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Abstract 

With the growing amount of COVID-19 cases, especially in developing countries with limited medical resources, 
it is essential to accurately and efficiently diagnose COVID-19. Due to characteristic ground-glass opacities (GGOs) 
and other types of lesions being present in both COVID-19 and other acute lung diseases, misdiagnosis occurs 
often — 26.6% of the time in manual interpretations of CT scans. Current deep-learning models can identify COVID-
19 but cannot distinguish it from other common lung diseases like bacterial pneumonia. Concretely, COVision 
is a deep-learning model that can differentiate COVID-19 from other common lung diseases, with high specificity 
using CT scans and other clinical factors. COVision was designed to minimize overfitting and complexity by decreas-
ing the number of hidden layers and trainable parameters while still achieving superior performance. Our model 
consists of two parts: the CNN which analyzes CT scans and the CFNN (clinical factors neural network) which analyzes 
clinical factors such as age, gender, etc. Using federated averaging, we ensembled our CNN with the CFNN to cre-
ate a comprehensive diagnostic tool. After training, our CNN achieved an accuracy of 95.8% and our CFNN achieved 
an accuracy of 88.75% on a validation set. We found a statistical significance that COVision performs better than three 
independent radiologists with at least 10 years of experience, especially in differentiating COVID-19 from pneumonia. 
We analyzed our CNN’s activation maps through Grad-CAMs and found that lesions in COVID-19 presented peripher-
ally, closer to the pleura, whereas pneumonia lesions presented centrally.
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Introduction
Background
The outbreak of severe acute respiratory syndrome cor-
onavirus-2 (SARS-CoV-2) and its associated disease 
COVID-19 has led to a global pandemic. As of March 
31, 2022, there have been over 486  million COVID-19 

cases worldwide, claiming an estimated 6.14 million lives 
according to the World Health Organization (WHO) 
[1]. COVID-19 infects the lungs, specifically the alveo-
lar type II cells, resulting in complications like pneumo-
nia [2]. Currently, RT-PCR remains the gold standard 
for COVID-19 diagnosis; however, due to limited sen-
sitivity of 89.9% [3], and a wait time of at least 48 h for 
results, the need for quicker and more accurate diagno-
sis is imperative. This is especially the case when patients 
present to the hospital with severe respiratory diseases 
that could be COVID-19 or other conditions with similar 
presentations such as bacterial pneumonia, pulmonary 
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edema, or sepsis. Because of the similarity in the presen-
tation of these pulmonary conditions, it is often difficult 
to form an accurate diagnosis with CT scans alone, lead-
ing to a high rate of misdiagnosis.

Disproportionate effect of COVID‑19
The disparity in the COVID-19 response between devel-
oping and developed countries is staggering. According 
to the World Bank, high and high-intermediate countries 
have higher physicians per capita and nurses per capita 
when compared to low and low-intermediate-income 
countries [4]. Factors such as slow economic growth in 
developing countries and the migration of healthcare 
workers from developing to developed countries are the 
primary reasons attributed to the lack of healthcare pro-
fessionals in developing nations. The shortage of health-
care workers in low and low-intermediate countries has 
led to greater work hours per week and higher rates of 
burnout [5]. These issues have only been exacerbated due 
to the COVID-19 pandemic leading to overburdened 
medical systems. Using digital technology and automa-
tion in healthcare, particularly in low-income nations, 
has great potential to ease the burden on their already 
crumbling medical infrastructure.

Deep learning
New developments in deep learning have led to poten-
tial diagnostic applications. Deep learning allows for the 
extraction of nonlinear quantitative features in datasets 
allowing for analysis of complex patterns in the train-
ing data, leading to the possibility of creating automated 
high-accuracy diagnosis models in radionomics [6]. In 
the past, convolutional neural networks (CNNs) have 
shown general usability in diagnosing retinal conditions 
using optical coherence tomography [7].

Existing work
SARS-Net [8] is one of many deep-learning models 
developed to aid with COVID-19 diagnosis. While this 
model is able to achieve an accuracy of 97.6% in identi-
fying COVID-19 from Chest X-rays (CXRs), this model 
fails to differentiate COVID-19 from other common pul-
monary conditions such as bacterial pneumonia leading 
to a low specificity. Specificity is a measure of how well 
a model can identify individuals who do not have a dis-
ease and can correctly identify what condition(s) an indi-
vidual might have instead. For effective use in a clinical 
setting, and for triaging of patients, models that detect 
COVID-19 from medical images and CT scans need a 
high specificity. One potential solution is to apply Cap-
sule Networks [9]. However, these networks use vector 
representation for the neurons and replace the backprop-
agation training algorithm with dynamic routing, both of 

which substantially increase computational complexity 
and training time.

