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Abstract
Background Lung cancer (LC) is one of the most devastating diseases worldwide, there is growing studies confirm 
the role of impaired lung function in LC susceptibility. Moreover, gut microbiota dysbiosis is associated with LC 
severity. Whether alterations in gut microbiota and metabolites are associated with long-term lung dysfunction in LC 
patients remain unclear. Our study aimed to analyze the risk factors in LC patients with impaired pulmonary function 
based on the characteristics of the gut microbiome and metabolites.

Methods Fecal samples from 55 LC patients and 28 benign pulmonary nodules patients were collected. Pulmonary 
ventilation function was graded according to the American Thoracic Society/ European Respiratory Society (ATS/ERS) 
method. LC patients were divided into 3 groups, including 20 patients with normal lung ventilation, 23 patients with 
mild pulmonary ventilation dysfunction and 12 patients with moderate or above pulmonary ventilation dysfunction. 
The fecal samples were analyzed using 16 S rRNA gene amplicon sequencing and metabolomics.

Results The gut microbiome composition between LC patients and benign pulmonary nodules patients presented 
clearly differences based on Partial Least Squares Discriminant Analysis (PLS-DA). Pulmonary ventilation function 
was positively correlated with LC tumor stage, the richness and diversity of the gut microbiota in LC patients with 
moderate or above pulmonary ventilation dysfunction increased significantly, characterized by increased abundance 
of Subdoligranulum and Romboutsia. The metabolomics analysis revealed 69 differential metabolites, which were 
mainly enriched in beta-Alanine metabolism, styrene degradation and pyrimidine metabolism pathway. The area 
under the curve (AUC) combining the gut microbiome and metabolites was 90% (95% CI: 79-100%), indicating that 
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Introduction
Lung cancer ( LC ) is one of the most common and the 
leading cause of cancer deaths worldwide [1]. Genetic 
susceptibility, gut microbiome and smoking are hypoth-
esized to increase the risks of LC by shaping the tumor 
microenvironment and promoting the tumorigenesis 
[2]. Gut microbiota can influence the immune status of 
the host, which in turn increases susceptibility to malig-
nancy. The gut microbiota and metabolites can enter the 
blood through the intestinal barrier, leading to a chronic 
inflammatory state in the organism [3]. Dysfunction 
of gut microbiota is believed to be associated with the 
occurrence and development of cancers, and studies have 
identified potential fecal biomarkers, satisfactory perfor-
mances of these markers have been shown for diagnosing 
pancreatic cancer (AUC = 0.78–0.94) [4, 5], hepatocellu-
lar carcinoma (AUC = 0.8064) [6], lung adenocarcinoma 
(AUC = 0.76–0.976) [7, 8] and so on. Emerging studies 
have indicated that significant changes in the composi-
tion and function of the gut microbiota in patients with 
pulmonary diseases compared to healthy individuals [7, 
9, 10]. The detection of differences in gut microbial com-
munities between healthy individuals and LC patients 
could be used as a predictive tool for LC progression [11, 
12]. Research on the role and mechanisms of intestinal 
flora and its metabolites in LC is beginning to receive 
widespread attention.

In recent years, many studies focus on the relation-
ship between lung function and lung health. Kachuri et 
al. found that immune-mediated genetic pathways led 
to impaired lung function, with reduced FEV1 increas-
ing the risk of squamous cell carcinoma and reduced 
FEV1/FVC increasing the risk of adenocarcinoma [13]. 
A large observational literature has found an increased 
risk of LC in patients with pulmonary insufficiency [14], 
but the possible relationship between LC and respiratory 
dysfunction has not been established. Li et al. revealed 
that the diversity of pulmonary microbiota in chronic 
obstructive pulmonary disease (COPD) patients with 
impaired lung function was similar [15]. Airway lactoba-
cilli has the effects in ameliorates lung function decline 
[16]. Notably, patients with irritable bowel syndrome 
(IBS) with intestinal flora imbalance are prone to devel-
oped impaired lung function and chronic lung disease 
[17]. However, whether alterations in gut microbiota and 

metabolites are associated with long-term lung dysfunc-
tion in LC patients remain unclear.

