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Abstract 

Background Pneumocystis jirovecii pneumonia (PCP) could be fatal to patients without human immunodeficiency 
virus (HIV) infection. Current diagnostic methods are either invasive or inaccurate. We aimed to establish an accurate 
and non‑invasive radiomics‑based way to identify the risk of PCP infection in non‑HIV patients with computed tomog‑
raphy (CT) manifestation of pneumonia.

Methods This is a retrospective study including non‑HIV patients hospitalized for suspected PCP from January 2010 
to December 2022 in one hospital. The patients were randomized in a 7:3 ratio into training and validation cohorts. 
Computed tomography (CT)‑based radiomics features were extracted automatically and used to construct a radiom‑
ics model. A diagnostic model with traditional clinical and CT features was also built. The area under the curve (AUC) 
were calculated and used to evaluate the diagnostic performance of the models. The combination of the radiomics 
features and serum β‑D‑glucan levels was also evaluated for PCP diagnosis.

Results A total of 140 patients (PCP: N = 61, non‑PCP: N = 79) were randomized into training (N = 97) and validation 
(N = 43) cohorts. The radiomics model consisting of nine radiomic features performed significantly better (AUC = 0.954; 
95% CI: 0.898‑1.000) than the traditional model consisting of serum β‑D‑glucan levels (AUC = 0.752; 95% CI: 0.597–
0.908) in identifying PCP (P = 0.002). The combination of radiomics features and serum β‑D‑glucan levels showed 
an accuracy of 95.8% for identifying PCP infection (positive predictive value: 95.7%, negative predictive value: 95.8%).

Conclusions Radiomics showed good diagnostic performance in differentiating PCP from other types of pneumonia 
in non‑HIV patients. A combined diagnostic method including radiomics and serum β‑D‑glucan has the potential 
to provide an accurate and non‑invasive way to identify the risk of PCP infection in non‑HIV patients with CT manifes‑
tation of pneumonia.
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Background
Pneumocystis jirovecii pneumonia (PCP) is an oppor-
tunistic lung infection caused by P. Jirovecii that 
usually affects immunocompromised patients with 
or without human immunodeficiency virus (HIV) 
infection [1, 2]. In recent years, the incidence of 
PCP has been increasing in non-HIV, with a signifi-
cantly higher mortality rate (17.2-52.9%) than in HIV 
patients (mortality rate: 6.7%) [3, 4]. PCP is initially 
suspected on the basis of symptoms (fever, cough, 
dyspnea), computed tomography (CT) findings (e.g., 
ground glass opacities) and high risk factors (an 
underlying immunodeficiency) [5, 6]. The diagnosis 
is confirmed by identification of cysts or trophozo-
ites from bronchoalveolar lavage (BAL) or biopsy by 
direct immunofluorescence (IF) or conventional stain-
ing [7]. Real-time quantitative polymerase chain reac-
tion (qPCR) testing on specimens is another method 
recommended by guidelines but should be used in 
combination with IF staining to improve its specificity 
[8]. Unfortunately, diagnosis is challenging, as bron-
choscopy or biopsy can lead to complications such as 
fever, worsening hypoxemia or the need for tracheal 
intubation and mechanical ventilation [9, 10]. Mean-
while, these diagnostic methods are time-consuming 
and cannot provide early indication of PCP infec-
tion risk. Non-invasive methods, such as qPCR and/
or IF staining on induced sputum, oral washings, 
nasopharyngeal aspirate are not recommended due 
to unsatisfactory diagnostic accuracy [8, 11]. Serum 
β-D-glucan detection is also considered as a supple-
mentary means as it requires a high pretest probabil-
ity [8, 11, 12]. Therefore, there is an urgent need to 
explore new technologies that can detect the risk of 
PCP infection early, accurately, and non-invasively to 
guide clinical interventions.

Radiomics is a new method of image processing that 
has emerged in the last decade. By transforming images 
into massive amounts of data, extensive features invis-
ible to the naked eye can be extracted and analysed for 
diagnosis, severity assessment and prognosis of dis-
eases [13, 14]. In recent years, the application of radi-
omics has gradually expanded from oncology research 
to others [15, 16]. In particular, radiomics models 
based on computed tomography (CT) have demon-
strated great performance in the diagnosis and prog-
nosis of COVID-19 pneumonia [17, 18]. However, 
there are few studies focusing on the radiomic features 
of PCP, especially in non-HIV patients [19]. In the pre-
sent study, we aim to investigate the radiomics features 
of PCP and develop a radiomics-based model to pro-
vide an early indication of the risk of PCP infection in 
non-HIV patients.

