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Abstract 

Background Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and bronchiecta‑
sis, present significant threats to global health. Recent studies have revealed the crucial role of the lung microbiome 
in the development of these diseases. Pathogens have evolved complex strategies to evade the immune response, 
with the manipulation of host cellular epigenetic mechanisms playing a pivotal role. There is existing evidence regard‑
ing the effects of Pseudomonas on epigenetic modifications and their association with pulmonary diseases. Therefore, 
this study aims to directly assess the connection between Pseudomonas abundance and chronic respiratory diseases. 
We hope that our findings will shed light on the molecular mechanisms behind lung pathogen infections.

Methods We analyzed data from 366 participants, including individuals with COPD, acute exacerbations of COPD 
(AECOPD), bronchiectasis, and healthy individuals. Previous studies have given limited attention to the impact of Pseu-
domonas on these groups and their comparison with healthy individuals. Two independent datasets from different 
ethnic backgrounds were used for external validation. Each dataset separately analyzed bacteria at the genus level.

Results The study reveals that Pseudomonas, a bacterium, was consistently found in high concentrations in all 
chronic lung disease datasets but it was present in very low abundance in the healthy datasets. This suggests 
that Pseudomonas may influence cellular mechanisms through epigenetics, contributing to the development 
and progression of chronic respiratory diseases.

Conclusions This study emphasizes the importance of understanding the relationship between the lung micro‑
biome, epigenetics, and the onset of chronic pulmonary disease. Enhanced recognition of molecular mechanisms 
and the impact of the microbiome on cellular functions, along with a better understanding of these concepts, can 
lead to improved diagnosis and treatment.
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Background
The microbiome refers to the collection of microorgan-
isms that live within and on the human body, and it has 
been shown to have a significant impact on human health 
and disease [1]. Examining lung diseases from a micro-
biome perspective is crucial as the human lung is home 
to a diverse population of microorganisms, collectively 
known as the lung microbiome [2]. Recent studies have 
shown that an imbalance in the lung microbiome, known 
as dysbiosis, can contribute to the development and pro-
gression of diseases [3].

By examining the lung microbiome, researchers can 
identify new targets for therapeutic interventions and 
gain insight into the complex interactions between the 
microorganisms, host, and environment that contrib-
ute to health and disease [4, 5]. The field of probiotic 
applications is expanding rapidly, with a focus on their 
use in managing respiratory tract infections. In a study 
conducted by Giovanna Batoni and her colleagues, they 
identified Lactobacillus acidophilus as a promising can-
didate for further investigation in the development of 
potential treatments for controlling Pseudomonas aerugi-
nosa infections [6]. Scientists explored the effectiveness 
of supplementing patients with COPD using Lactobacil-
lus casei Shirota. The findings revealed enhancements in 
both lung function and quality of life, indicating a pos-
sible beneficial role for probiotics in managing COPD [7, 
8]. A study by Huang et al. explored the impact of dietary 
prebiotics, on asthma control. Consumption of prebiotic-
rich foods was associated with reduced airway inflamma-
tion in asthmatic individuals, highlighting the potential 
of dietary interventions in asthma management [9].

Fecal microbiota transplantation (FMT) and a high-
fiber diet resulted in reduced local and systemic inflam-
mation while also offering protection against alveolar 
destruction and cellular apoptosis [10]. A deeper under-
standing of the lung microbiome has the potential to 
improve our ability to diagnose and treat lung diseases, 
leading to better outcomes for patients [11]. This is 
achieved through fecal transplantation from donors 
whose microbial diversity is well-suited for this purpose. 
Long Wen et  al. found that Pseudomonas aeruginosa 
leads to a reduction in both the diversity and quantity 
of gut microbiota in mice with pneumonia, resulting in 
metabolic imbalances. When fecal microbiota transplan-
tation (FMT) was administered, this situation improved 
in mice with pneumonia. That helped restore the bal-
ance between Treg and Th17 cells, consequently alleviat-
ing lung inflammation and injury in mice infected with 
Pseudomonas aeruginosa pneumonia by regulating gut 
microbiota and addressing metabolic dysfunction [12].