Therefore, fecal samples were collected from 28 benign 
diseases patients and 55 LC patients, and further ana-
lyzed by 16 S rRNA amplicon sequencing and metabolo-
mics to assess the diversity and structure of microbiota 
and differential metabolites in the fecal samples. Then, 
we graded lung cancer patients according to the Ameri-
can Thoracic Society/ European Respiratory Society 
(ATS/ERS) five level classification method for pulmonary 
ventilation impairment [18]. Interestingly, we found a 
positive correlation between tumor stage and pulmonary 
ventilation function, thus this study further analyzed 
the risk factors in LC patients with impaired pulmonary 
function based on the characteristics of the gut microbi-
ome and metabolites.

Methods
Patients recruitment
Fecal samples from 82 LC patients and 36 patients with 
benign pulmonary diseases were collected from Zibo 
Municipal Hospital. The enrolled patients in this study 
were patients with suspicious nodules on CT images. 
Based on the pathological diagnosis results, 55 patients 
who were pathologically diagnosed with lung cancer and 
28 patients who were diagnosed with benign pulmonary 
nodules diseases eventually met the inclusion criteria 
and were included in the final study. Performed pulmo-
nary function tests on all enrolled patients, evaluated 
their lung ventilation and diffusion function using the 
Jeager MasterScreen instrument and detected changes 
in obstruction, restriction, and mixed pulmonary ventila-
tion disorders. Further, pulmonary function was graded 
according to ATS/ERS method and ventilation param-
eters (FVC, FEV1, FEV1/FVC), LC patients were clas-
sified into 20 patients with normal pulmonary function 
(ZC group), 23 patients with mild pulmonary dysfunc-
tion (QD group) and 12 patients with moderate or above 
pulmonary ventilation dysfunction (ZZD group). Clinical 
data including age, gender, Body Mass Index (BMI), glu-
cose, White Blood Cell (WBC), smoking history, tumor 
stage, tumor type, hemoglobin oxygen saturation and 
pulmonary ventilation function were assessed from hos-
pital electronic medical records. The tumor stage of LC 
patients were diagnosed according to their pathological 

the two species and four metabolites might regarded as biomarkers to assess the prediction of LC patients with 
impaired pulmonary function.

Conclusions Our results showed that microbiome and metabolomics analyses provide important candidate to be 
used as clinically diagnostic biomarkers and therapeutic targets related to lung cancer with impaired pulmonary 
function.
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features using tumor node metastasis (TNM) scale classi-
fication of malignant tumors, patients were classified into 
four distinct disease stages (from I to IV).

All enrolled patients met the following criteria: [1] ≥ 18 
but < 80 years old; [2] have been pathologically confirmed 
with lung cancer [3]. have been pathologically con-
firmed with benign pulmonary diseases [4]. each group 
patients have received antibiotics, corticoids, probiotics, 
prebiotics in the past 3 months were excluded; [5] with 
lung infection, pulmonary fibrosis, inflammatory bowel 
disease (IBD) and irritable bowel syndrome (IBS) were 
excluded; [6] hypertension, diabetes and previous airway 
surgery were excluded from this study. This study was 
approved by Ethics Committee of Zibo Municipal Hos-
pital (Ethics No.20,220,311) and informed consents were 
obtained from all patients.

Samples collection
All participants collected faces once before treatment, 
the collection of fecal samples from subjects were col-
lected in the morning after an overnight fast. Discard the 
surface of the feces, collected the internal faces in ster-
ile containers and evenly divided them into two parts on 
dry ice, which were used for 16 S rRNA genes sequenc-
ing and Non-targeted metabolomics, respectively. Subse-
quently, the samples were placed in anaerobic Bio-Bags 
and stored at -80 °C immediately.

DNA extraction
Total fecal DNA was extracted using the OMEGA DNA 
kit, the integrity of the extracted DNA was checked using 
1% agarose gel electrophoresis and DNA concentration 
and purity was determined using a Qubit 4 fluorometer.

16 S rRNA genes sequencing analysis
Specific primers with barcode were synthesized and the 
V3-V4 region of the 16 S rRNA gene was amplified using 
TransGen AP221-02. The PCR products were mixed and 
detected by 2% agarose gel electrophoresis. The prod-
ucts were purified by the AxyPrepDNA Gel Recovery Kit 
(AXYGEN, USA) and quantified using the QuantiFluor™ 
-ST Blue Fluorescence Quantification System (Promega, 
USA). Finally, sequencing was performed by Mejorbio 
Biopharmaceuticals on the llumina MiSeq platform (Illu-
mina, USA).