Methods
Study population
This study was approved by the Ethics Committee of 
Chinese PLA General Hospital (NO. S2023-006-01) and 
was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was registered in 
ClinialTrials.gov (27/01/2023, NCT05701631). Individ-
ual informed consent for this retrospective analysis was 
waived by the Ethics Committee of Chinese PLA General 
Hospital. From January 2010 to December 2022, patients 
admitted to our institute with clinical suspected PCP 
were screened for inclusion. The inclusion criteria were 
as follows: (I) aged over eighteen years; (II) presence of 
underlying immunodeficiency reported to be associated 
with PCP, including autoimmune diseases, hematological 
malignancies, solid cancers, transplantation, corticoster-
oid use, immunosuppressants use and chemotherapeutic 
agents use [5, 20]; (III) symptoms of lower respiratory 
tract infection, such as fever, cough or dyspnea; (IV) 
signs of lung infection on high resolution CT at the on-
set of the disease, including ground glass opacity, con-
solidation, honeycombing, interlobular septal thickening 
and pleural effusion [14]; (V) received BAL examination 
within three days after CT scans; (VI) underwent qPCR 
and IF staining tests on the BAL fluid sample. Patients 
with HIV infection, those taking trimethoprim-sul-
famethoxazole for prophylaxis, or those undiagnosed by 
qPCR and IF staining tests were excluded. In total, 322 
patients were evaluated, and 140 patients were included 
in this study who were then randomized at a 7:3 radio 
into training (N = 97) and a validation set (N = 43) (Fig. 1).

Clinico‑demographic data collection
The clinical, laboratory and CT image data were ret-
rospectively gathered through our institute’s medical 
record system. The collected clinical features included 
age, sex, smoking history, underlying diseases, medica-
tion use including corticosteroid, immunosuppressant or 
chemotherapeutic agents use, clinical symptoms includ-
ing fever, cough, dyspnea; laboratory findings including 
 PaO2/FiO2 ratio measured on arterial blood, white blood 
cell, serum c-reaction protein, serum lactate dehydroge-
nase (LDH), and serum β-D-glucan.

CT scanning protocols
Chest CT scans were carried out in a CT scanner 
(SOMATOM Definition AS+, Siemens Healthcare, Forch-
heim, Germany). Scanning parameters were as follows: 
tube voltage of 120 kV, automatic exposure control, tube 
rotational speed of 0.5  s/rot, collimation of 0.6 × 64  mm, 
pitch of 0.984, matrix size of 512 × 512 mm, reconstructed 
slice thickness of 1-1.25 mm and reconstructed kernel of 
B70f. All the images used for analysis were unenhanced.
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Segmentation and radiomic features extraction
Image segmentation was performed by -a Food and Drug 
Administration (FDA) approved imaging software of 
FACT medical imaging system (Version 1.5, Dexin Medi-
cal Imaging Technology Company). Firstly, the pneumo-
nia regions of the CT data were identified and segmented 
automatically by using a previously reported deep learn-
ing algorithm [21, 22]. The average density of the lung 
parenchyma was used to compute a threshold (the low-
est density) to detect CT abnormalities including ground 
glass opacity, consolidation, honeycombing and interlob-
ular septal thickening. The detected abnormalities of the 
whole lung were masked as the region of interest (ROI) in 
the automatic processing mode of “Pneumonia” (Fig. 2). 
Then, an independent senior respiratory physician (WZ 
with fifteen years of experience in lung CT imaging) 
reviewed the segmentation results in a fixed lung win-
dow (level: -500HU; width: 1500HU) and made modifi-
cations if necessary. An expert in chest radiology (WY) 
confirmed the results. Then, the region of interest was 
resampled at 1 mm × 1 mm × 1 mm and 1316 radiomic 
features were extracted using the “Radiomics” module 
and normalized through Z-Score method. The features 

included: (I) shape; (II) first order features, (III) texture 
features, (IV) features extracted from filtered images, 
i.e., wavelet and Laplacian of Gaussian (LoG) features. In 
total, 37 ROIs of 12 patients (9%) were manually modi-
fied, including 13 unidentified and 24 inaccurate pneu-
monia regions. The modification time for one patient 
was approximately 30 to 65 min. For patients whose ROIs 
need no manual modification, each CT DICOM file was 
processed in 6–10 min.