Introduction
In our research, we attempted to answer the following 
research question: Is it possible to create a lightweight 
computer model that can accurately identify COVID-
19 and distinguish it from other common lung diseases, 
such as bacterial pneumonia? Due to the aforementioned 
potential of deep learning, we hypothesize that we can 
create a lightweight model, called COVision, using deep 
learning that will be on par or outperform radiologists in 
the differentiation of COVID-19 and bacterial pneumo-
nia as measured by the metrics of accuracy, AUROC, and 
sensitivity (recall), specificity, and precision.

Our significant contributions are listed below:

• We developed a lightweight model called COVi-
sion that can accurately diagnose and differenti-
ate COVID-19, bacterial pneumonia, and healthy 
patients using CT scans and basic clinical factors.

• Our model outperformed three independent radiolo-
gists on a testing set with statistical significance.

• We made the following observations: Upon analy-
sis of the Grad-CAMs for our CNN, we found that 
lesions in COVID-19 presented peripherally, closer 
to the pleura, whereas pneumonia lesions presented 
centrally. Additionally, “shortness of breath” is the 
most influential clinical factor for diagnosis.

Methods
CT scans preprocessing
One hundred ninety-four thousand nine hundred 
twenty-two isolated CT slices (75,686 COVID-19, 
73,924 pneumonia, 45,312 healthy) were obtained from 
the CC-CCII dataset [10]. All 194,922 data points are 
anonymized and deindividualized. These CT slices were 
split 80/20 into training and testing sets (60,548/15,138 
COVID-19, 59,139/14,785 pneumonia, 36,249/9,063 
healthy). To standardize the images, they were resized to 
512 × 512 × 1 through Lanczos3 interpolation. Layers of 
augmentation such as alterations to brightness, satura-
tion, and rotations were then applied to training images. 
The complete flow of data is shown in Table 1.

  Proposed CNN
We used the Keras API in Tensorflow to design, train, and 
test our CNN. The input for our CNN is a processed image, 
and the output is a probability distribution of predicted 
classes (COVID-19, bacterial pneumonia, and healthy). 
The specific architecture for our model is shown in Fig. 1. 
In our model, we used maximum pooling to reduce the 
size of feature maps. Brighter pixels have grayscale values 
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closer to 1 while darker pixels have grayscale values closer 
to 0. This is why maximum pooling over other options 
such as minimum pooling because on CT scans the maxi-
mum values (i.e. the brightest pixels) contain the most 
relevant information about the image needed for the clas-
sification and diagnosis of lung diseases. Specifically, com-
mon lesions in COVID-19 and bacterial pneumonia such 
as GGOs, crazy-paving patterns, and consolidation in the 

lungs all show up on a CT scan as brighter pixels. Our 
CNN has 6,542,531 trainable parameters.

Minimizing complexity
Current state-of-the-art models such as VGG19, 
InceptionV3, and ResNet152 have 19, 48, and 152 lay-
ers respectively. The training accuracy of a CNN will 
generally increase with more hidden layers, along with 
the computational complexity of the model. However, 
an overly complex model will often overfit the train-
ing data and underperform on the testing data because 
it learns the patterns in the training data so well that 
it is not able to extrapolate to testing data. Another 
issue is that on computing systems with low com-
putation power (i.e. simple desktop CPUs [11]) as is 
the case with many hospitals, these models may be 
untrainable due to the immense amount of computa-
tion required. In medical imaging there typically is a 
tradeoff between the efficiency and the accuracy the 
model achieves on testing data [12]. Our CNN is a 
lightweight model with only 6 hidden layers. Yet, as we 

Table 1 Breakdown of how many CT scans and clinical factors 
were used for the testing and training

Condition Original Dataset Sample Data

Training Testing Training Testing

CT Scans COVID-19 60,548 15,138 35,000 5638

Pneumonia 59,139 14,785 35,000 7254

Healthy 36,249 9063 35,000 12,766

Clinical Factors COVID-19 9600 2400 9600 2400

Pneumonia 9600 2400 9600 2400

Healthy 9600 2400 9600 2400

Fig. 1 Visualization of our CNN’s architecture. The diagram was displayed by using Tensorflow in Python
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demonstrate it is able to achieve superior performance 
as shown in Sect. CNN Testing.