Epigenetics encompasses heritable changes in gene 
function that occur independently of alterations in the 

DNA sequence [13, 14]. Types of epigenetic changes 
include DNA methylation, histone modification, and 
miRNA regulation [15–17]. Epigenetics plays a crucial 
role in the relationship between the microbiome and lung 
disease [18, 19]. The microbiome in the lungs is involved 
in regulating various biological processes such as cell 
proliferation, differentiation, stress response, and patho-
genesis. Studies have shown that certain microRNAs are 
dysregulated in chronic lung diseases such as COPD, IPF, 
and CF and may contribute to the development and pro-
gression of these diseases by regulating inflammation, 
cell proliferation, tissue remodeling, and the immune 
response to infection [14, 17, 18, 20].

In the context of the lung microbiome, epigenetic 
changes can impact the balance of microorganisms 
within the lung and lead to dysbiosis, which can contrib-
ute to the development and progression of lung diseases. 
The interplay between the microbiome and the epige-
nome is intricate and mutually influential [13]. A better 
understanding of the role of epigenetics in the microbi-
ome-lung disease relationship has the potential to pro-
vide new insights into the development and progression 
of lung diseases, as well as new targets for therapeutic 
interventions [21].

Pseudomonas is a type of bacteria that can cause res-
piratory infections and disease in individuals with weak-
ened immune systems, such as those with cystic fibrosis, 
chronic obstructive pulmonary disease (COPD), or 
severe asthma [22]. Pseudomonas aeruginosa (P. aerugi-
nosa) infection represents a significant danger to individ-
uals with cystic fibrosis (CF). Within the context of this 
infection, P. aeruginosa typically inhabits the thickened 
mucus lining the airways. This mucus not only offers a 
supportive structure and a nutrient-rich habitat for the 
bacterium to thrive but also rarely comes into direct con-
tact with the underlying airway epithelial cells [23]. The 
presence of Pseudomonas in the respiratory tract can 
disrupt the composition of the respiratory microbiome, 
resulting in alterations to its typical functions and an 
elevated susceptibility to respiratory infections [18, 24]. 
Studies have also shown that Pseudomonas can impact 
the epigenetic regulation of host cells. These changes in 
gene expression can contribute to the development and 
progression of respiratory disease [25].

Aforementioned, the mechanism of pathogens inter-
play with the lung cells are in the question yet, the role of 
the epigenetics and the connection of Pseudomonas and 
epigenetic have been mentioned on the previous stud-
ies. Our main goal is to directly investigate the effect of 
the Pseudomonas pathogen on the COPD as a chronic 
lung disease. Thus, we compared the composition of 
the lung microbiome in healthy, COPD, AECOPD, and 
bronchiectasis subjects using metagenomic data. We 
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categorized the bacteria with high prevalence in each dis-
ease and found that the prevalence of the Pseudomonas 
genus is common in all chronic lung diseases and not in 
the healthy dataset. Our results beside the previous study 
could propose the epigenetic changes as the cellular 
mechanism of Pseudomonas infection however this idea 
needs more investigations.

Methods
Data acquisition
We carried out a comprehensive screening process of 
existing datasets on chronic lung diseases using biologi-
cal samples. The datasets were then grouped based on 
the V region of the 16s rRNA gene. The results of the 
screening process led to the selection of the lung sputum 
biological sample and the V4 region for further analysis. 
Additionally, a control dataset in healthy individuals for 
lung sputum samples was also selected for comparison. 
We selected a total of 820 samples from 366 patients. All 
the data used in the study was obtained from EBI data-
bases, a reliable source of biological information. The 
selection of these datasets and the careful screening pro-
cess were important in ensuring the validity and accuracy 
of the results of the study.