Radiomics model construction
First, Student’s t-test and Mann-Whitney U-test were 
used to identify the significant features in the train-
ing cohort. The Least Absolute Shrinkage and Selection 
Operator (LASSO) were then used and features with 
non-zero coefficients were identified at the optimal regu-
larization parameter (λ) by tenfold cross-validation. After 
that, a radiomics model were constructed using logis-
tic regression. The area under the curve (AUC) of the 
receiver operating characteristic (ROC) curves were cal-
culated and used to evaluate the diagnostic performance 
of the model. In addition, the radiomic score (Radscore) 
was calculated, and calibration curves and a waterfall 

Fig. 1 Flow chart of the study. PCP, Pneumocystis jirovecii pneumonia; CT, computed tomography; qPCR, quantitative polymerase chain reaction; IF, 
immunofluorescent; HIV, human immunodeficiency virus; TMP/SMZ, trimethoprim‑sulfamethoxazole
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plot of the Radscore were plotted to show the diagnostic 
accuracy of the model.

Traditional risk factors model construction
The CT images were viewed and evaluated at a fixed 
lung window (level: -500 HU; width: 1500 HU) by two 
independent respiratory physicians (QZ, ZL) with eight 
and twenty years of experience in lung CT image read-
ing. An expert chest radiologist (WY) confirmed the 
results. The CT abnormalities included ground-glass 
opacity, interlobular septal thickening, cyst, consolida-
tion, honeycombing, mediastinal lymphadenopathy, and 
pleural effusion. All CT signs are identified according to 
the definitions in the glossary of terms published by the 
Fleischner Society in 2008 [23]. Semantic CT features 
and clinical characteristics significantly associated with 
the diagnosis of PCP were screened by univariate analy-
sis and used for multivariate logistic regression analysis. 
The independent factors identified by multivariate logis-
tic regression were then used to construct a traditional 
model. The AUC was calculated in both training and vali-
dation cohorts and compared with the radiomics model 
by the Delong test.

Clinical utility of the models
The clinical utility of the radiomics model and the tra-
ditional model were assessed with decision curve analy-
sis by calculating the net benefit at different threshold 
probabilities.

Diagnostic performance comparison with serum 
β‑D‑glucan and LDH
Previous-reported risk factors for PCP infection, includ-
ing serum β-D-glucan > 200 pg/mL or LDH > 300 IU/
mL as PCP positive, and β-D-glucan < 80 pg/mL as PCP 
negative, were also evaluated for diagnostic performance 
among all patients [1, 12, 24, 25]. Accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative 
predictive value (NPV) were calculated and compared 
with the radiomics model.

Standard of reference
Real-time qPCR and IF staining tests were performed 
on BAL fluid samples to detect P. Jirovecii. QPCR > 0 
pathogens/mL was considered as qPCR (+). IF stain-
ing was considered positive when P. Jirovecii cysts or 
trophozoites were found. PCP diagnosis was made 

Fig. 2 The segmentation of infected areas (i.e., the region of interest, ROI) on the FACT Medical Imaging System. A 59‑year‑old female 
with anti‑synthetase syndrome and a long history of corticosteroid use was admitted to hospital with fever and cough for 7 days. A Sagittal HRCT 
images showed ground‑glass opacity and thickening interlobular septal predominantly in both lower lungs. B Three‑dimensional (3D) volume 
rendering image of the lobes (purple: right upper lobe; yellow: right middle lobe; blue: right lower lobe, brown: left upper lobe; green: left lower 
lobe). C and D Sagittal CT and 3D images of automatically identified infected areas. Different colors indicated that the infection was in different 
lobes (blue: right upper lobe; red: right middle lobe; green: right lower lobe; cyan: left upper lobe; yellow: left lower lobe). The ROIs are integrated 
as one and radiomic features were extracted from it
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based on the results of qPCR and IF staining tests 
according to the criteria developed by the European 
Conference on Infection in Leukaemia (ECIL) guide-
lines 2016 [8].

Statistical analysis
The R software (version 4.2.2, The Free Software Foun-
dation, USA) and the SPSS for Windows, version 26.0 
(IBM Corp., Armonk, N.Y., USA) were used for rand-
omization, model construction and statistical analy-
sis. The “glmnet”, “e1071”, and “adabag” packages were 
used for model construction by LASSO regression, 
support vector machine and adaboost. The “pROC”, 
“ggplot2”and “rmda” packages were used to plot ROC 
and decision curves. The “rms”, “Hmisc”, “Survival”, 
“Lattice”, “Formula” and “waterfalls” package were used 
to draw calibration curve and waterfall plots. Depend-
ing on the type and distribution of the data, Student’s 
t-test, Mann-Whitney U-test or Pearson’s  x2 test were 
applied to test for the significance of between-group 
differences in clinical characteristics and semantic CT 
features. The Delong test was used to compare the dif-
ferences between AUCs of ROC curves of different 
models. P-values less than 0.05 were considered statis-
tically significant.