Dropout layers
We further prevented overfitting by implementing regu-
larization through dropout. We placed dropout layers 
after the 1st and 2nd max-pool layers and after the 1st 
and 2nd dense layers (Fig. 1). The standard convention is 
to set dropout p = 0.5 for fully connected (dense) layers 
and p = 0.8 or 0.9 for convolutional layers, however, this 
technique is arbitrary and is not generalizable to every 
model. Using GridSearchCV from the sklearn library, we 
use grid searching to test dropout factors between 0.1 and 
0.9 (increment of 0.1) in combination for all four dropout 
layers. The following set of dropout factors achieved the 
highest accuracy on a training set: 0.6 for both the convo-
lutional layers and 0.7 for both the dense layers.

  Training CNN
Our CNN was trained using a stratified random sam-
ple of 105,000 isolated CT slices taken from our training 

set created in Sect.  CT scans preprocessing (Table  1). 
We used 35,000 slices each for COVID-19, pneumo-
nia, and healthy (control). We initialized the weights for 
our model using the Glorot (Xavier) Uniform Initializer. 
We used categorical cross-entropy as our loss function. 
Adam’s optimizer was used to minimize the loss. The 
hyperparameters for Adam’s optimizer were tuned using 
a grid-search method. The combination that achieved the 
lowest root mean squared error (RMSE) is summarized 
in Table 2. We trained our CNN on an NVIDIA GeForce 
3090 GPU for 250 epochs (Fig.  2). Scripts were run on 
Ubuntu 20.04.

Clinical factors preprocessing
We used the Khorshid COVID Cohort (KCC) [13] and 
the Israeli Ministry of Health public health database 
(https:// data. gov. il/ datas et/ covid- 19) to construct a cus-
tom dataset of 7 clinical factors (shortness of breath, 
cough, headache, fever, sore throat, age, and gender). Fac-
tors such as shortness of breath, cough, headache, fever, 
sore throat, and gender were expressed as a boolean. Age 

Fig. 2 Accuracy (left) and loss (right) of the CNN in classifying the training data across 250 epochs

https://data.gov.il/dataset/covid-19
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was expressed as an integer. In total, there were clinical 
factors for 30 COVID−19 patients, 30 bacterial pneumo-
nia patients, and 125,882 healthy patients. All 125,942 
data points came from unique, anonymized, deindividu-
alized patients.

Training a model on this dataset results in an imbal-
ance classification problem because of the skewness in 
distribution over the three classes. To address this, the 
data was resampled using the Imbalanced Learn library 
in Python. The majority class of healthy patients was 
sampled so that 12,000 sets of clinical factors were ran-
domly selected. Both minority classes of patients with 
COVID−19 and patients with pneumonia were over-
sampled through random duplication so 11,970 sets 
of clinical factors were added to the original 30 sets for 
both classes. Specifically, we used the synthetic minor-
ity oversampling technique (SMOTe) which is a sampling 
strategy of 1:399 for the COVID-19 and the pneumonia 
classes. The complete dataset had 36,000 data points each 
with sets of clinical factors equally distributed among the 
three classes. These were split 80/20 into training and 
testing sets (9,600/2,400 COVID-19, 9,600/2,400 pneu-
monia, 9,600/2,400 healthy).

Clinical Factors Neural Network (CFNN)
In addition to CT scans, a patient’s clinical factors can 
serve as a means of differentiating whether a patient has 
COVID-19 or bacterial pneumonia. We designed this 
neural network called the clinical factors neural network 
(CFNN) to work in conjunction with our CNN (for CT 
Scans) that was described in Sect.  Proposed convolu-
tional neural network and Training convolutional neural 
network While a CNN uses convolutional layers to clas-
sify CT scans, the CFNN is a standard multilayer percep-
tron neural network used to classify sets of quantitative 
factors such as age. The ensembling process to combine 
the CFNN and CNN is described in Sect. 4.

We used the Keras API in Tensorflow to design, train, 
and test our CFNN. The input for our CFNN is a pro-
cessed set of clinical factors, and the output is a probabil-
ity distribution of predicted classes (COVID-19, bacterial 
pneumonia, and healthy). We chose our CFNN to have 
6 fully connected layers. The specific architecture for 

our model is shown in Fig. 3. We added a dropout layer 
for regularization after the first 3 dense layers to reduce 
overfitting. The dropout factor was tuned to p = 0.5 using 
the same grid-searching method in Sect. Dropout layers. 
There are 60,099 trainable parameters.

