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Background
Pulmonary fibrosis (PF) is a chronic interstitial lung 
disease characterized by a progressive and irrevers-
ible decline in lung function [1]. It is a serious threat to 
human health because of its complex etiology and poor 
clinical treatment effect [2]. Its clinical features include 
shortness of breath, hypoxemia, radiographically obvious 
lung infiltration and continuous accumulation of fibro-
sis [3]. However, due to delayed diagnosis of PF and the 
occurrence of complications, its treatment outcomes and 
prognosis remain grim [4, 5]. PF possesses intricate and 
not yet completely comprehended pathogenesis, wherein 
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Abstract
Background  Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure 
and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy 
to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge.

Methods  Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate 
and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and 
immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on 
monocyte-derived macrophage populations in the lung.

Results  Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) 
expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, 
collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic 
effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes 
in the lung.

Conclusions  This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.
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the intricate interplay of genetic and environmental fac-
tors influences various cell types, mainly manifested 
through epithelial-mesenchymal transition (EMT) and 
proliferation of myofibroblasts [6–9]. Kinase inhibitors 
targeting inflammatory signaling pathway, such as Nint-
edanib or Pirfenidone, may slow the progress of PF with 
limited therapeutic effect [10]. There is currently no cure 
for PF. A lung transplant may be an option for some peo-
ple who have advanced PF [11].

Furthermore, the pathogenesis of PF has not been 
fully elucidated. It is accepted that pulmonary fibrosis 
is related to abnormal wound healing associated with 
immune inflammatory injury. Its main pathological 
changes include severe destruction of the alveolar struc-
ture, massive proliferation of fibroblasts, and extensive 
extracellular matrix (ECM) deposition. Immune cells and 
a number of chemokines, such as transforming growth 
factor, beta 1 (TGFB1), platelet derived growth factor, 
B polypeptide (PDGFB), tumor necrosis factor (TNF), 
interleukin 1 beta (IL1B), etc., mediate these pathologi-
cal changes [12]. Studies by Zhang et al. suggested that 
inflammation and cytokines promoted the development 
of fibrosis, due to the accumulation of LY6C1hi (lym-
phocyte antigen 6 complex, locus C1) macrophages. 
The exacerbation of pulmonary fibrosis may be relieved 
by reducing the inflammation state [13–15]. Instead of 
lung transplant, which has complications of infection and 
rejection of the new organ, cell transplant is optional in 
clinical to avoid difficulty of organ procurement. Cell-
based therapies like mesenchymal stem cells (MSCs) and 
other stem cells are studied, showing improved condi-
tions, however, the PF patients must take medicines for 
the rest of life to reduce the risk of rejection. Recently, 
reports from different groups showed that olfactory 
mucosa mesenchymal stem cells (OM-MSCs) own the 
characteristics of stem cells, maintain the stemness 
through the whole life, and have beneficial effects for cur-
ing nervous system diseases [16–19]. These results along 
with the advantage that OM-MSCs have the ability of in 
vitro proliferation, prompt us to test whether the trans-
plant of OM-MSCs would relieve the PF.

Here, we studied the transplant of MSCs isolated from 
mouse olfactory mucosa into a mouse model of bleo-
mycin (BLM)-induced pulmonary fibrosis to determine 
whether the fibrosis could be relieved by OM-MSCs 
transplant. To further explore the role of inflammation 
in OM-MSCs transplant, we compared the inflamma-
tion status of mice transplanted with OM-MSCs and 
non-transplanted with OM-MSCs, and demonstrated the 
role of macrophages in OM-MSCs treated PF. The aim 
of our study was to evaluate the therapeutic efficacy of 
OM-MSCs in a model of bleomycin-induced pulmonary 
fibrosis. Compared to mesenchymal stem cells derived 
from adipose and bone marrow sources, OM-MSCs are 

easier to obtain and are ideally positioned for autologous 
transplantation.

Methods
Ethics statement and animal handling
This study was approved by the ethical review board 
at Xiangya hospital of Central South University (No. 
2,017,121,175). All procedures for animal use were fol-
lowed with the guidelines of animal welfare set by the 
World Organization for Animal Health and the Chinese 
national guideline for animal experiments. The seven-
week-old C57BL/6 male mice, weighing about 20 g, were 
purchased from SJA laboratory animal center (Changsha, 
Hunan). The mice were maintained in an air-conditioned 
animal facility under constant temperature and humidity 
conditions.