Data preprocessing
The process of preparing the data involved several crucial 
steps to ensure the accuracy and quality of the results. 
The first step was demultiplexing, which involved sepa-
rating the different samples present in the dataset based 
on the single-end or paired-end sequence information. 
This step was performed using QIIME2 version 2020.6, 
a widely used software for microbial analysis [26]. After 
demultiplexing, the samples were denoised to remove 
any noise present in the data. The DADA2 technique was 
utilized for this step, which allowed for an evaluation of 
the quality of the denoised reads [27]. Finally, the filtered 
raw sequencing data were subjected to a thorough clean-
ing process to eliminate any samples with fewer than 
5000 reads. This step was taken to ensure that the final 
results were based on high-quality data and to minimize 
the potential for errors. In conclusion, the data prepara-
tion process was crucial to the success of the study and 
involved several important steps to ensure the accuracy 
and reliability of the results.

Taxonomic analysis
The process of taxonomic analysis in QIIME2 ver-
sion 2020.6 involves a series of crucial steps to obtain 
meaningful results. The first step involves the cluster-
ing of Operational Taxonomic Units (OTUs) based on 
their similarity, which is determined by a similarity of 
over 97%. This can be achieved through the use of two 

methods, the Denovo and closed reference clustering 
methods [28]. The next step involves the classification of 
the 16S rRNA gene sequences using a Scikit-Learn naive 
Bayes machine-learning classifier that is based on the 
GreenGenes database.

Alpha and beta diversity
The data obtained from the above steps is then evalu-
ated using various indices, including the Shannon index, 
which is used to determine alpha diversity, the weighted 
UniFrac, which is used to evaluate beta diversity, and the 
primary coordinate analysis (PCoA).

The taxonomic data is analyzed at the genus level. The 
relative abundances of each genus in each sample are 
calculated for each dataset individually. This step helps 
to provide a comprehensive understanding of the taxo-
nomic composition of the data, which can be useful in 
various applications, such as environmental monitoring, 
and disease diagnosis among others. The use of cluster-
ing methods, machine-learning classifiers, and various 
indices helps to provide a comprehensive understanding 
of the taxonomic composition of the data, which can be 
useful in various applications.

External validation data
In order to corroborate the findings from the preced-
ing stages, we repeated the analyses detailed in the prior 
step using two distinct datasets: one comprising data 
from healthy subjects and the other containing data from 
patients with COPD (refer to Table 1).

Results
Data acquisition
As depicted in Table 1, the analysis of 16 s rRNA genes in 
lung sputum was carried out using five distinct datasets, 
including patients with pulmonary disease and healthy 
individuals. In the “Availability of data and materials” sec-
tion, the link to the data obtained from the EBI database 
is mentioned. The filtered samples consisted of those 
whose sequence length was less than 5000.

Data and taxonomic analysis
Alpha-rarefaction separations that were shown in Fig. 1 
are done to account for differences in sequencing depth 
and to ensure that rare species are not missed. Phylo-
genetically, the diversity of microbial communities was 
evaluated using four metrics: mean-nearest-taxon-dis-
tance (MNTD), nearest-taxon-index (NTI), mean phy-
logenetic distance (MPD), and net-relatedness index 
(NRI). The comparison between each sample pair was 
made using a distance calculation, such as Bray–Curtis or 
UniFrac, which produced a matrix of pairwise distances. 
We determined the relative abundance of bacteria at the 
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genus level in three databases for chronic lung diseases, 
including bronchiectasis, COPD, AECOPD, and a healthy 
database. The bacteria that showed a high relative abun-
dance in each illness are considered potential candidates. 
As illustrated in Fig.  2, Pseudomonas bacteria (which 
are highlighted in red) were detected in all patients with 
chronic lung diseases, whereas it was absent in healthy 
individuals.

