F1 score of the XGBoost_HPO model 
on the test set are 0.865, 0.813, 0.877, 0.578, 0.957 and 0.675, respectively. On extra validation set, they are 0.724, 0.789, 
0.688, 0.590, 0.851, and 0.675, respectively.

Conclusion  ML algorithms, especially XGBoost, are reliable for predicting AKI in ARDS patients. The compact model 
maintains excellent predictive ability, and the web-based calculator improves clinical convenience. This provides 
valuable guidance in identifying AKI in ARDS, leading to improved patient outcomes.
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Background
Acute respiratory distress syndrome (ARDS) is a sudden-
onset respiratory illness that is identified by the pres-
ence of opacities in the chest radiographs of both lungs 
[1]. ARDS is a severe respiratory condition that poses a 
significant risk to patients, with high morbidity and mor-
tality rates. A comprehensive observational study carried 
out across 50 countries found that approximately 10.4% 
of intensive care unit (ICU) admissions are due to ARDS. 
Unfortunately, the in-hospital mortality rate for patients 
with ARDS exceeds 30%, making it a critical medical 
emergency that requires prompt and effective manage-
ment [2]. A study has revealed that approximately 33% of 
patients who receive mechanical ventilation in the ICU 
are susceptible to developing ARDS. Individuals who are 
at risk for ARDS frequently experience lung complica-
tions, and their clinical outcomes are often poorer than 
those who are not at risk for ARDS [3]. Acute kidney 
injury (AKI) is a prevalent complication that may occur 
in patients with ARDS, and it is typically linked with a 
bleak prognosis. Studies have demonstrated that individ-
uals with ARDS who develop AKI usually need extended 
periods of mechanical ventilation compared to those 
who do not experience AKI, and they also tend to have 
lengthier hospital stays and an increased risk of mortality 
[4, 5]. Studies have shown that AKI is a common com-
plication in patients with ARDS and is associated with 
a significantly higher mortality rate. The ARDSnet trial 
found that approximately 24% of participants with ARDS 
developed AKI, and those with AKI had a much higher 
180-day mortality rate compared to those without AKI 
(58% versus 28%) [6]. Similarly, a multi-center study from 
France showed that AKI occurred in 44.3% of ARDS 
patients and was associated with higher mortality rates 
compared to those without AKI (42.3% versus 20.2%) [7]. 
These findings highlight the significance of identifying 
and treating AKI promptly in patients with ARDS, and 
emphasize the necessity of monitoring kidney function 
closely in this patient cohort. By implementing successful 
measures to prevent and manage AKI in ARDS patients, 
outcomes can potentially be enhanced, and the risk of 
mortality minimized.

Currently, there is limited research for AKI occurrence 
in ARDS patients. One study demonstrated that red cell 
volume distribution width (RDW) is an independent 
predictor of AKI in ARDS patients, with an area under 
the curve (AUC) of 0.687 [8]. Another study utilized 
data from Medical Information Mart for Intensive Care 
III (MIMIC-III) to construct a machine learning (ML) 
model for AKI in sepsis-related ARDS patients, with the 
eXtreme gradient boosting (XGBoost) model showing 

the best performance and an AUC of 0.859. However, this 
model was not validated [9]. And this model is only appli-
cable specifically to ARDS caused by sepsis.

ML is a sophisticated modeling technique that has 
emerged as a game-changer in recent years, outperform-
ing traditional risk models such as logistic regression 
analysis [10]. ML’s key advantage lies in its ability to auto-
matically recognize complex relationships between vari-
ables and response values from vast amounts of data. This 
capability results in improved performance by identifying 
crucial predictive variables and making more accurate 
predictions [11]. ML algorithms can handle intricate and 
high-dimensional data that is often encountered in mod-
ern scientific and medical research, setting it apart from 
traditional methods [12]. As a result, ML has become an 
essential tool for analyzing big data in a wide range of 
fields, including healthcare, finance, and engineering. By 
uncovering hidden patterns and relationships in data, ML 
has the potential to revolutionize scientific research and 
lead to more effective and efficient decision-making, ulti-
mately driving innovation and progress in many areas of 
society [13–15].