Mouse OM-MSC preparation for allotransplantation
Olfactory mucosa was isolated from C57BL/6 male 
mice (purchased from SJA Laboratory Animal Center, 
Changsha, Hunan) for 3–4 weeks used for OM-MSC 
collection as described previously [20]. After anesthesia 
with 0.3% pentobarbital sodium (20 µL/g), mice were 
decapitated and then we removed the skin, the lower 
jaw and the bone covering the nasal cavity. Forceps were 
used to separate the olfactory mucosa from the septum. 
We transferred the olfactory mucosa to DMEM/F12-
filled petri dishes and removed the olfactory epithelium 
under a microscope. The remaining lamina propria after 
removal of the mucosal epithelium was then shredded 
and transferred to medium filled with 0.5% collagenase II. 
Following incubation of the pellet for 1 h, the cells were 
resuspended by centrifugation and inoculated into petri 
dishes containing 10% fetal bovine serum and DMEM/
F12 culture medium. Every three days, the medium was 
replaced. Within a week, stem cells were visible crawling 
out. Isolated OM-MSCs were stained with PE-conjugated 
anti-CD73 (BD, 550,741), APC-conjugated anti-CD90 
(R&D, FAB7335R) and anti-CD105 (BD, 562,761), FITC-
conjugated anti-CD31 (R&D, FAB3628G), anti-CD34 
(BD, 560,238), and anti-CD45 (BD,553,079) after in vitro 
culture expansion. We analyzed 105 events (BD, FACS 
Canto II) per sample using FlowJo V10.5.3 software and 
compared them with an isotype control in order to deter-
mine the cell gating. For transplantation, cells were sub-
cultured up to passage 3.

BLM-induced pulmonary fibrosis model
Mice were anesthetized and received a single endo-
tracheal dose of bleomycin (50 µL, 1  mg/kg of mouse 
body weight; Nippon Kayaku Co.) diluted in phosphate-
buffered saline (PBS) to induce pulmonary fibrosis. 
Seven-week-old male mice were randomly divided into 
three groups (n = 16 per group): (1) Control group: mice 
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received an endotracheal dose of PBS (50 µL) instead of 
BLM treatment; (2) BLM + PBS group: BLM-induced 
mice without OM-MSCs treatment; (3) BLM + OM-
MSCs group: BLM-induced mice with OM-MSCs treat-
ment. OM-MSCs (5 × 105 equivalents) were administered 
by intravenous injection to the tail vein on the 5, 10, 15 
days after BLM administration, and PBS was injected as 
a negative control. On day 21, mice were sacrificed and 
their lungs were scanned by µCT to evaluate the severity 
of pulmonary fibrosis. The weights of mice were recorded 
every other day after BLM treatment.

Fluorescence imaging
To examine the distribution of OM-MSCs after intrave-
nous, the OM-MSCs were labeled with the DiR Iodide 
dye (Yeasen, Shanghai, China) for ex vivo fluorescence 
imaging. In brief, cells were incubated with dye and 
injected into mice through the tail vein (5 × 105 equiva-
lents). Control mice were treated with an equal volume 
of solvent. Mice were sacrificed after 6 and 24 h for tis-
sue collection, and fluorescent signals in these tissues 
were immediately detected by a fluorescence tomography 
imaging system (FMT-4000; PerkinElmer, USA).

Histochemistry and immunohistochemical staining
After OM-MSCs treatment for 21 days, left lungs were 
harvested, fixed with 4% paraformaldehyde, dehydrated 
by graded ethanol, embedded in paraffin, and sliced 
into 4-μm-thick sections. Lung structures were assessed 
by H&E staining. Collagen deposition was determined 
by Masson’s trichrome stain. Right lungs were frozen 
at -80° for the isolation of RNA and proteins, and the 
determination of hydroxyproline content. The modi-
fied Ashcroft score was used for quantitative histological 
analysis by visual assessment of fibrotic changes induced 
by BLM [21, 22]. Five fields within each lung section were 
observed, and the score of fibrosis ranged from 0 (normal 
lung) to 8 (total fibrous obliteration of the field). Scores 
of 0-1 represented no fibrosis, scores of 2-3 represented 
minimal fibrosis, scores of 4–5 were considered as mod-
erate fibrosis, and scores of 6-8 indicated severe fibrosis. 
For Immunohistochemical staining, lung tissue sections 
were dewaxed in xylene and rehydrated with ethanol of 
different concentration gradients. Tissue sections were 
incubated in 3% H2O2 at room temperature to eliminate 
endogenous peroxidase activity. Then the slides were 
microwave-heated in 10 mM citrate buffer and blocked 
with 10% goat serum for 60 min. Samples were then incu-
bated at 4 °C overnight with the recommended dilution 
of the primary antibodies including anti-collagen I anti-
body (1:500, Abcam; ab21286), anti-ACTA2 antibody 
(1:200, Abcam; ab32575), anti-MMP13 antibody (1:200 
Bioworld; BS1231P), anti-TGFB1 antibody (1:200, ZEN-
BIOSCIENCE; 346,599) and anti-IL1B antibody (1:500, 