UPARSE (version 7.0.1090 http://drive5.com/uparse/) 
was used for analysis of OTUs at 97% similarity. Alpha 
diversity indices (sobs, shannon, simpson, ace, chao, 
coverage) were calculated by Mothur (version 1.30.2 
https://www.mothur.org/wiki/Download_mothur) to 
estimate community richness and diversity. The beta 
diversity of distance matrix was calculated by QIIME 
(version 1.9.1 http://qiime.org/install/index.html), the 
Non-metric multidimensional scaling (NMDS) analysis 

was performed by Vegan and differences between groups 
were analysed by Partial Least Squares Discriminant 
Analysis (PLS-DA). LEfSe analysis was performed to esti-
mate differences of species abundance and the Kruskal-
Wallis H test was used to assess the significance of the 
differences. Correlation coefficients of microbial commu-
nities were calculated using Spearman correlation algo-
rithm and visualized by Cytoscape.

Non-targeted metabolomics analysis
Metabolites were extracted from fecal samples, 
sequenced using a liquid chromatography-tandem mass 
spectrometry (LC-MS/MS) and the raw data were pre-
processed using Progenesis QI (Waters Corporation, 
Milford, USA). PLS-DA was used to determine whether 
all samples could be clustered into different groups and 
KEGG pathway analysis [19] was used to identify sig-
naling pathways with the enrichment of differential 
metabolites.

Biomarkers identification and evaluation
The Receiver Operating Characteristic (ROC) curve anal-
ysis was employed to calculate the area under the curve 
(AUC) and the differential microbiota and metabolites 
with an AUC > 0.85 were considered as potential predic-
tive markers.

Statistical analysis
Patients clinical information was statistically analyzed 
using SPSS V.19.0, clinical characteristics were presented 
as mean ± standard deviation (SD) and Spearman rank 
correlation coefficients were used to assess the correla-
tion between pulmonary function and tumor stage. For 
16  S rRNA gene sequencing and Metabolome analysis, 
statistical calculations were performed using R3.4.3.

Results
Patients and clinical characteristics
In this study, a total of 55 lung cancer patients and 28 
patients with benign pulmonary nodules diseases were 
enrolled. The clinical characteristics were showed in 
Table  1 and the information showed that there were 
no significant differences in gender, BMI, age, glucose, 
smoking, WBC and hemoglobin oxygen saturation. But 
pulmonary ventilation function was significant different 
in LC patients and benign pulmonary diseases patients 
(P = 0.016). Notably, pulmonary ventilation function was 
positively correlated with tumor stage (spearman rank 
correlation coefficient r = 0.286) and the correlation was 
statistically significant (Table 2).

http://drive5.com/uparse/
https://www.mothur.org/wiki/Download_mothur
http://qiime.org/install/index.html
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Gut microbial profiles between Lung cancer patients and 
benign pulmonary Diseases patients
To explore the gut microbial profile between LC patients 
(C group) and benign diseases patients (N group), fecal 
samples were analyzed for 16s rRNA gene sequenc-
ing. OTU cumulative curves demonstrated that this 

sequencing was sufficient and credible (Fig. S1A, B). In 
the cohort, we discovered 1834 OTUs and the C group 
had 1008 exclusive OTUs (Fig. S1C). Besides, Ace, Chao, 
Coverage, Shannon, Simpson and Sobs indices were per-
formed to compare the diversity and abundance of gut 
microbiome between the two groups. C group and N 
group had similar Alpha diversity (Fig. 1A). NMDS analy-
sis showed a similar Beta diversity (Fig. 1B). However, the 
composition of the two groups presented clearly differ-
ences which were analyzed by PLS-DA (Fig. 1C).