Results
Patient characteristics
A total of 140 patients were included in this study (Fig. 1; 
Table 1). Sixty-one patients were diagnosed with PCP (as 
the PCP group) and 79 with other types of pneumonia 
(as the non-PCP group). The other types of pneumonia 
included: bacterial pneumonia (n = 43), viral pneumonia 

(n = 14), fungal pneumonia (n = 5), radiation pneumo-
nia (n = 2), and interstitial pneumonia associated with 
connective tissue disease (n = 15). In the PCP group, the 
proportion of ex-smokers was higher (36.1%, P = 0.038), 
and more patients used corticosteroids (73.8%, P < 0.001) 
or immunosuppressants (54.1%, P < 0.001. Meanwhile, 
the PCP patients had significant lower  PaO2/FiO2 
ratio (P = 0.004) but higher serum C-reaction protein 
(P = 0.004), LDH (P < 0.001) and β-D-glucan (P < 0.001). 
For semantic CT features, there are more ground glass 
opacity (100%, P = 0.002) and cyst (31.1%, P = 0.041) in 
the PCP group. In the non-PCP group, more patients 
used chemotherapeutic agents (46.8%, P = 0.004), and the 
proportion of patients with a CT sign of pleural effusion 
was higher (27.8%, P = 0.038).

All patients were randomized into a training cohort 
(N = 97) and a validation cohort (N = 43) (Table  2). In 
the training cohort, significant differences were found 
between the PCP and non-PCP group in terms of 
medication use, laboratory findings (c-reaction pro-
tein, LDH, β-D-glucan) and CT features (ground glass 
opacity). Multivariate logistic regression revealed that 
the serum β-D-glucan was the only independent fac-
tor associated with the diagnosis of PCP (Odds ratio: 
1.010; 95% CI: 1.006–1.015; P < 0.001). The AUCs 
of the serum β-D-glucan (as a traditional model) 
were 0.859 (95% CI: 0.774–0.944) and 0.752 (95% CI: 
0.597–0.908) in the training and validation cohorts, 
respectively.

Performance of the radiomics model
Univariate analysis showed that 648 of the 1316 radi-
omics features differed significantly between the PCP 
and non-PCP groups of the training cohort. LASSO 
regression was then performed, and the model had the 
lowest error when λ = 0.069 and log λ = -1.161 (Figure 
S1 in Additional file 1), and nine non-zero features were 
identified to construct the radiomics model (Table S1 in 
Additional file  1). The radiomics model constructed 
by the logistic regression was found to perform best in 
both the training (AUC = 0.950, 95% CI: 0.908–0.992) 
and validation cohorts (AUC = 0.954, 95% CI: 0.898-
1.000) (Figure S2 in Additional file  1). The Radscore 
of the PCP group were significantly higher than those 
of the non-PCP group in both the training (2.5 ± 2.4 
vs. -3.1 ± 2.7, P < 0.001) and validation (2.0 ± 2.8 vs. 
-4.3 ± 3.0, P < 0.001) cohorts. The Radscore was calcu-
lated as follows:

The radiomics model showed a more efficient diagno-
sis performance than the traditional model with a higher 
AUC in the training (0.950 vs. 0.859, P = 0.049) and vali-
dation cohorts (0.954 vs. 0.752, P = 0.011) (Fig.  3). The 
calibration curves showed good consistency between 
predictions and observations (corrected C-index: 0.948) 
(Fig.  4). The waterfall plot of the Radscore also showed 
that radiomics model could distinguish most PCP patients 
from non-PCP ones (Figure S3 in Additional file 1).

Clinical utility of the radiomics model
The decision curve analysis indicated that the use of 
radiomics model added more net benefit than tradi-
tional model in differentiating PCP from non-PCP over a 
threshold probability range of 0–95% (Fig. 5).

Radscore = 74.172−60.024×X1−10.643×X2+6.850×X3+1.613×X4+1.378×X5−2.394×X6−10.677×X7−2.241×X8+1.276×X9
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Performance comparison with serum β‑D‑glucan and LDH
In all patients, the diagnostic performance of the radiom-
ics model and serum β-D-glucan/LDH previously used 
for diagnosis were calculated (Table  3), the radiomics 
model had the highest diagnostic accuracy (90.0%).