Abcam; ab9722). Samples were further incubated with 
horseradish peroxidase- conjugated secondary antibod-
ies (1:300, Servicebio, gb23303) for 1 h. Observe the sam-
ples after color development with 3,3’-diaminobenzidine 
(DAB).

Hydroxyproline content determination
The content of collagen in the lung is reflected by mea-
suring the content of hydroxyproline in the lung. Quan-
tify the content of hydroxyproline in lung tissue using a 
commercial hydroxyproline assay kit (Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) according to 
the manufacturer’s protocol.

µCT analysis
Mice were killed and analyzed by high-resolution µCT 
(VIVACT 80; SCANCO Medical AG, Switzerland). The 
scanner was set to 45  kV and 177 µA at 11.4  μm reso-
lution. The data analysis software (CTAn v1.9 and Data 
Viewer) was applied to analyze the acquired images. 
Bony chest cage (sternum in the front, vertebrae in the 
back and ribs on the sides) and trachea lumen (as a 
small dark circle at the level of the neck and upper chest, 
which bifurcates into the right and left main bronchi 
then continues to branch into smaller and smaller bron-
chi.) were identified. The heart was in front of the chest 
and the major blood vessels near the heart and in the 
mediastinum.

RNA extraction and qRT-PCR analyses
Total RNA was extracted from mouse lung tissues using 
the standard Trizol method (Takara, Beijing, China). For 
gene expression analysis, synthesis of cDNA was per-
formed using GoScript™ Reverse Transcriptase accord-
ing to the manufacturer’s instruction (Promega, A5001). 
Primers were synthesized in the Beijing Genomics Insti-
tute (Beijing, China). QRT-PCR amplification of indi-
cated genes was performed using GoTaq® qPCR Master 
Mix (Promega, A6001) on an FTC-3000 real-time PCR 
machine (funglyn biotech) with Gapdh as a normal-
ization control. After the initial denaturation (2 min 
at 95°C), amplification was performed with 40 cycles 
of 15 s at 95°C and 60 s at 60°C. The sequences of the 
primers used for qPCR are listed below: m-Gapdh-F: 
5’-AGGTCGGTGTGAACGGATTTG-3’,

m-Gapdh-R: 5’-TGTAGACCATGTAGTTGAG-
GTCA-3’,

m-Col1a1-F: 5’-GCTCCTCTTAGGGGCCACT-3’,
m-Col1a1-R: 5’-CCACGTCTCACCATTGGGG-3’,
m-Acta2-F: 5’-GTCCCAGACATCAGGGAGTAA-3’,
m-Acta2-R: 5’-TCGGATACTTCAGCGTCAGGA-3’,
m-Mmp13-F: 5’-CTTCTTCTTGTTGAGCTG-

GACTC-3’,
m-Mmp13-R: 5’-CTGTGGAGGTCACTGTAGACT-3’,
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m-Tgfb1-F: 5’-TTGCTTCAGCTCCACAGAGA-3’,
m-Tgfb1-R: 5’-TGGTTGTAGAGGGCAAGGAC-3’,
m-Il1b-F: 5’-AAGGAGAACCAAGCAACGA-

CAAAA-3’,
m-Il1b-R: 5’-TGGGGAACTCTGCAGACT-

CAAACT-3’.