Gut microbial composition differences between Lung 
cancer patients and benign pulmonary Diseases patients
The analysis of species abundance of individual sam-
ples showed a different colony structure at genus level 
(Fig.  2A). Community heatmap analysis at genus level 
revealed that gut microbial composition differed between 
the two groups. In C group, Eubacterium hallii group, 
Bacteroides and Bifidobacterium were main genera. 
However, Blautia, Bifidobacterium, Escherichia Shigella 
and Subdoligranulum were four main genera in N group 
(Fig.  2B). LEfSe analysis revealed 21 genera with differ-
ential abundance in the two groups (LDA > 2.0, P < 0.05). 
Of these, Blautia, Subdoligranulum and Fusicatenibacte 
significantly enriched in the N group and Bacteroides 
enriched in the C group (Fig.  2C). Similarly, Wilcoxon 
rank-sum test showed that Blautia (P = 0.0446), Subdoli-
granulum (P = 0.0374) and Fusicatenibacter (P = 0.0406) 
were decreased significantly in C group, while Bacteroi-
des (P = 0.0088) were clearly increased in C group.

Gut microbial profiles of Lung cancer patients with 
impaired pulmonary function
AS pulmonary function was positively correlated with 
tumor stage. Next, we investigated the relationship of gut 
microbial profiles and lung cancer patients with impaired 
pulmonary function. Ace, Chao, Shannon, Simpson and 
Sobs indices were calculated to compare the diversity and 
abundance of gut microbiome among the LC patients 
with impaired pulmonary function. ZC group and QD 
group had a similar α-diversity, but the α-diversity 
of ZZD group was significantly increased (P < 0.05) 
(Fig. 3A). Analysis based on the PLS-DA model revealed 
that these groups could be significantly separated from 
each other (Fig. 3B).

Metabolic and microbial profiling of gut microbiota in 
Lung cancer patients with impaired pulmonary function
We analyzed the structure of the gut microbiota at dif-
ferent taxonomic levels. At the phylum level, Firmicutes 
was highly enriched in ZZD group, while Proteobacteria 
was enriched in ZC group. At the genus level, meaning-
ful changes in the composition and abundance of gut 
microbiota could be observed between different groups 

Table 1 Clinical characteristics of the patients
Lung Cancer 
patients 
(n = 55)

Benign 
diseases 
patients 
(n = 28)

P 
value

Age yrs
mean ± SD 56.80 ± 17.39 57.71 ± 13.24 0.808

Gender
Male, n (%) 28 (50.9%) 17 (60.7%) 0.397

Female, n (%) 27 (49.1%) 11(39.3%)

Body Mass Index (kg/m2)

mean ± SD 24.84 ± 2.94 25.51 ± 3.50 0.391

Glucose
mean ± SD 5.15 ± 2.62 4.65 ± 1.06 0.225

White Blood cell
mean ± SD 5.93 ± 1.45 6.72 ± 2.17 0.078

hemoglobin oxygen 
saturation
mean ± SD 97.17 ± 1.24 96.93 ± 1.39 0.431

Smoking status
Never smoking 44 (80%) 24 (85.7%) 0.183

Ever smoking 4 (7.3%) 0

Current smoking 7 (12.7%) 4 (14.3%)

Pulmonary function
ZC (a) 21 (38.2%) 15 (75%) 0.016*

QD (b) 22 (40%) 3 (15%)

ZZD (c) 12 (21.8%) 2 (10%)

Tumor stage
Stage I, n (%) 43 (78.2%)

Stage II, n (%) 7 (12.7%)

Stage III, n (%) 3 (5.5%)

Stage IV, n (%) 2 (3.6%)

Tumor type
Adenocarcinoma, n (%) 44 (84.6%)

Squamous cell carcinoma, n 
(%)

6 (11.5%)

small-cell carcinoma, n (%) 2 (3.8)
(a) Normal pulmonary function; (b) Mild pulmonary ventilation dysfunction; (c) 
moderate or above pulmonary ventilation dysfunction. *P < 0.05.

Table 2 Pulmonary ventilation function in relation to tumor 
staging
Pulmonary function Stage I Stage II Stage III Stage 

IV
ZC(a) 19(44.2%) 1(14.3%) 0(0.0%) 1(50%)

QD(b) 17(39.5%) 4(57.1%) 1(33.3%) 0(0.0%)

ZZD(c) 7(16.3%) 2(28.6%) 2(66.7%) 1(50%)