Combining strategy for PCP diagnosis
Table  4. showed the diagnostic performance of the radi-
omics model in patients with different serum β-D-glucan 
levels. In patients with serum β-D-glucan > 200 pg/mL, the 
PPV of the radiomics model was 91.9% and in patients with 
serum β-D-glucan < 80 pg/mL, the NPV was 96.6%. In addi-
tion, among patients with serum β-D-glucan of 80–200 pg/

mL, the PPV and NPV of the radiomics model were 100.0% 
and 90.9%, respectively. Therefore, we developed a new 
diagnostic strategy for PCP by combining radiomics model 
and serum β-D-glucan levels (Fig. 6). In our study, 118 of 
140 patients (84.3%) could be diagnosed by this method, 
with a diagnostic accuracy of 95.8% for PCP (sensitivity: 
93.8%, specialty: 97.1%, PPV: 95.7%, NPV: 95.8%).

Discussion
In this study, we constructed a CT-based radiomics 
model to identify the risk of PCP infection in non-HIV 
patients with CT manifestations of pneumonia. The 

Table 1 Comparison of clinical characteristics and semantic CT features in Pneumocystis jirovecii pneumonia (PCP) and other types of 
pneumonia (non‑PCP) group

Abbreviations: IQR Interquartile range, PaO2 Partial pressure of oxygen, FiO2 Fraction of Inspired oxygen, WBC White blood cell, CRP C-reaction protein, LDH Lactate 
dehydrogenase

*P<0.05; **P<0.01; ***P<0.001

Characteristics Total PCP group non‑PCP group P value
(N = 140) (N = 61) (N = 79)

Age, years, median (IQR) 51 (32, 58) 53 (38, 58) 47 (30, 58) 0.119

Sex, female, n (%) 59 (42.1%) 22 (36.1%) 37 (46.8%) 0.202

Ever‑smokers, n (%) 38 (27.1%) 22 (36.1%) 16 (20.3%) 0.038*

Underlying diseases, n (%)

 Autoimmune diseases 51 (36.4%) 20 (32.8%) 31 (39.2%) NA

 Hematological malignancies 46 (32.9%) 10 (16.4%) 36 (45.6%) NA

 Solid cancers 4 (2.9%) 3 (4.9%) 1 (1.3%) NA

 Transplantation 15 (10.7%) 11 (18.0%) 4 (5.1%) NA

 Renal diseases 14 (10.0%) 12 (19.7%) 2 (2.5%) NA

 Else 10 (7.1%) 5 (8.2%) 5 (6.3%) NA

Corticosteroid use, n (%) 71 (50.7%) 45 (73.8%) 26 (32.9%) < 0.001***

Immunosuppressants use, n (%) 52 (37.1%) 33 (54.1%) 19 (24.1%) < 0.001***

Chemotherapeutic agents use, n (%) 51 (36.4%) 14 (23.0%) 37 (46.8%) 0.004**

Initial symptoms, n (%)

 Fever 87 (62.1%) 43 (70.5%) 44 (55.7%) 0.075

 Cough 63 (45.0%) 28 (45.9%) 35 (44.3%) 0.851

 Dyspnea 69 (49.3%) 39 (63.9%) 30 (38.0%) 0.002**

Initial laboratory findings, median (IQR)

  PaO2/FiO2 ratio 279 (259, 298) 249 (219, 279) 305 (281, 330) 0.004**

 WBC, 10^9/L 6.74 (4.75, 9.44) 7.04 (5.06, 8.98) 6.47 (4.22, 10.38) 0.530

 CRP, mg/L 1.52 (0.29, 5.67) 2.28 (0.77, 7.02) 1.21 (0.17, 3.08) 0.004**

 serum LDH, IU/L 313 (226, 429) 367 (269, 527) 262 (181, 354) < 0.001***

 serum β‑D‑glucan, pg/mL 50.1 (13.3, 290.3) 273.4 (102.6, 512.3) 20.6 (10.0, 50.2) < 0.001***

Semantic CT features, n (%)

 Ground glass opacity 129 (92.1%) 61 (100.0%) 68 (86.1%) 0.002**

 Interlobular septal thickening 58 (41.4%) 28 (45.9%) 30 (38.0%) 0.347

 Cyst 32 (22.9%) 19 (31.1%) 13 (16.5%) 0.041*

 Consolidation 67 (47.9%) 25 (41.0%) 42 (53.2%) 0.154

 Honeycombing 16 (11.4%) 9 (14.8%) 7 (8.9%) 0.279

 Lymphadenopathy 28 (20.0%) 11 (18.0%) 17 (21.5%) 0.610

 Pleural effusion 30 (21.4%) 8 (13.1%) 22 (27.8%) 0.036*
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established radiomics model demonstrated better diag-
nostic efficiency than traditional risk factors in clini-
cal characteristics and CT findings. We also developed 
a diagnostic strategy based on the radiomics model and 
serum β-D-glucan levels, which may identify the risk 
of PCP infection in non-HIV patients accurately and 
non-invasively.