Rothia was found to have a significant relative fre-
quency in all datasets except in bronchiectasis. Actino-
myces was found to have a significant relative frequency 
in the mentioned diseases, while its relative frequency in 
the healthy dataset was not significant. Prevotella, Strep-
tococcus, Veillonella, Neisseria, and Haemophilus were 
found to have a significant frequency in chronic lung 
disease and healthy individuals and were considered as 
“housekeeping genes” in the lung microbiome.

The following genera of bacteria were found to have 
low abundance only in healthy individuals: Bacteroides, 

Butyrivibrio, Peptococcus, Filifactor, Peptostreptococcus, 
Bulleidia, Cardiobacterium, and Mycoplasma. Tannerella 
and Catonella were observed to have low abundance in 
all datasets except AECOPD. Porphyromonas was found 
to have low abundance in all three disease datasets but 
was not observed in healthy individuals. Bifidobacte-
rium and Scardovia were only seen with low abundance 
in COPD and AECOPD. Leptotrichia, Ochrobactrum, 
and Actinobacillus were only seen with low abundance 
in bronchiectasis. Acinetobacter was only seen with low 
abundance in AECOPD and Turicibacter, Blautia, Oscil-
lospira, Schwartzia, and Clostridium were only seen with 
low abundance in COPD.

Leptotrichia was found to be in significant abundance 
in COPD and AECOPD and had a lower abundance in 
the healthy and bronchiectasis datasets. Lactobacillus 
was significantly abundant in COPD and AECOPD but 
was absent in the healthy and bronchiectasis datasets. It 
appears that the high abundance of these two bacteria is 

Table 1 Dataset information

Access number Disease Final samples Number of 
patients

Sex (%female) Age Platform Country

Main Data PRJEB9607 Healthy 101 81 62 58 Single end Korean

PRJNA377739 COPD 584 101 42 67 Paired end British

PRJNA491749 AECOPD 102 112 37 66 Paired end Canadian

PRJEB14304 Bronchiectasis 33 72 68 62 Single end British

External Valida‑
tion Data

PRJNA491861 Healthy 122 124 73 61 Paired end British

PRJNA299077 COPD 242 87 25 61 Single end British

Fig. 1 Alpha Rarefication of datasets: a COPD; b AECOPD; c Bronchiectasis; d Healthy
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related to COPD. Moraxella was found in COPD but was 
not present in other datasets. Actinobacillus was found to 
have the highest relative abundance in healthy individu-
als and low relative abundance in bronchiectasis and was 
not present in COPD and AECOPD. It appears that its 
abundance has an inverse relationship with respiratory 
disease.

In the examination of AECOPD, there was no sub-
stantial difference observed in the microbiome between 
males and females. As the metadata in other datasets 
lacked information regarding sex, it was impossible to 
determine the variations in the microbiome based on 
gender. Our results showed negative correlations based 
on their relative abundance, which were found between 
Pseudomonas and Prevotella, Veillonella, Streptococcus, 
and Capnocytophaga in bronchiectasis whereas there was 
not any significant correlation between Pseudomonas 
and other genera in chronic lung disease. These findings 
indicate that the relationship between Pseudomonas and 
other genera may differ among respiratory diseases.

External validation data
We conducted the same analyses mentioned in the pre-
vious steps on two distinct datasets concerning healthy 
individuals and patients with COPD (Table  1). In the 
dataset related to healthy individuals, Pseudomonas was 

not observed, while in the COPD dataset, Pseudomonas 
was observed with a significant frequency.

Statistical analysis
In this section, we conducted Chi-Square and Mann–
Whitney statistical analyses to assess the presence and 
abundance of Pseudomonas bacteria in various chronic 
lung diseases compared to the healthy state. Based on the 
results obtained in Table 2, a significant difference in the 
abundance of this bacterium was observed between the 
diseased and healthy states.