The primary objective of this study is to leverage ML 
to identify the biological and clinical factors that pre-
dict the occurrence of AKI in ARDS patients. By con-
structing a robust AKI prediction model and validating 
it thoroughly, we aim to detect AKI in ARDS patients, 
which can lead to better patient outcomes and provide 
new insights into prevention and treatment strategies for 
patients with ARDS.

Methods
Data source
Using Structured Query Language, data was extracted 
from a single-center public database known as the 
MIMIC-III and MIMIC-IV databases [16]. MIMIC-III 
is a comprehensive clinical dataset that contains infor-
mation on all patients who were admitted to the ICU at 
Beth Israel Deaconess Medical Center in Boston, Massa-
chusetts between 2001 and 2012. MIMIC-IV database is 
the latest update to MIMIC-III database [17]. The data-
bases provide detailed information on various aspects of 
patient care, including demographic features, vital sign 
monitoring, laboratory and microbiological tests, intake 
and output observations, medication therapies, hospi-
talization duration, survival data, and discharge or death 
records. We obtained institutional review board approval 
to ensure the protection of human research participants, 
and we obtained a certificate (Certification Number: 
47,937,607) that enabled us to access the database. We 
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selected patients in MIMIC-IV who were hospitalized 
after 2014 to avoid overlapping with MIMIC-III.

Participants
Our study enrolled patients who met the following eligi-
bility criteria: they were 16 years of age or older, had been 
hospitalized in the ICU for more than 24  h, and were 
diagnosed with ARDS according to the Berlin criteria [18]
within 24  h of admission to the ICU. We only included 
data from the first admission for patients who were 
admitted to the ICU multiple times. Patients who had an 
initial partial arterial oxygen pressure (PaO2)/ fraction of 
inspiration O2 (FiO2) ratio between 201 and 300 mmHg 
and were given invasive or noninvasive ventilation via a 
tight mask and positive end expiratory pressure (PEEP) of 
at least 5 cm H2O were categorized as having mild ARDS 
according to the Berlin criteria. Moderate ARDS was 
identified as a PaO2/FiO2 ratio ranging from 101 to 200 
mmHg, while severe ARDS was classified as a PaO2/FiO2 
ratio of 100 mmHg or less. Furthermore, we identified 
patients who exhibited bilateral chest CT scan infiltrates 
that met the Berlin criteria. We utilized the ICD-9 code 
to diagnose cases of AKI and excluded patients who had 
chronic kidney disease (CKD) or end-stage renal disease 
(ESRD), or whose creatinine levels were ≥ 4 mg/dL upon 
admission to the study.

Data
Features with missing values exceeding 20% were dis-
carded, and multiple imputation by chained equations 
was used to impute missing values in the remaining fea-
ture space. The study utilized the following information: 
(1) demographic characteristics such as sex, age, and 
body mass index (BMI); (2) comorbidities, including uri-
nary tract infection (UTI), diabetes, and sepsis; (3) vital 
signs, including respiratory rate (RR), heart rate (HR), 
temperature, oxygen saturation (SpO2), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), and mean 
arterial pressure (MAP); (4) laboratory parameters, such 
as base excess (BE), blood urea nitrogen (BUN), albu-
min, calcium, chloride, potassium, sodium, creatinine, 
glucose, actual bicarbonate radical (ABC), hematocrit, 
hemoglobin, PH, lactate, phosphate, PaO2, partial pres-
sure of carbon dioxide (PCO2), red blood cell (RBC) and 
white blood cell (WBC) counts, alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), total biliru-
bin (TBIL), RDW, international normalized ratio (INR), 
partial thromboplastin time (PTT), prothrombin time 
(PT), and urine output (UO). A total of 46 variables were 
included in the analysis, which included the patient’s 
PEEP value and ARDS classification. For variables that 
were measured multiple times, we only included the first 
measurement in the analysis.