The CT manifestations of PCP are commonly con-
sidered to be non-specific [5, 14]. Nevertheless, some 
investigators believed that CT features might be of some 
value in diagnostic decision-making. A nested case-con-
trol study involving 72 PCP patients and 288 non-PCP 

patients showed that ‘increased interstitial markings’ 
and ‘ground glass opacity’ were independently associated 
with the diagnosis of PCP, whereas ‘pleural effusion’ and 
‘nodular findings’ were independently negatively asso-
ciated [14]. They developed a nomogram to predict the 
post-CT probability of PCP and to assist clinical practice 
(i.e., non-invasive testing in low risk patients and more 
invasive testing in high risk patients). In our study, the 
PCP group had more ground glass opacity, more cysts 
and fewer pleural effusion, but none of these were inde-
pendent risk factors for diagnosis by multivariate logistic 
regression analysis.

Table 2 Comparison of clinical characteristics and semantic CT features in patients in the training and validation set

Abbreviations: IQR Interquartile range, PaO2 Partial pressure of oxygen, FiO2 Fraction of Inspired oxygen, WBC White blood cell, CRP C-reaction protein, LDH Lactate 
dehydrogenase

*P<0.05; **P<0.01; ***P<0.001

Characteristics Training set (n = 97) P value Validation set (n = 43) P value

PCP non‑PCP PCP non‑PCP

(N = 42) (N = 55) (N = 19) (N = 24)

Age, years, median (IQR) 53 (45, 59) 48 (32, 57) 0.092 51 (30, 58) 43 (24, 59) 0.741

Sex, female, n (%) 17 (40.5%) 23 (41.8%) 0.895 5 (26.3%) 14 (58.3%) 0.038*

Ever‑smokers, n (%) 16 (38.1%) 13 (23.6%) 0.125 6 (31.6%) 3 (12.5%) 0.131

Underlying diseases, n (%)

 Autoimmune diseases 15 (35.7%) 22 (40.0%) NA 5 (26.3%) 9 (37.5%) NA

 Hematological malignancies 6 (14.3%) 26 (47.3%) NA 4 (21.1%) 10 (41.7%) NA

 Solid cancers 2 (4.8%) 1 (1.8%) NA 1 (5.3%) 0 (0%) NA

 Transplantation 5 (11.9%) 3 (5.5%) NA 6 (31.6%) 1 (4.2%) NA

 Renal diseases 9 (21.4%) 1 (1.8%) NA 3 (15.8%) 1 (4.2%) NA

 Else 5 (11.9%) 2 (3.6%) NA 0 (0%) 3 (12.5%) NA

Corticosteroid use, n (%) 33 (78.6%) 17 (30.9%) < 0.001*** 12 (63.2%) 9 (37.5%) 0.099

Immunosuppressants use, n (%) 25 (59.5%) 14 (25.5%) < 0.001*** 8 (42.1%) 5 (20.8%) 0.136

Chemotherapeutic agents use, n (%) 8 (19.0%) 27 (49.1%) 0.002** 6 (31.6%) 10 (41.7%) 0.502

Initial symptoms, n (%)

 Fever 30 (71.4%) 32 (58.2%) 0.181 13 (68.4%) 12 (50.0%) 0.229

 Cough 19 (45.2%) 23 (41.8%) 0.738 9 (47.4%) 12 (50.0%) 0.865

 Dyspnea 27 (64.3%) 21 (38.2%) 0.011* 12 (63.2%) 9 (37.5%) 0.099

Initial laboratory findings, median (IQR)

  PaO2/FiO2 ratio 258 (219, 297) 305 (275, 335) 0.052 227 (183, 271) 305 (260, 351) 0.014*