Western blot
Total proteins from lung tissue were extracted with RIPA 
lysate containing protease inhibitors (Cwbio, Jiangsu, 
China) and their concentration was determined using a 
BCA protein colorimetric assay kit (Elabscience, Wuhan, 
China). A total of 25  µg protein from each sample was 
separated by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred onto 
polyvinylidene difluoride (PVDF) membranes. After 
blocking with 5% fat-free milk in TBST for 1 h at room 
temperature, the membranes were incubated overnight 
at 4  °C with the following primary antibodies: anti-col-
lagen I (1:250, Abcam; ab21286), anti-ACTA2 (1:1000, 
ZEN-BIOSCIENCE; 380,909), anti-MMP13 (1:1000, 
ZEN-BIOSCIENCE; 820,098), anti-TGFB1 (1:1000, ZEN-
BIOSCIENCE; 346,599) and anti-IL1B (1:5000, Abcam; 
ab9722). β-Actin was used as an internal control. The 
membranes were washed with TBST for three times and 
then incubated with secondary antibodies (1:5000, Ser-
vicebio, gb23303), for 1 h at room temperature, and then 
exposed to radiography film.

Flow cytometry
For flow cytometry, lungs were harvested on days 21. 
Lungs were cut into small pieces and digested in 5 mL 
of digestion buffer consisting of RPMI-1640 (Biological 
Industries), collagenase IV (1.6  mg/mL, Worthington 
Biochemical Corp), and DNase1 (50 unit/mL, Worthing-
ton Biochemical Corp). Lungs were shaken at 37  °C 
for 30  min, and RBCs were lysed using RBC lysis buf-
fer (Solarbio). Homogenized lung was passed through 
a 70  μm cell strainer (Biologix) to obtain a single-cell 
suspension. Cells were washed twice with cold PBS 
and centrifuged at 300  g for 8  min at 4 ℃. 1 × 106 cells 
were resuspended in 100 µL of cold PBS per sample 
and stained with APC-conjugated anti-LY6C1 (Thermo, 
17-5932-82) and anti-CCR2 (Abcam, ab216863). Primary 
antibody CCR2 further incubated with Cy3-conjugated 
goat anti-rabbit secondary antibody (Abcam, ab97075). 
One hundred thousand events per sample were collected 
(BD, FACS Canto II), and data were analyzed with FlowJo 
V10.5.3 software. Cell gating was based on the compari-
son with isotype control.

Statistical analysis
All statistical data were presented as mean ± SD. Statis-
tical analyses were using GraphPad Prism 8 software. 

One-way ANOVA followed by Bonferroni post hoc 
test was used to analyze multiple-group comparisons. * 
P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001.

Results
Administration of OM-MSCs protects lungs from BLM-
induced pulmonary fibrosis
Cell surface markers were analyzed by flow cytometry 
as described previously [20]. The immunophenotype of 
OM-MSCs showed positive expression of CD73, CD90, 
and CD105, and negative expression of CCD31, CD34 
and CD45. To assess the effects of OM-MSCs on pul-
monary fibrosis, BLM-induced pulmonary fibrosis mice 
were generated and treated with OM-MSCs by tail vein 
injection on day 5, 10, and 15 after BLM administration. 
Ex vivo fluorescence imaging at 6 and 24 h post-injection 
showed a residency of OM-MSCs in the lung (Supple-
mentary file 1: Fig. S1). Pulmonary CT showed reticular 
shadows, honeycomb changes and tractive bronchiecta-
sis in both lung, and consolidation images were exhib-
ited in BLM treatment group as revealed in transaxial 
and coronal sections. This fibrotic lesion was relieved 
by OM-MSC treatment (Fig.  1A-C). The BLM group 
also exhibited obvious thickening of the alveolar wall, 
and structural deformation of the lung parenchyma, and 
these changes were strikingly alleviated after OM-MSCs 
treatment, as revealed by hematoxylin and eosin (H&E) 
staining (Fig.  1D). Consistently, upon OM-MSCs treat-
ment, BLM-induced mice showed decreased fibrosis by 
Ashcroft score (Fig. 1E). Meanwhile, Masson’s trichrome 
staining showed that the administration of OM-MSCs 
significantly reduced the accumulation of collagen 
(Fig. 1F-G). Furthermore, compared with the slow weight 
gain of PF mice treated with BLM, the weight change of 
the BLM + OM-MSC treatment group was approximately 
the same as the wild type control, and both increased 
steadily (Fig. S1). These phenomena indicate that OM-
MSCs can effectively reduce the severity of BLM-induced 
PF in mice.