Discussion
In this study, we conducted a comparison of the res-
piratory microbiome among individuals with chronic 
lung diseases, including Chronic Obstructive Pul-
monary Disease (COPD), Acute Exacerbation of 
Chronic Obstructive Pulmonary Disease (AECOPD), 
non-cystic fibrosis bronchiectasis, and healthy con-
trols. This comparison was based on sputum samples 
obtained from the V4 area, and we analyzed a total 
of 820 samples from 366 patients. We found that 
Pseudomonas was present in significant frequencies 
across all disease datasets, while its abundance was 
markedly lower in the dataset of healthy individu-
als. Validation results using independent data have 

Fig. 2 High abundance genera in disease
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further confirmed our findings. Thus, we are investi-
gating the impact of this pathogen on the epigenetics 
of chronic lung diseases.

In study by Faure et al., it has been suggested that the 
presence of Pseudomonas is harmless in healthy peo-
ple [29]. However, our study has explored this issue 
and found a substantial and distinct difference between 
healthy individuals and those with COPD, bronchiecta-
sis, and ACOPD. This difference is quite pronounced.

The observed negative correlation between Pseu-
domonas and Bacteroidetes/Firmicutes in bronchiecta-
sis (Fig. 3) is likely due to their competition for shared 
resources and the production of antimicrobial com-
pounds that hinder the growth of competing bacterial 
groups [30].

Pseudomonas. aeruginosa, a gram-negative bacterium, 
which is commonly found in the respiratory tract, can 
modulate epigenetic mechanisms in host cells to promote 
its own survival and colonization [31]. Overall, research 
suggests that Pseudomonas may play an important role 
in shaping the epigenetic landscape of the respiratory 
microbiome, which can have implications for respiratory 
health and disease.

DNA methylation is a process by which methyl groups 
are added to the DNA molecule. This can lead to changes 
in gene expression by blocking the access of the tran-
scription machinery to the DNA. Pseudomonas can 
modulate host gene expression by changing host ncRNA 
expression or host DNA methylation pattern in a way 
that benefits the bacteria [25, 32, 33].

Table 2 Comparison of present and abundance of Pseudomonas between disease and healthy

Disease Number of 
final samples

The presence of 
Pseudomonas

P-value Chi-square Abundant colony of 
Pseudomonas

P-value 
Mann–
Whitney

Positive Negative Median Q1 Q3

Main Data Healthy 101 14 87 ‑‑‑‑‑ 0 0 0 ‑‑‑‑‑

COPD 584 168 416 0.00174 0 0 4 0.00001

AECOPD 102 88 14 0.00001 40.5 10.25 190.75 0.00001

Bronchiectasis 33 22 11 0.00001 13 0 1630 0.00001

External Vali‑
dation Data

Healthy 122 18 104 ‑‑‑‑‑ 0 0 0 ‑‑‑‑‑

COPD 242 120 122 0.00001 0 0 173 0.00001

Fig. 3 Correlation between Pseudomonas and other genera in bronchiectasis based on their relative abundance. The colors of nodes represent 
bacteria at the phylum level. Blue represents Firmicutes, gray represents Bacteroidetes, and orange represents Proteobacteria. Edges show 
a negative correlation above 0.4 in bacteria abundance. The thickness of the edges in the network represents the strength of the connections 
between bacteria
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Pseudomonas is known to modulate the expression 
of a wide range of host genes to establish and maintain 
chronic infections [33]. Some examples of host genes that 
are affected by Pseudomonas include:

Genes involved in inflammation: Pseudomonas’ abil-
ity to upregulate pro-inflammatory genes, like TNF-
alpha and IL-8, fosters a pro-inflammatory environ-
ment conducive to bacterial growth. Furthermore, 
TNF-alpha and IL-8, known for their roles in infec-
tion-related immune responses and their implication 
in chronic lung diseases such as COPD and bronchi-
ectasis, are suggested to be influenced by the pres-
ence of Pseudomonas in the respiratory microbiome, 
potentially affecting the development and progres-
sion of chronic lung diseases [34].
Genes involved in host defense: Pseudomonas can 
downregulate the expression of host defense genes, 
such as those encoding antimicrobial peptides, to 
evade the host’s defenses. The downregulation of these 
genes may result in a weakened immune response 
and increased susceptibility to infections and inflam-
mation [35]. This can contribute to the progression of 
the disease and make it more difficult to treat. Genes 
involved in the innate immune response, such as 
toll-like receptors (TLRs) and nucleotide-binding oli-
gomerization domain-like receptors (NLRs), have been 
implicated in the pathogenesis of chronic obstructive 
pulmonary disease (COPD) and other respiratory 
disorders [36]. Similarly, changes in the expression of 
genes involved in adaptive immune responses, such 
as T-cell receptors and immunoglobulin genes, have 
been observed in individuals with these conditions 
[37]. Alterations in host defense genes can result in 
a weakened immune response, leading to increased 
susceptibility to infections and inflammation. In other 
cases, changes in these genes may result in an overac-
tive immune response, leading to tissue damage.
Genes involved in cell signaling: Pseudomonas can 
modulate the expression of host genes involved in cell 
signaling pathways, such as those encoding receptor 
tyrosine kinases, to alter host cell behavior in a man-
ner that favors their survival, enabling them to evade 
the host’s immune defenses [31–33]. In the context of 
respiratory diseases, the expression and activation of 
RTKs may play a crucial role in the development and 
progression of the disease [38]. Dysregulation of RTK 
signaling has been implicated in several respiratory 
diseases, including IPF, Asthma, chronic obstructive 
pulmonary disease (COPD), and lung cancer.
Genes involved in apoptosis: Pseudomonas can 
modulate the expression of host genes involved in 

programmed cell death (apoptosis), to prevent host 
cells from dying and releasing antimicrobial mol-
ecules [39]. Alterations in the expression or activity 
of genes involved in the apoptosis pathway, such as 
Bcl-2, caspases, and P53, have been observed in indi-
viduals with chronic obstructive pulmonary disease 
(COPD), lung cancer, and other respiratory disorders 
[40]. In some cases, changes in these genes may lead 
to an impaired ability of the cells in the respiratory 
system to undergo apoptosis, resulting in increased 
cell survival and contributing to the development of 
disease [41]. In other cases, alterations in the apopto-
sis pathway may result in increased cell death, leading 
to inflammation and scarring.
MicroRNA: Research indicates a bidirectional rela-
tionship between microbiome composition and 
host miRNA expression, with potential implications 
for chronic lung diseases. In COPD, for example, 
changes in the lung microbiome have been linked to 
alterations in miRNA expression, which can lead to 
inflammation and exacerbation of the disease [42]. 
Additionally, some miRNAs have been shown to 
directly target bacterial genes, suggesting a direct link 
between host miRNA expression and microbiome 
[43]. This highlights the importance of understanding 
the interplay between the host miRNA expression 
and the lung microbiome in the development and 
progression of chronic lung diseases.

The above are examples of host genes affected by Pseu-
domonas, but this bacterium can modulate many other 
genes depending on the context of infection. Under-
standing the specific genes and pathways affected by 
Pseudomonas in different types of infections may help to 
develop new treatments for these infections.

Conclusion
In this study, we analyzed multiple datasets from indi-
viduals with chronic lung diseases and a healthy control 
group to compare the respiratory microbiome between 
the two. The results revealed that the genus Pseudomonas 
is abundant and significant in the respiratory microbi-
ome of individuals with chronic lung diseases. Our study 
also demonstrated that the pathogen Pseudomonas can 
cause epigenetic changes that perpetuate airway inflam-
mation and worsen lung damage. Further investigation 
is required to fully comprehend the specific mechanisms 
through which Pseudomonas induces these changes and 
to determine if targeting these changes may offer a prom-
ising therapeutic approach for individuals with chronic 
lung diseases.
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