 WBC, 10^9/L 7.08 (5.36, 9.43) 6.62 (3.94, 10.51) 0.583 6.41 (4.76, 8.75) 5.19 (4.35, 9.74) 0.604

 CRP, mg/L 2.16 (0.53, 7.65) 1.19 (0.20, 5.30) 0.033* 2.64 (0.78, 6.10) 1.33 (0.15, 2.64) 0.117

 serum LDH, IU/L 373 (302, 557) 257 (181, 357) < 0.001*** 354 (255, 468) 285 (188, 345) 0.060

 serum β‑D‑glucan, pg/mL 284.7 (122.2, 523.3) 19.4 (10.0, 40.7) < 0.001*** 200.4 (100.7, 469.7) 46.6 (11.4, 131.0) 0.005**

Semantic CT features, n (%)

 Ground glass opacity 42 (100.0%) 47 (85.5%) 0.010* 19 (100.0%) 21 (87.5%) 0.114

 Interlobular septal thickening 22 (52.4%) 21 (38.2%) 0.165 6 (31.6%) 9 (37.5%) 0.689

 Cyst 12 (28.6%) 10 (18.2%) 0.228 7 (36.8%) 3 (12.5%) 0.064

 Consolidation 16 (38.1%) 26 (47.3%) 0.369 9 (47.4%) 16 (66.7%) 0.208

 Honeycombing 5 (11.9%) 4 (7.3%) 0.438 4 (21.1%) 3 (12.5%) 0.456

 Lymphadenopathy 10 (23.8%) 10 (18.2%) 0.499 1 (5.3%) 7 (29.2%) 0.048*

 Pleural effusion 7 (16.7%) 15 (27.3%) 0.219 1 (5.3%) 7 (29.2%) 0.048*
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In this study, serum β-D-glucan was the only independ-
ent traditional risk factor for the diagnosis of PCP. Morjaria 
et al. suggested that β-D-glucan > 200 pg/mL had 100% sen-
sitivity and 100% PPV for PCP diagnosis in cancer patients 
[24]. A meta-analysis by Del Corpo et al. showed a pooled 
sensitivity of 86% for β-D-glucan in the non-HIV patients, 
and an NPV of 95% for β-D-glucan at < 80 pg/mL even at 
a prevalence rate of 50% [12]. The diagnostic accuracy of 

β-D-glucan seemed to be not enough for diagnosis. In our 
study, the serum β-D-glucan also exhibited unsatisfied sta-
bility and moderate performance in the validation cohort 
(AUC = 0.752). Therefore, clinical characteristics and CT 
semantic features may be not enough for PCP diagnosis 
due to insufficient diagnostic efficacy.

Radiomic analysis has been wildly used in cancer 
research [15, 26–28] and in the diagnosis of COVID-19 

Fig. 3 The receiver operating characteristic (ROC) curves of the radiomics model and traditional clinical‑imaging model in (A) training and (B) 
validation cohorts. The radiomics model exhibited better performance than the traditional clinical‑imaging model in both training (P = 0.049) 
and validation cohort (P = 0.011). The 95% confidence interval of AUC was shown as the data in the parentheses

Fig. 4 The calibration curves of the radiomics model. A The curve showed a good agreement between prediction and observation by 1000 groups 
bootstrap‑resampling. B Logistic regression estimated observed probability with 95% confidence interval vs. radiomics model‑predicted probability 
(red line) based on the calculated radiomic score for the diagnosis of Pneumocystis jirovecii pneumonia
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pneumonia [29–31]. For the diagnosis of PCP, we identi-
fied only one study conducted by Kloth et al. that was rel-
evant to the radiomic features of PCP [19]. They explored 
CT-textures of one or two local regions with typical dis-
ease manifestations in 21 patients with PCP (including 
non-HIV patients). Eleven first- and second-order tex-
ture features were analyzed but no specific features were 
found for diagnostic purposes. Differently, the radiomics 
model constructed in our study performed well. There 

are three possible reasons for the difference in results 
between Kloth’s study and ours. First, the different sam-
ple sizes of the studies (21 versus 140) affected the accu-
racy of the diagnoses. Second, the ROIs in Kloth’s study 
were obtained from localized squares drawn by a senior 
reader in the “diseased area”. In our study, we obtained 
the whole pneumonia regions in the lungs. Third, we 
analyzed more radiomics features, including wavelet fea-
tures and LOG features, which were interestingly all the 

Fig. 5 Decision curve analysis of the radiomic model and the traditional clinical‑imaging model. The curve showed that using the radiomics 
model added more net benefit than the traditional model in differentiating Pneumocystis jirovecii pneumonia from other types of pneumonia 
over a threshold probability range of 0–95%

Table 3 Diagnostic performance of the radiomics model compared with ‑D‑glucan and LDH for the diagnosis of Pneumocystis jirovecii 
pneumonia