Statistical analysis
Categorical variables were represented as number and 
percentage and were compared using the Chi-square test. 
The Kolmogorov-Smirnov test was used to assess the 
normal distribution of continuous variables. If the data 
exhibited a normal distribution, T-tests were performed, 
utilizing mean and standard deviation as descriptive sta-
tistics for the variables. Conversely, for non-normally 
distributed variables, the Wilcoxon rank-sum test was 
employed, and descriptive statistics (median and extre-
mums) were used to characterize the variables. Subse-
quently, the data in MIMIC-III were randomly divided 
into a training set and a testing set in a 8:2 ratio. We 
utilized the synthetic minority over-sampling technique 
(SMOTE) algorithm in the training set to enhance the 
predictive performance of the ML models for minority 
classes and improve the handling of imbalanced datasets. 
This study established 11 ML models, including logis-
tic regression, K-nearest neighbor (KNN), decision tree, 
random forest, support vector machine (SVM), XGBoost, 
adaptive boosting (AdaBoost), gradient boosting deci-
sion tree (GBDT), multi-layer perception (MLP), light 
gradients boosting machine (LightGBM), and category 
boosting (CatBoost). In addition, the established model 
was compared with the sequential organ failure assess-
ment (SOFA) score. The models were evaluated based on 
the testing set, using AUC, accuracy, sensitivity, specific-
ity, positive prediction value (PPV), negative prediction 
value (NPV), and F1 score, and then the best model was 
selected. To enhance the interpretability of our top-per-
forming model, we employed the shapley additive expla-
nations (SHAP) approach. We visualized the impact of 
the model’s features using a SHAP summary plot, which 
allowed us to understand how each feature contributed 
to the overall prediction. To facilitate clinical use, we sim-
plified the complex model into a compact model. Sub-
sequently, the hyperparameter optimization (HPO) was 
conducted to improve the performance of the compact 
model. To optimize our model, we used Optuna version 
2.10., which is an open-source hyperparameter optimiza-
tion framework that can automatically choose the best 
hyperparameters, specifically designed for ML. We vali-
dated the the ML models on the validation set (MIMIC-
IV database). Next, we developed a web-based interactive 
ML program for the daily use of the optimal prediction 
model. In addition, we use the calibration curve to evalu-
ate the relationship between the predicted values of the 
model and the actual observed values, as well as the 
uncertainty of the model predictions. All analyses were 
performed using Python (v.3.9.12) and R (v.4.2.0, R Foun-
dation for Statistical Computing). P values less than 0.05 
were considered statistically significant.
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Results
Baseline characteristics
According to the inclusion criteria outlined in Fig.  1, a 
total of 928 ARDS patients were included in the MIMIC-
III database. Additionally, the MIMIC-VI database 
included a total of 653 patients. Out of the 928 patients, 
563 (60.7%) were male and 179 (19.2%) developed AKI 
during their hospital stay. Of those who developed AKI, 
91 cases (50.8%) were diagnosed with severe ARDS, 
which was higher than the non-AKI group (291 cases, 
38.9%). Our study included 42 predictive variables, and 
we found that ARDS patients with AKI had a higher like-
lihood of having other comorbidities such as sepsis [78 
(43.6%) vs. 50 (6.7%), P < 0.001], diabetes [59 (33.0%) vs. 
166 (22.2%), P = 0.00337], and UTI [32 (17.9%) vs. 68 
(9.1%), P = 0.00105]. Additionally, compared to the non-
AKI group, the AKI group had higher mean PEEP values 
(6.75 vs. 5.62, P < 0.001) and higher first admission cre-
atinine values (1.49 vs. 0.851, P < 0.001). Comparisons 
between the non-AKI and AKI groups are shown in 
Table 1.

Model development
We developed 11 ML binary classifiers using 742 cases 
from the training set, and used a testing set of 186 indi-
viduals to predict the risk of AKI in ARDS patients. The 
performance summary of the predictive models and the 
SOFA score on the testing set is presented in Table 2. It 
shows that the XGBoost model outperforms the other 
ML models and SOFA score in terms of accuracy (0.882), 
sensitivity(0.813), PPV (0.619), NPV (0.958), and F1 
score (0.703). The XGBoost model has a specificity of 
0.896, placing it at an intermediate level among the vari-
ous models. Additionally, XGBoost provides relatively 
better model fitting performance, with the highest area 

under the curve (AUC) of 0.865 (Fig. 2a). Therefore, the 
XGBoost model was selected for further prediction. 
Fig.  3a illustrates the confusion matrix of the XGBoost 
model.