Total 43 7 3 2
(a) Normal pulmonary function; (b) Mild pulmonary ventilation dysfunction; (c) 
moderate or above pulmonary ventilation dysfunction.
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(Fig.  4A). Community heatmap analysis at genus level 
revealed that gut microbial composition differed among 
the three groups, Escherichia-Shigella was the domi-
nant genus, accounting for 16.8%, 14% and 7.7% of the 
ZC group, QD group and ZZD group, respectively. 
Subdoligranulum showed a opposite trend, account-
ing for 2.4%, 4.6% and 6.9% of the ZC group, QD group 
and ZZD group, respectively (Fig. 4B). Kruskal-Wallis H 
test showed that Subdoligranulum (P = 0.007), Rombout-
sia (P = 0.006) were decreased significantly in ZC group, 
while Hungatella (P = 0.024) were clearly increased in ZC 
group (Fig. 4C). Subsequently, Network analysis based on 
the measurement indexes (DC > 0.1, CC > 0.2, BC > 0.1) 
were used to identify the key microbiota (Fig.  4D). The 
result showed that Christensenellaceae R-7 group was 
negatively correlated with Ruminococcus gnavus group, 

Eubacterium hallii Group was positively correlated with 
Blautia, Agathobacter and Dorea.

In addition, fecal samples from 20 ZC patients, 23 QD 
patients and 12 ZZD patients were further analysed by 
LC-MS. A total of 6238 peaks were detected in the posi-
tive mode and 176 metabolites were annotated accord-
ing to the KEGG database. In negative mode, 7274 peaks 
were detected and 102 were annotated according to the 
KEGG database. The data were normalized to verify the 
RSD values in the QC samples and the results showed 
good stability in both positive and negative modes (Fig. 
S2A). Veen diagram showed the number of specific 
and common metabolites (Fig. S2B). PLS-DA analysis 
revealed that the metabolites could be well separated 
among the three groups of specimens (Fig. S2C).

Fig. 1 The diversity and richness of the gut microbiota in lung cancer patients (C) and benign diseases patients (N). (A) α-diversity between C and N 
groups based on the ace, chao, shannon, sobs, coverage and simpson indexes. (B) Non-metric multidimensional scaling (NMDS) analysis of C and N. (C) 
Partial Least Squares Discriminant Analysis (PLS-DA) of C and N
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Fig. 3 Gut microbial profiles in lung cancer patients with impaired pulmonary function. (A) α-diversity based on the Ace, Chao, Shannon, Simpson and 
Sobs indices. *P < 0.05. (B) Partial Least Squares Discriminant Analysis (PLS-DA) analysis between ZC, QD and ZZD patients. ZC, Normal pulmonary func-
tion; QD, Mild pulmonary ventilation dysfunction; ZZD, Moderate or above pulmonary ventilation dysfunction

 

Fig. 2 Gut microbial composition in lung cancer patients(C) and benign diseases patients(N). (A) Heatmap showing the distribution of the microbiota 
composition associated with C or N group. (B) Differential taxa at the genus level analyzed by linear discriminant analysis (LDA) scores (LDA > 2.0, P < 0.05). 
(C) Differential taxa at the genus level analyzed by Wilcoxon rank-sum test. *P < 0.05, **P < 0.01, ***P < 0.001
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Metabolomics profile changes and the predicted bacterial 
metabolic contribution in lung cancer patients with 
impaired pulmonary function
Kruskal-Wallis H test for differential metabolites among 
the three groups revealed a total of 69 differential metab-
olites, of which C16 Sphinganine, Floionolic acid, Cervo-
noyl ethanolamide and Cholic acid were most enriched 
in the ZC group (Fig.  5A). KEGG enrichment analysis 
revealed that the differential metabolites were mainly 

enriched in beta-Alanine metabolism, Styrene degrada-
tion, Secondary bile acid biosynthesis and Pyrimidine 
metabolism pathway (Fig. 5B). The metabolites that dif-
fered significantly between the ZC and ZZD groups were 
ranked according to the VIP values mapped by OPLS-DA 
(VIP ≥ 1) (Fig. 5C).