Administration of OM-MSCs downregulates the expression 
of fibrotic and inflammatory factors in BLM-induced PF 
mouse model
To determine the effects of OM-MSCs on fibrosis and 
inflammation in the BLM-induced lung fibrosis mouse 
model, the expression levels of fibrotic factors and 
inflammatory factors were determined. Immunohisto-
chemical staining results of two fibrotic factors, collagen 
type I (COL1A1) and actin alpha 2, smooth muscle, aorta 
(ACTA2/α-SMA), were obviously increased after BLM 
treatment. These factors were markedly decreased after 
OM-MSC transplant, indicating that collagen deposi-
tion in the lungs of the mice was obviously relieved by 
OM-MSC transplantation (Fig.  2A-D). Furthermore, 
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the expression level of matrix metallopeptidase 13 
(MMP13) which mediates matrix remodeling in vivo, 
was significantly increased after BLM treatment, and 
downregulated after OM-MSCs administration (Fig. 2E-
F), consistent with data that MMP13 was upregulated 
in PF patients. Compensatory MMP13 expression is 
to antagonize the collagen deposition and contributes 
to the development of honeycomb cysts [23, 24]. In 
addition, we evaluated the collagen accumulation by 
measuring hydroxyproline, which is the main compo-
nent of collagen. Hydroxyproline significantly reduced 
after OM-MSC treatment in BLM-induced PF mouse 
model (Fig. 2G). The protein levels of COL1A1, ACTA2, 
MMP13, as well as mRNA levels of Col1a1, Acta2, 
Mmp13, were lower in BLM + OM-MSC treatment group 
as compared with BLM treatment group (Fig. 2H-N).

Moreover, we determined the expression levels of 
inflammatory factors. As reveled by immunohistochem-
istry images, western blot, and qRT-PCR, the levels of 
TGFB1 and IL1B in the lungs were significantly upregu-
lated after BLM administration as compared with the 
control group, but the expression levels of these inflam-
matory factors in the OM-MSC treatment group were 
restored to levels similar to their normal conditions 
(Fig. 3A-I). In summary, the transplant of OM-MSCs can 
effectively inhibit up-regulated inflammatory factors and 
the accumulation of collagen.

Administration of OM-MSCs modulates monocyte-derived 
macrophage populations in the lung
To investigate the ways in which OM-MSCs affect the 
above cytokine changes during pulmonary fibrosis, we 
analyzed the changes in the immune cell population 
in the lung, mainly infiltrating monocytes. Flow cyto-
metric analysis for proinflammatory classical mono-
cytes (LY6C1hi CCR2+cells) and nonclassical monocytes 
(LY6C1low CCR2−cells) revealed that the ratio of proin-
flammatory monocytes to nonclassical monocytes in the 
lung increased after BLM-induced lung injury compared 
with control mice, while the opposite results appeared 
following OM-MSCs transplant, suggesting OM-MSCs 
were able to alter the proportion of monocytes infiltrated 
in the lung to alleviate inflammation and fibrosis (Fig. 4).

In conclusion, transplant of OM-MSCs may allevi-
ate the PF by increasing the pro-resolution macrophage, 
inhibiting the inflammatory factors secretion, decreasing 
the fibrotic factors (Fig. 5).

Discussion
Although most patients with PF exhibit a slow, progres-
sive course over several years, due to delayed diagnosis 
and acute exacerbations caused by complications, sev-
eral retrospective longitudinal studies indicate that the 
average life expectancy of these patients after diagno-
sis is reported to be 3–5 years [25–28]. It has been long 

Fig. 1  Administration of OM-MSCs protects lungs from BLM-induced pulmonary fibrosis. (A). Representative µCT images show the lung architecture of 
control mice or BLM-induced mice with or without OM-MSCs treatment. Scale bars: 5 mm. n = 3 per group. (B-C) Ratio of normal lung tissue to total lung 
tissue area of transaxial and coronal. (D-E) Representative images of HE staining and Ashcroft score. Scale bars: 200 μm. n = 5 per group. (F-G) Masson’s 
trichrome staining images of lung and quantification of the IOD for Masson-stained areas. Scale bars: 200 μm. n = 5 per group
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Fig. 2 (See legend on next page.)
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appreciated that PF can be relieved by MSCs transplant. 
However, the source of MSCs, and the underlying mech-
anism remains challenging. Our study provides the first 
evidence that transplant of OM-MSCs can attenuate pul-
monary fibrosis and induce a pro-resolution phenotype 
by increasing LY6C1low macrophages, inhibiting inflam-
mation, and enhancing degradation of ECM.