Feature importance analysis
Fig. 4 displays the distribution of the effects of each fea-
ture in the top 20 XGBoost model features, evaluated 
using SHAP value. Creatinine emerged as the most influ-
ential feature, followed by PO2, sepsis, BUN, lactate, ALB, 
UO, SpO2, WBC, TBIL, RDW, AST, diabetes, DBP, chlo-
ride, HR, glucose, BE, platelets, and UTI. These features 
were deemed critical in the XGBoost model.

Model simplification and improvement
To optimize the balance between model performance 
and clinical applicability, we developed 3 compact mod-
els using the top 15, top 10, and top 6 features. The com-
pact model with 10 features achieved an AUC with 0.850 
(Fig. 2b), indicating only a slight decrease in performance 
compared to the full model. Therefore, we selected the 
top 10 features for our final compact model. Fig. 5 dem-
onstrates the importance of features in the compact 
model, which consists of 10 selected features. To enhance 
the performance of the compact model, we conducted 
HPO and obtained the XGBoost model with the best 
performance, as presented in Supplementary Fig. 1a. We 
have included the final settings of the hyperparameter 
search in Supplementary Table 1 and ranked the impor-
tance of various hyperparameters for model performance 
in Supplementary Fig. 1b. Supplementary Fig. 1c displays 
the performance of a single hyperparameter. A compari-
son was made between the 10-feature compact model 
with the optimal combination of model parameters and 
the pre-HPO model. As shown in Fig. 2c, the full model 

Fig. 1  a The flowchart of ARDS patients in MIMIC-III. b The flowchart of ARDS patients in MIMIC-IV. MIMIC, Medical Information Mort for Intensive Care; 
ARDS, acute respiratory distress syndrome; ICU, intensive care unit; CKD, chronic kidney disease; ESRD, end-stage renal disease
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Non-AKI
(N = 749)

AKI
(N = 179)

P-value

Gender 0.315
Male 448 (59.8%) 115 (64.2%)
Female 301 (40.2%) 64 (35.8%)
Age 0.259
Under 50 187 (25.0%) 38 (21.2%)
Between 50–70 355 (47.4%) 97 (54.2%)
Above 70 207 (27.6%) 44 (24.6%)
ARDS 0.012
Mild-ARDS 117 (15.6%) 25 (14.0%)
Severe-ARDS 291 (38.9%) 91 (50.8%)
Moderate-ARDS 341 (45.5%) 63 (35.2%)
BMI* 28.4 [9.86, 115] 28.3 [10.8, 91.6] 0.907
BE* 1.00 [-33.0, 16.0] -1.00 [-34.0, 12.0] < 0.001
BUN* 16.0 [3.00, 76.0] 28.0 [7.00, 114] < 0.001
Calcium 8.40 (0.926) 8.17 (0.965) 0.00386
Chloride 105 (6.05) 104 (7.04) 0.0823
Creatinine* 0.800 [0.200, 2.50] 1.30 [0.300, 3.80] < 0.001
DBP 65.0 (14.9) 63.3 (15.7) 0.19
Glucose* 121 [39.0, 508] 126 [40.0, 560] 0.0668
HCO3 25.7 (4.34) 24.0 (5.32) < 0.001
Hematocrit 32.7 (6.22) 32.5 (6.95) 0.688
Hemoglobin 11.0 (2.15) 10.8 (2.32) 0.23
HR 87.3 (16.8) 95.1 (19.0) < 0.001
Potassium 4.10 (0.567) 4.22 (0.684) 0.0324
Lactate* 1.50 [0.400, 13.5] 2.20 [0.700, 12.7] < 0.001
MAP 82.3 (15.7) 78.5 (16.9) 0.00554
Sodium 139 (4.48) 139 (6.59) 0.705
PCO2* 42.0 [16.0, 119] 42.0 [19.0, 96.0] 0.327
PH 7.38 (0.0969) 7.34 (0.124) < 0.001
Phosphate* 3.30 [1.20, 9.20] 3.70 [1.30, 12.4] < 0.001
Platelets* 212 [5.00, 871] 214 [16.0, 796] 0.228
PO2* 233 [24.0, 567] 107 [24.0, 607] < 0.001
RBC 3.69 (0.741) 3.59 (0.813) 0.144
RR* 0 [0, 45.0] 0 [0, 43.0] 0.245
SBP 121 (23.2) 118 (24.9) 0.234
SpO2 98.1 (4.24) 96.5 (4.01) < 0.001
Temperature* 36.8 (0.852) 36.9 (1.15) 0.22
WBC* 10.6 [0.300, 46.8] 11.7 [0.400, 50.7] 0.00905
UO* 1650 [20.0, 6090] 1180 [30.0, 5980] 0.00153
Albumin 3.41 (0.712) 2.98 (0.759) < 0.001
ALT* 25.0 [3.00, 1770] 32.0 [6.00, 2550] 0.00879
AST* 31.0 [7.00, 1900] 51.0 [10.0, 5570] 0.00404
TBIL* 0.500 [0.100, 37.5] 0.800 [0.100, 52.6] < 0.001
RDW 14.4 (1.68) 15.7 (2.40) < 0.001
INR* 1.20 [0.900, 4.10] 1.30 [0.900, 4.80] < 0.001
PTT* 28.6 [17.0, 150] 31.1 [18.1, 150] < 0.001
PT* 13.6 [10.0, 40.1] 14.5 [10.3, 49.9] < 0.001
PEEP* 5.00 [0, 24.0] 5.00 [0, 24.0] < 0.001
Diabetes 0.00337
Non-DM 583 (77.8%) 120 (67.0%)
DM 166 (22.2%) 59 (33.0%)
UTI 0.00105