Fig. 4 Gut microbial composition differences between ZC, QD and ZZD patients. (A) Relative abundance on phylum and genus levels. (B) Heatmap 
analysis on genus level. (C) 12 significantly different genera were showed by Kruskal wallis H test bar plot. (D) Correlation network of 50 different bacteria 
taxa from phylum to genus. *P < 0.05, **P < 0.01, ***P < 0.001
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Potential biomarkers for Lung cancer patients with 
impaired pulmonary function
Furthermore, ROC curves were performed to assess 
potential biomarkers in lung cancer patients with 
impaired pulmonary function. Metabolites with an AUC 
more than 0.85 were screened as potential biomark-
ers. As shown in the Fig.  6A, the AUC of Stearoyletha-
nolamide, Serylthreonine, Xestoaminol C and Farnesyl 
acetone were 0.8750, 0.8625, 0.8583 and 0.8583. ROC 
analysis of the combination of the four metabolites 
showed comparable diagnostic power (AUC = 0.8512, 

Fig. 6B). However, the combination of remarkable 2 gut 
microbes and 4 metabolites showed a higher diagnostic 
power (AUC = 0.9) (Fig.  6C), indicated that the multi-
dimensional data could better predict the risk of lung 
cancer progression with impaired pulmonary function.

Discussion
Gut microbiota has been increasingly used as biomarkers 
for non-invasive disease diagnosis [20], and validated in 
many diseases, such as colorectal cancer [21], inflamma-
tory bowel disease [22], non-small cell lung carcinomas 

Fig. 5 Differential metabolites and enriched signalling pathways. (A) 69 differential metabolites were filtered by Kruskal-Wallis H test. (B) KEGG pathway 
enrichment analysis. (C) Important metabolites displayed on variable importance in projection (VIP) plot obtained from OPLS-DA. *P < 0.05, **P < 0.01, 
***P < 0.001
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[23] and liver cirrhosis [24]. In recent years, the rela-
tionship between gut microbiota and lung diseases has 
received great attention, irritable bowel syndrome (IBS) 
patients with dysbiosis of the gut microbiota are prone 
to developed impaired lung function [17], specific alter-
ations in the composition and metabolism of the gut 
microbiota influence the occurrence and development of 
lung cancer [4, 10, 25]. In our study, changes in the com-
position and abundance of gut microbiota in LC patients 
were demonstrated, and possible candidates as markers 
for the diagnosis of LC patients impaired lung ventilation 
were identified.

The gut microbiota composition between LC patients 
and benign pulmonary diseases patients presented 
clearly differences based on PLS-DA, which is consistent 

with the finding by Zheng et al. and Zhuang et al. [4, 11]. 
Our study showed that Blautia and Bifidobacterium were 
more abundant in benign diseases patients and Bacteroi-
des was more abundant in LC patients. Blautia is a major 
producer of butyrate [26, 27], which maintains gut envi-
ronmental homeostasis and prevents inflammation by 
upregulating intestinal regulatory T cells and producing 
SCFAs [28, 29]. Moreover, Hosomi et al. demonstrated 
that Blautia wexlerae can induce intestinal metabolic 
changes produce anti-inflammatory effects, indicating 
that Blautia has effective effects on regulation of intes-
tinal microecology [30]. Zhao et al. showed that Bacte-
roides and Veillonella were enriched in fecal samples of 
LC patients [31], which is in agreement with our stud-
ies. Bacteroides fragilis may provide virulence factors 

Fig. 6 The random forest model based on the microbiota and metabolites to assess the candidate biomarkers. (A) Individual ROC curves for Stearoyle-
thanolamide, Serylthreonine, Xestoaminol C and Farnesyl acetone. (B) ROC curves for the combination of the four metabolites. (C) ROC analysis of the 
combination of gut microbes and metabolites
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to sister cells by transferring virulence genes and these 
genes may contribute to the pathogenesis of extraintes-
tinal organs [32]. To date, more and more evidences have 
shown that changes in gut microbiota and function can 
affect the effectiveness of anti-cancer treatment by regu-
lating microbiota, such as probiotic interventions and 
fecal microbiota transplant (FMT) [33, 34].