Training CFNN
We trained with 28,800 sets of clinical factors (9,600 
COVID-19, 9,600 bacterial pneumonia, and 9,600 
healthy). The accuracy and loss of the model began to 
stabilize by 40 epochs so we early stopped training the 
model at 50 epochs (Fig.  4). The weights of our CFNN 
were initialized using a Glorot Uniform Initializer. We 
used categorical cross-entropy as our loss function. 
Adam’s Optimizer was used to optimize the weights. We 
used grid searching to choose the optimal hyperparam-
eters (Table  2). We trained our CFNN on an NVIDIA 
GeForce 3090 GPU. Scripts were run on Ubuntu 20.04.

Results
CNN Testing
To test our CNN, we took a stratified random sample of 
25,658 CT slices from our testing set created in Sect. CT 
scans preprocessing (Table 1). The breakdown of the test-
ing data is as follows: 5,638 COVID−19, 7,254 pneumo-
nia, and 12,766 healthy (control). The confusion matrix of 
the results after classifying the testing images using our 
CNN is summarized in Fig.  5. The accuracy, AUROC, 
sensitivity (recall), specificity, and precision of the CNN 
on the testing images are summarized in Table  3. For 
this classification problem, we calculated the overall 
AUROC to be 0.970 using weighted averaging of the class 
AUROCs.

For COVID-19 detection, a high sensitivity (recall) 
measures that our model minimizes the number of posi-
tive cases that are missed, which would lead to further 
spread of the virus if not addressed quickly. A high speci-
ficity indicates that the model effectively minimizes the 
number of healthy individuals who are incorrectly classi-
fied as COVID-19 positive, which could save the health-
care system unnecessary costs of treatment and care and 
prevent unneeded quarantine. Similar to high specificity, 

Fig. 3 Visualization of our CFNN’s architecture. The diagram was displayed by using Tensorflow in Python
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high precision ensures that the amount of true diagnoses 
is maximized, increasing efficiency within the hospital.

Comparison against radiologists
We emailed radiologists with at least 10 years of experi-
ence from Ascension Hospital, Henry Ford Hospital, and 
Beaumont Hospital to participate in our study. We took 
a random sample of 297 images from our testing set and 
asked three radiologists to classify CT scans as either 
COVID−19, bacterial pneumonia, or healthy. Radiologist 
1 classified 97 images, Radiologist 2 classified 150 images, 

and Radiologist 3 classified 88 images. The radiologists’ 
combined results are summarized in Fig.  6. Our model 
had an accuracy of 95.8% while the radiologists had an 
accuracy of 73.4% (p < 0.0001). When analyzing the con-
fusion matrices (Figs. 5 and 6), we find that our CNN can 
differentiate COVID-19 from bacterial pneumonia with 
97.8% accuracy while the three trained radiologists differ-
entiate with a 55.5% accuracy. A full comparison of our 
CNN’s accuracy, AUROC, sensitivity (recall), specificity, 
and precision when compared to the radiologists can be 
found in Table 3.

Grad‑CAMs
To visualize the weights of the trained CNN, we created 
Gradient-Weighted Class Activation Mapping (Grad-
CAMs) [14] for a stratified random sample of 2,000 CT 
slices (1,000 bacterial pneumonia, and 1,000 COVID-19) 
from our CT scan testing set without any data augmenta-
tion (i.e. flips, rotations, etc.) because we wanted to gen-
eralize our Grad-CAMs to a standard view of Chest CT 
Scans. Heat maps of the activation map from the CNN’s 

Fig. 4 Accuracy (left) and loss (right) of the CFNN in classifying the training data across 50 epochs

Table 2 CNN and CFNN Adam’s optimizer hyperparameters that 
achieved lowest RMSE after grid-searching

Hyperparameter Initial 
Learning 
Rate (η)

Beta 1 (β1) Beta 2 (β2) epsilon ϵ

CNN (CT Scans) 0.001 0.9 0.999 10−8

CFNN (Clinical Fac-
tors)

0.01 0.99 0.999 10−8
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Fig. 5 Confusion matrix comparing the true labels for the images and the predicted labels by our CNN

Fig. 6 Confusion matrix comparing the true labels for the images and the predicted labels by the radiologists
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last convolutional layer were created with a CT scan as 
input. This quantitative heat map was then normalized to 
a range of [0, 1], averaged across all images in the class, 
and transformed into a single visualization using the 
Matplotlib library (Fig.  7). The Grad-CAMS shows that 
lesions are generally present in the center of the lungs 
in bacterial pneumonia. Lesions for COVID-19 typi-
cally present peripherally, closer to the pleura. COVID-
19 lesions are also shown to be much more scattered 
while lesions from bacterial pneumonia are more local-
ized. These image features can be used by radiologists to 
improve the accuracy of manual diagnosis of conditions.