Abbreviation: LDH Lactate dehydrogenase

Variables Accuracy Sensitivity Specificity Positive predictive value Negative predictive value

Radiomics model 90.0% 90.2% 89.9% 87.3% 92.2%

β‑D‑glucan > 200 pg/ml 77.9% 60.7% 91.1% 84.1% 75.0%

β‑D‑glucan < 80 pg/ml 79.3% 80.3% 78.5% 74.2% 83.8%

LDH > 300 IU/ml 65.7% 72.1% 60.8% 58.7% 73.8%

Table 4 Diagnostic performance of the radiomics model in different serum ‑D‑glucan levels for the diagnosis of Pneumocystis jirovecii 
pneumonia

Abbreviation: BDG β-D-glucan

Variables Accuracy Sensitivity Specificity Positive predictive value Negative predictive value

Radiomics model

 In β‑D‑glucan > 200 pg/ml 78.6% 55.7% 96.2% 91.9% 73.8%

 In β‑D‑glucan < 80 pg/ml 82.9% 96.7% 72.2% 72.8% 96.6%

 In β‑D‑glucan of 80–200 pg/ml 95.5% 91.7% 100.0% 100.0% 90.9%
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features selected and incorporated into our radiomic 
model. These features were obtained by filtering the orig-
inal image to enhance some special features such as edge 
regions [32]. The decision curve analysis showed a good 
clinical value of the radiomics model, meaning that radi-
omics could be used as a tool to assist clinicians in the 
diagnosis of PCP.

In addition, we calculated the diagnostic performance 
of serum β-D-glucan and LDH mentioned in previous 
studies for the diagnosis of PCP [1, 12, 24]. Compared 
to these previously used clinical indicators, the radiom-
ics model performed best. Furthermore, we assessed the 
diagnostic efficacy of radiomics at different β-D-glucan 
levels. Based on the results, we established a strategy for 
non-invasive diagnosis of PCP, which could identify the 
risk of PCP infection in non-HIV patients with a diagnos-
tic accuracy of 95.8%.

Nowadays, qPCR and IF staining tests of BAL fluid 
samples are the primary tests recommended by the 
guidelines to confirm the diagnosis of PCP in non-HIV 
patients, with serum β-D-glucan testing as an adjunc-
tive laboratory diagnostic tool [8]. Although well-toler-
ated, it is not uncommon for patients to develop fever 
and worsening hypoxemia after the bronchoscopy [33]. 

The implementation of BAL techniques also requires 
specialist technicians, specialized equipment and 
rooms, and is difficult to carry out in resource-limited 
areas and medical centers. Other non-invasive meth-
ods, such as qPCR and IF staining of upper respiratory 
specimens (i.e., induced sputum [34, 35], oral washings 
[36, 37], nasopharyngeal aspirate [38, 39]) and/or blood 
samples [38, 40] are not diagnostically satisfactory, 
with the diagnostic specificity ranged from 54 to 100%, 
and the diagnostic sensitivity from 50 to 77%. The new 
strategy in our study, if its general validity is confirmed 
in future studies, has the potential to provide an accu-
rate and non-invasive way to identify the risk of PCP 
infection in non-HIV patients.

This study had several limitations. First, the sample 
size of the population included in this study was not 
large. Second, this single-center retrospective study 
did not include external validation, which may have led 
to bias in model performance. Third, six patients with 
qPCR (-) and IF (+) were excluded to ensure confirma-
tion of pathological results (as the results were tech-
nically inconsistent), which could have led to a small 
selection bias. Fourth, PPV and NPV were calculated 
in the existing population (PCP prevalence of 43.6%) 

Fig. 6 A diagnostic strategy combining radiomics model and serum BDG for the diagnosis of Pneumocystis jirovecii pneumonia. HIV, human 
immunodeficiency virus; PCP, Pneumocystis jirovecii pneumonia; BDG, β‑D‑glucan; BAL, bronchoalveolar lavage; qPCR, quantitative polymerase chain 
reaction; IF: immunofluorescent
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and may be altered due to changes in PCP prevalence. 
Therefore, a large multicenter study is needed to vali-
date these findings.

Conclusions
Radiomics showed good diagnostic performance in 
differentiating PCP from other types of pneumonia 
in non-HIV patients. A combined diagnostic method 
including radiomics and serum β-D-glucan has the 
potential to provide an accurate and non-invasive 
way to identify the risk of PCP infection in non-HIV 
patients with CT manifestation of pneumonia.
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