Table 1  Baseline characteristics of ARDS patients in MIMIC-III
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achieved an impressive AUC of 0.865, while the com-
pact model had a slightly lower predictive performance 
with an AUC of 0.850. However, after applying HPO, 
the predictive value of the compact model improved as 
expected, resulting in an AUC of 0.863.

Other evaluation indicators including accuracy, sen-
sitivity, specificity, PPV, NPV and F1 score of the dif-
ferent models based on the 10 features in the testing 
set are summarized in Table 3. It is apparent that, when 
compared to the XGBoost model, XGBoost_HPO model 
shows minimal decline across all evaluation metrics.

The data from the MIMIC-IV dataset was used to eval-
uate the performance of the XGBoost_HPO model. The 
study included a total of 635 individuals, and the mortal-
ity rate among them was 29%. The detailed characteristics 
of the patients can be found in Supplementary Table  2. 
ROC curves in testing set for XGBoost_HPO, KNN, 
logistic regression, LightGBM and SOFA are presented in 
Fig. 2d. Notably, the XGBoost_HPO model demonstrates 
the highest AUC (0.854) among them. The results in 
Table 4 indicate that the XGBoost_HPO model achieves 
the highest values for accuracy (0.724), specificity (0.688), 
PPV(0.590), and F1 score (0.675). However, in terms of 

sensitivity (0.789) and NPV (0.85), the XGBoost_HPO 
model ranks second and third.

In this study, we conducted calibration curve plotting 
to evaluate the performance of various models. We com-
pared the XGBoost_HPO model with logistic regres-
sion, LightGBM, and KNN models. Fig. 6 illustrates that 
the prediction probability of the XGBoost_HPO model. 
The XGBoost_HPO model exhibited superior calibration 
compared to the other models, both in the test and extra 
validation datasets. This further confirms the effective-
ness of the XGBoost_HPO model in accurately predict-
ing outcomes.

Finally, we developed a web-based interactive pro-
gram using Gradio (a python framework that can demo 
a ML model easily for everyone to use), based on 10 
features for predicting AKI and determining the proba-
bility (Supplementary Fig. 2). Supplementary Fig. 3 pres-
ents the decision curve analysis (DCA) curve related to 
the web calculator to determine the range of benefit for 
patients. The DCA curve shows that when the threshold 
probability for in-hospital AKI occurrence in patients is 
between 0.05 and 0.85, the application of XGBoost_HPO 
yields significantly higher net benefit compared to both 