During analyzing these patients clinical information, 
significant different pulmonary ventilation function in 
C and N patients (P = 0.016) was observed. Clinical and 
epidemiological studies have shown that patients with 
impaired lung function, especially those with COPD, 
are at higher risk of developing to lung cancer [35, 36]. 
Mendelian randomization analysis revealed histolog-
ical-specific effects of reduced FEV1 and FEV1/FVC 
on LC susceptibility, suggesting that these indicators of 
impaired lung function may be pathogenic risk factors 
[13]. In our study, pulmonary ventilation function is posi-
tively correlated with tumor stage. Reduced FEV1 has 
been shown to increase the risk of squamous cell carci-
noma and reduced the ratios of FEV1 to FVC increase the 
risk of adenocarcinoma and lung cancer in never smokers 
[13]. Gut microbiota is believed to play an important role 
in altering lung function [37]. However, no studies have 
investigated whether alterations in gut microbiota and 
metabolites are associated with long-term lung dysfunc-
tion in LC patients. Our study showed that ZC group and 
QD group had a similar α-diversity, but the α-diversity of 
ZZD group was significantly reduced (P < 0.05). In addi-
tion, these groups could be significantly separated from 
each other based on PLS-DA. Of which, Hungatella was 
significantly decreased in the ZZD group, suggesting a 
negative correlation with the aggravation of tumor stage 
in LC patients. However, Subdoligranulum and Rombout-
sia were significantly elevated in ZZD group. Chriswell 
et al. suggested that subdoligranulum stimulated joint 
swelling and inflammation [38]. Ni et al. demonstrated 
that subdoligranulum is the dominant biomarker that 
distinguish vitiligo patients from healthy controls [39]. In 
contrast, Lloyd-Price at al. showed that subdoligranulum 
was markedly increased in inflammatory bowel diseases 
(IBD), considering as a butyrate producer [40]. Due to 
the variability of findings, therefore further research is 
needed to demonstrate the role of Subdoliganulum. It has 
been reported that invasive mechanical ventilation leads 
to lung microbiota changes in rat models, which mainly 
characterization by the Romboutsia and Tubriciactor 
genera [41]. We speculate that the alterations of genera 
may be related to the patient dietary habits and a history 
of nasal oxygen therapy. So the role of these genera in LC 
patients with pulmonary dysfunction needs to be further 
investigated in a larger sample cohort.

Then, in the metabolomics analysis of fecal samples, 
bile acids were significantly decreased in ZZD group. 

Bile acid biosynthesis changed is a collaborative effect 
between the host and gut microbiome [42]. The reduc-
tion of secondary bile acids may alter the composition of 
gut microbiota and promote an intestinal inflammation 
profile [43]. Nie et al. revealed that bile acid metabolism 
is related to poor prognosis, and may potentiate migra-
tion of lung adenocarcinoma (LUAD) [44]. TGR5, the 
bile acid receptor, as a negative regulator of the NF-κB 
and AKT pathway, may effectively inhibit the progression 
of non-small cell lung cancer (NSCLC) [45].

The ROC curve analysis identified four potential bio-
markers of diagnostic significance, Stearoylethanolamide, 
Serylthreonine, Xestoaminol C and Farnesyl acetone 
with AUC of 0.8750, 0.8625, 0.8583 and 0.8583, respec-
tively. Stearoylethanolamide, an endogenous cannabi-
noid-like compound with pro-apoptotic activity, is found 
in the human brain to support the blood-brain barrier in 
acute systemic inflammation [46, 47]. Terpenoids related 
compounds exhibit high antibacterial activity against 
gram-negative bacteria and the very high cytotoxic activ-
ity profile of farnesol gives it potential as an anticancer 
agent [48]. ROC curve analysis between the gut microbes 
and metabolites showed that the diagnostic power was 
significantly increased (AUC = 0.9). Previous studies 
revealed that combining of the bacteria and the clinical 
tumor markers showed a higher ROC value for predict-
ing LC [49]. Besides, the diagnostic power for predict-
ing colorectal cancer was significantly increased based 
on the combination of metabolites and bacterial markers 
[50]. These studies suggesting that joint multi-dimen-
sional data could be used to better predict disease risks. 
In many cases, gut flora structure has been correlated 
with the severity of respiratory diseases, such as NSCLC, 
COVID-19 and COPD [51–53].

In conclusion, the intestinal microecology of patients 
with LC and benign pulmonary diseases patients were 
characterized in this study. It is revealed that impaired 
lung ventilation may influence disease severity in LC 
patients and a predictive model could be developed 
based on the combination of gut microbes and metabo-
lites for assessing the severity of lung cancer. In the 
future, a larger sample of the validation queue is needed 
to validate that alterations in gut microbiota and metabo-
lites are associated with long-term lung dysfunction in 
LC patients.

Conclusions
Our results showed that microbiome and metabolo-
mics analyses provide important candidate to be used as 
clinically diagnostic biomarkers and therapeutic targets 
related to lung cancer with impaired pulmonary function.
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