CFNN testing
To test our CNN, we took a stratified random sample of 
7,200 sets of clinical factors from our testing set created 
in Sect.  CT scans preprocessing (Table  1). The break-
down of the testing data is as follows: 2,400 COVID-19, 
2,400 bacterial pneumonia, and 2,400 healthy (control) 
The CFNN achieved an accuracy of 88.75%. The confu-
sion matrix of the results after classifying the patients 
using their clinical factors using our CFNN is sum-
marized in Fig.  8. The highest categorical accuracy of 
97.58% came from the healthy class, however, this was 

followed by 85.46% for COVID−19 and 83.20% for bac-
terial pneumonia. Because of this, we realized that our 
CFNN should be used in conjunction with other mod-
els to produce the most accurate diagnosis. Because 
of this, we propose an ensemble model combining our 
CNN and CFNN in Sect. Ensembling.

CFNN weights
The weights from the trained CFNN were extracted to 
determine the importance of each clinical factor in mak-
ing a prediction. After normalizing the weights, we found 
that the most influential factor was “shortness of breath”.

Ensembling
To combine our CNN and CFNN which can both inde-
pendently differentiate between healthy, bacterial pneu-
monia, and COVID-19 patients, we create an ensemble 
model. Specifically, the predictions of each network are 
combined using federated weight averaging [15]. The 
weight is based on the ratio of training data used for 
both models. Because the CNN was trained on 105,000 
images and the CFNN was trained on 28,800 sets of 
clinical factors, the ratio is 0.785 to 0.215. Concretely, 

Table 3 Accuracy, AUROC, sensitivity (recall), specificity, and precision of the CNN compared to radiologists

Metric COVision Radiologists

Healthy (control) Pneumonia COVID Healthy (control) Pneumonia COVID

Accuracy 0.970 0.981 0.967 0.966 0.758 0.744

AUROC 0.982 0.967 0.961 0.976 0.793 0.766

Sensitivity (Recall) 0.949 0.976 0.956 0.985 0.356 0.439

Specificity 0.990 0.983 0.969 0.951 0.964 0.934

Precision 0.989 0.957 0.896 0.942 0.837 0.807

Fig. 7 Grad-CAMs (average of 1000 images) for bacterial pneumonia (left), and COVID-19 CT scans (right)
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the prediction of the CNN has a weight of 0.785 while 
the prediction of the CFNN has a weight of 0.215.

Discussion
Through our research, we developed a deep learning 
framework to differentiate COVID-19 from other com-
mon pulmonary conditions such as bacterial pneumonia. 
Our framework has two parts: a convolutional neural 
network (CNN) that uses CT scans, and a clinical fac-
tors neural network (CFNN) that uses clinical factors 
such as age, gender, and symptoms to help diagnose and 
differentiate between healthy, bacterial pneumonia, and 
COVID-19 patients. Together we call this framework 
COVision. When compared to three board-certified radi-
ologists with at least 10 years of experience, our CNN has 
a statistically significant higher accuracy of 95.8–73.4% 
(p < 0.0001), especially in differentiating COVID-19 from 
pneumonia and healthy CT Scans. Our CFNN on the 
other hand achieved an accuracy of 88.75% on the testing 
set. Particularly, our CFNN performs poorly at differenti-
ating COVID-19 from bacterial pneumonia which is why 
we suggest the use of a CNN and CFNN ensemble model 
for a more comprehensive diagnosis. We also made a few 
observations that may be relevant for clinical practice. 

After constructing Grad-CAMs for our CNN we found 
that COVID-19 lesions presented peripherally, closer to 
the pleura while pneumonia lesions presented centrally 
on a chest CT scan of the lungs. After analyzing the 
weights of our trained CFNN, we found that “shortness of 
breath” was the best indicator for disease. Our research 
has two limitations. (1) Our data for the CT scans and for 
the clinical factors came from different patients which 
makes the ensembling process not as robust as if they 
came from the same patients. (2) The data for the CT 
scans and clinical factors came from patients from dif-
ferent parts of the world (i.e. East Asia and Middle East). 
This could be an issue if COVID-19 and bacterial pneu-
monia present in the lungs differently in different parts of 
the world. In future, both of these problems can be ame-
liorated as more public patient data becomes available. 
In the future, with more data, the COVision can also be 
trained to differentiate other lung conditions apart from 
bacterial pneumonia such as different types of lung can-
cer. COVision has the potential to save countless lives, 
particularly in developing nations with a shortage of doc-
tors and a huge volume of patients due to the coronavirus 
pandemic by assisting medical professionals in the diag-
nosis process.

Fig. 8 Confusion matrix comparing the true labels for clinical factors and the predicted labels by our CFNN
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