Table 2  Evaluation indicators in testing set of 11 ML models and SOFA score
Model Accuracy Sensitivity Specificity PPV NPV F1_score
Logistic Regression 0.823 0.688 0.851 0.489 0.929 0.571
KNN 0.731 0.500 0.779 0.320 0.882 0.390
Decision Tree 0.753 0.438 0.818 0.333 0.875 0.378
Random Forest 0.850 0.656 0.890 0.553 0.926 0.600
SVM 0.860 0.531 0.929 0.607 0.905 0.567
XGBoost 0.882 0.813 0.896 0.619 0.958 0.703
AdaBoost 0.780 0.375 0.864 0.364 0.869 0.369
GBDT 0.839 0.563 0.896 0.529 0.908 0.545
MLP 0.855 0.594 0.909 0.576 0.915 0.585
LightGBM 0.866 0.625 0.916 0.606 0.922 0.615
CatBoost 0.860 0.531 0.929 0.607 0.905 0.567
SOFA 0.699 0.500 0.740 0.286 0.877 0.364
ML, machine learning; KNN, K-nearest neighbor; SVM, support vector machine; XGBoost, eXtreme gradient boosting; AdaBoost, adaptive boosting; GBDT, gradient 
boosting decision tree; MLP, multi-layer perception; LightGBM, light gradients boosting machine; CatBoost, category boosting; PPV, positive prediction value; NPV, 
negative prediction value; SOFA, sequential organ failure assessment

Non-AKI
(N = 749)

AKI
(N = 179)

P-value

Non-UTI 681 (90.9%) 147 (82.1%)
UTI 68 (9.1%) 32 (17.9%)
Sepsis < 0.001
Non-Sepsis 699 (93.3%) 101 (56.4%)
Sepsis 50 (6.7%) 78 (43.6%)
* Wilcoxon rank-sum test

ARDS, acute respiratory distress syndrome; MIMIC, Medical Information Mort for Intensive Care; AKI, acute kidney injury; UTI, urinary tract infection; BMI, body 
mass index; BE, base excess; BUN, blood urea nitrogen; DBP, diastolic blood pressure; ABC, actual bicarbonate radical; HR, heart rate; MAP, mean arterial pressure; 
PCO2, partial pressure of carbon dioxide; PO2, partial arterial oxygen pressure; RBC, red blood cell; RR, respiratory rate; SBP, systolic blood pressure; SpO2, oxygen 
saturation; WBC, white blood cell; UO, urine output; ALT, alanine aminotransferase; AST, aspartate aminotransferase; TBIL, total bilirubin; RDW, red cell volume 
distribution width; INR, international normalized ratio; PTT, partial thromboplastin time; PT, prothrombin time; PEEP, positive end expiratory pressure

Table 1  (continued) 
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the “Treat none” and “Treat all” strategies. This suggests 
that the model has good clinical utility. The main codes 
of this program were available at Hugging Face (https://
huggingface.co/zysnathan/AKI-prediction/blob/main/
aki_prediction.py).

Discussion
ML has become increasingly popular in developing pre-
dictive models for various diseases [19–21]. In this study, 
we employed 11 ML algorithms to predict the probability 
of AKI in ARDS patients, utilizing the MIMIC-III data-
base, and compared the results with the SOFA score. 
The study developed a highly effective and clinically 
accessible XGboost compact model with 10 features. 

Fig. 2  Receiver operating characteristic curves of ML models and SOFA score. ML, machine learning; KNN, K-nearest neighbor; SVM, support vector ma-
chine; XGBoost, eXtreme gradient boosting; AdaBoost, adaptive boosting; GBDT, gradient boosting decision tree; MLP, multi-layer perception; LightGBM, 
light gradients boosting machine; CatBoost, category boosting; HPO, hyperparameter optimization; SOFA, sequential organ failure assessment

 

https://huggingface.co/zysnathan/AKI-prediction/blob/main/aki_prediction.py
https://huggingface.co/zysnathan/AKI-prediction/blob/main/aki_prediction.py
https://huggingface.co/zysnathan/AKI-prediction/blob/main/aki_prediction.py
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Furthermore, the model’s performance is validated using 
the MIMIC-IV dataset.

In the 10 features of the simplified model, creatinine 
is the most valuable diagnostic tools for identifying AKI 
and remain the most significant features in our model. 
However, relying exclusively on creatinine to predict kid-
ney injury has limitations [22]. Creatinine is a late indica-
tor of kidney damage and can be influenced by various 
factors such as age, sex, diet, muscle mass, and medica-
tions [23]. UO is also one of the important features in 
the model. As one of the diagnostic criteria for AKI [24], 
UO shares similar characteristics with creatinine. It has 
a delayed response and lacks specificity [22]. BUN is a 
traditional biomarker utilized to evaluate renal function 
[25], although it lacks sensitivity and specificity in diag-
nosing AKI [26]. However, it is a prominent feature when 
it comes to predicting AKI. PO2 ranks second in terms 
of its importance in the model, which is not surprising. 

For a long time, hypoxia has been recognized as a sig-
nificant factor in the pathogenesis of AKI. The combina-
tion of inadequate tissue oxygen supply and high oxygen 
demand is regarded as a primary factor that makes the 
kidney susceptible to acute ischemic injury [27]. This also 
explained why SpO2 plays an important role in ARDS 
models. Research has indicated that SpO2 holds signifi-
cant importance in predicting the occurrence of acute 
kidney injury in patients with COVID-19 [28] and liver 
cirrhosis [29]. The infiltration of WBC into the injured 
kidneys via the circulatory system triggers the release of 
inflammatory mediators, including cytokines and chemi-
cal factors. These inflammatory substances contribute to 
kidney damage and exacerbate the injury [30, 31]. These 
infiltrating WBC play a crucial role in AKI. Serum albu-
min is a important factor for AKI. Albumin levels could 
be beneficial in identifying patients who are at a higher 
risk for AKI. There are various potential mechanisms 

Fig. 3  Confusion matrixs of XGBoost and XGBoost_HPO. a Confusion matrixs of XGBoost in testing set; b Confusion matrixs of XGBoost_HPO in testing 
set; c Confusion matrixs of XGBoost_HPO in extra validation set. XGBoost, eXtreme gradient boosting; HPO, hyperparameter optimization
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Table 3  Evaluation indicators in testing set of XGBoost, XGBoost_10 and XGBoost_HPO models
Model Accuracy Sensitivity Specificity PPV NPV F1_score
XGBoost 0.882 0.813 0.896 0.619 0.958 0.703
XGBoost_10 0.849 0.781 0.864 0.543 0.950 0.641
XGBoost_HPO 0.866 0.813 0.877 0.578 0.957 0.675
XGBoost, eXtreme gradient boosting; HPO, hyperparameter optimization; PPV, positive prediction value; NPV, negative prediction value

Fig. 5  a SHAP values output by all patients in the XGBoost_10 model; b The feature importance of XGBoost_10 model. SHAP, shapley additive explana-
tions; XGBoost, eXtreme gradient boosting; WBC, white blood cell; PO2, partial pressure of carbon dioxide; ALB, albumin; BUN, blood urea nitrogen; TBIL, 
total bilirubin;  UO, urine output; SpO2, oxygen saturation

 

Fig. 4  a SHAP values output by all patients in the XGBoost model; b The feature importance of XGBoost model. SHAP, shapley additive explanations; XG-
Boost, eXtreme gradient boosting; PO2, partial pressure of carbon dioxide; BUN, blood urea nitrogen; WBC, white blood cell; UO, urine output; ALB, albu-
min; AST, aspartate aminotransferase; SpO2, oxygen saturation; ALT, alanine aminotransferase; DBP, diastolic blood pressure; RBC, red blood cell; TBIL, total 
bilirubin; RDW, red cell volume distribution width; HR, heart rate; BE, base excess; UTI, urinary tract infection
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that contribute to these effects, such as the expansion of 
intravascular volume, antioxidant properties, the preser-
vation of renal perfusion, and glomerular filtration [32]. 
TBIL is one of the 10 important features, which may be 
associated with hepatorenal syndrome. When TBIL rises, 
the dilation of splanchnic vasculature and the intense 
increase in renal artery tone lead to renal cortex ischemia 
and hypoperfusion. This is one of the contributing factors 
that lead to the development of hepatorenal syndrome 
[33]. Sepsis also play an important role in the model. 
Research has demonstrated that the kidney is highly 
vulnerable to damage during sepsis. It is considered one 
of the organs most susceptible to injury. Additionally, 
around two-thirds of patients with septic shock experi-
ence AKI [34, 35].

ML algorithms have the ability to construct intricate 
models and generate precise predictions when provided 
with relevant features. When sufficient features is avail-
able, ML algorithms are expected to perform well [36]. In 
our study, we were able to achieve satisfactory ML per-
formance despite utilizing a relatively small dataset con-
sisting of only 928 patients. ML has long been proven to 
be a powerful tool for predicting the prognosis of ARDS. 
Huang et al. used random forest model to predict the in-
hospital mortality rate, 30-day mortality rate, and 1-year 
mortality rate of ARDS patients, achieving AUC of 0.891, 
0.883, and 0.892, respectively. Similarly, Rui Tang et al. 
utilized logistic regression model, XGBoost model, and 
artificial neural network model to predict in-hospital 
mortality rate in trauma-induced ARDS patients, achiev-
ing AUC of 0.737, 0.745, and 0.757, respectively [37]. 
These results indicate that ML has good predictive value 
for in-hospital mortality rate in ARDS patients caused 
by trauma. In addition, a study constructed a prognos-
tic model for sepsis-induced ARDS patients using ML to 
predict the occurrence of AKI within 48 h of admission 
to the ICU, achieving a high AUC of 0.86 and accuracy of 
0.81 [9]. Overall, these findings highlight the potential of 
ML algorithms to improve prognostic accuracy and guide 
clinical decision-making in ARDS. Our research also 
demonstrated the predictive capabilities of ML. While 
SOFA score is an essential component in critical care 
and is frequently used in various scenarios [38, 39], our 
study found that its ability to predict AKI occurrence in 

ARDS patients was relatively weak. With the availability 
of larger and more diverse datasets, the performance of 
ML models is expected to improve even further, offering 
clinicians valuable insights into the management of this 
challenging condition.

Notably, XGBoost outperforms other types of ML 
models in this study, including linear models. XGBoost is 
an improved gradient boosting algorithm that is particu-
larly well-suited for low and medium dimensional data. 
In fact, XGBoost is frequently used to predict patient 
healthcare outcomes [40, 41]. In addition, our study 
resulted in the development of an online program, which 
is a valuable tool for physicians as it simplifies the process 
of identifying patients who are at a high risk of develop-
ing AKI.

Our study has some limitations. To begin with, 
Although validation has been performed in MMIC-IV 
database, further validation in additional cohorts is still 
needed to demonstrate its generalizability. Secondly, 
as an administrative database, there are certain inher-
ent limitations that must be acknowledged. Some data 
may not be available. Thirdly, like all retrospective stud-
ies, there may be unmeasured confounding factors that 
could affect the results. These confounding variables may 
be difficult to account for in the study design, making it 
challenging to draw definite conclusions. Lastly, since 
the study is based on ICU patients, the findings cannot 
be generalized to other populations, such as non-ICU 
patients or healthy individuals. Therefore, caution must 
be taken while interpreting the results and applying them 
to other patient groups.

Conclusion
ML models are reliable tools for predicting AKI in ARDS 
patients. Among all models, the XGBoost model demon-
strates the best predictive performance, assisting clinical 
practitioners in identifying high-risk patients and imple-
menting early interventions to improve prognosis. Addi-
tionally, the compact model and web-based calculator 
further enhance clinical usability. With the development 
of ML technology, it will have broader applications in the 
future medical field.

Table 4  Evaluation indicators in extra validation set of XGBoost_HPO and other models
Model Accuracy Sensitivity Specificity PPV NPV F1_score
XGBoost 0.724 0.789 0.688 0.590 0.851 0.675
LightGBM 0.723 0.793 0.683 0.582 0.856 0.671
Logistic_
Regression

0.677 0.709 0.660 0.537 0.803 0.610

KNN 0.578 0.662 0.531 0.440 0.739 0.529
SOFA 0.699 0.531 0.734 0.293 0.883 0.378
KNN, K-nearest neighbor; XGBoost, eXtreme gradient boosting; HPO, hyperparameter optimization;  LightGBM, light gradients boosting machine; PPV, positive 
prediction value; NPV, negative prediction value; SOFA, sequential organ failure assessment
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Fig. 6  Calibration curves of logistic regression, LightGBM, KNN and XGBoost_HPO model. a Calibration curves in testing set; b Calibration curves in 
extra validation set. KNN, K-nearest neighbor; XGBoost, eXtreme gradient boosting; LightGBM, light gradients boosting machine; HPO, hyperparameter 
optimization
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