Although previous studies have reported the benefits of 
MSCs transplant on PF [29]. But the source of MSCs lim-
its the application. Human umbilical cord blood MSCs 
(UCB-MSCs) are not available for adults, BM-MSCs have 
been found to be more antigenic, have lower proliferative 
capacity, and have weaker paracrine potency when com-
pared to UBC-MSCs [30], MSCs factory production lost 
many characteristics of the stem cells [31]. Since the limi-
tation of adult MSCs, allotransplant is carried out instead 
of autologous transplant, however, the use of anti-rejec-
tion regimes has severe side effects for PF patients. It is 
promising for PF treatment while we get over the obstacle 
of procurement of enough autologous MSCs. Herein, we 
reported that OM-MSCs are an optional source for PF, 
which was first defined by Huard et al. (1998) and charac-
terized as CD73 + CD90 + CD105 + CD34- CD45- CD31- 
[32, 33]. It has the advantages of easy accession and high 
versatility. Most importantly, OM-MSCs could be used 
for autologous transplant and had beneficial effects for 
the treatment of Parkinson’s disease, rheumatoid arthri-
tis and other autoimmune diseases [33–35]. Therefore, 
OM-MSCs can maintain the features of MSCs, prolifer-
ate in vitro, providing enough number of OM-MSCs for 
treatment of PF with simple surgical procedures and in 
vitro expansion, without any harmful side effects on the 
patients.

MSCs home to sites of injury, inhibit inflammation, 
and contribute to epithelial tissue repair. Their use has 
been suggested as a therapy for the treatment of PF [29]. 
However, the underlying mechanism of MSC treatment 
of PF remains unknown. The mechanistic studies of PF 
show that MSCs may inhibit the secretion of cytokines 
[36]. Consistent with previous studies, our present work 
demonstrated that OM-MSCs inhibit the secretion of 
pro-inflammatory cytokines, enhance degradation of 
ECM, increase LY6C1low macrophages, which is a restor-
ative macrophage subpopulation switched from pro-
inflammatory LY6C1hi subset and crucial for remodeling 
of fibrosis [13].

The limitation of our study is that the comparison of 
effects between OM-MSCs and other PF regimes was 
not evaluated. MSCs derived from umbilical cord, bone 
marrow, and adipose tissue have all been used in stud-
ies investigating their impact on pulmonary fibrosis [37, 
38]. However, our research demonstrates that OM-MSCs 
exhibit significant therapeutic efficacy in a bleomycin-
induced pulmonary fibrosis model, and OM-MSCs are 
more easily obtained and suitable for autologous trans-
plantation. The comparison of systemically (intravenous 
(IV) or intraperitoneal (IP)) vs. intratracheal (IT) MSCs 
administration was also another issue that we did not 
measure. A comparison study found that intravenous 
administration is more rapid and more effective in exert-
ing its effects compared to intratracheal administra-
tion [39]. In a pre-clinical study, results showed that IT 
administration was more efficacious at reversing lung 
fibrosis at a four-fold lower dose of MSCs [40]. In our 
study, we have determined that allotransplant of OM-
MSCs (IV) is easily operated, appeared to be effective 
and safe in the short-term; however, ongoing follow-up 
of these subjects would be necessary before conclusions 
regarding long-term safety could be made.

The range of pulmonary fibrotic diseases observed in 
coronavirus infection, encompassing fibrosis linked to 
organizing pneumonia to severe acute lung injury, lead-
ing to the development of extensive fibrotic changes [41]. 
Despite many patients surviving the acute phase of the 
disease and possibly being discharged, a significant pro-
portion eventually succumb to progressive pulmonary 
fibrosis [42]. The severe respiratory consequences of the 
coronavirus disease 2019 (COVID-19) pandemic have 
prompted urgent need for novel therapies for lung fibro-
sis to resolve the social problem as important as block-
ing coronavirus transmission. MSCs administration can 
significantly reduce respiratory virus [43]. Autologous 
transplant of OM-MSCs may benefit these patients with 
pulmonary fibrosis. It is a promising and newly attractive 
source of MSCs for fibrosis treatment.

Conclusions
Our study presented here demonstrate that transplant of 
OM-MSCs can attenuate pulmonary fibrosis by inhibit-
ing inflammation and enhancing degradation of ECM, 
which may be achieved by increasing LY6C1low macro-
phages in the lung. This result may provide a new avenue 

(See figure on previous page.)
Fig. 2  Administration of OM-MSCs downregulates the expression of fibrotic factors from BLM-induced pulmonary fibrosis. (A-B) Representative images 
and quantification of COL1A1 staining of lung tissues from control mice or BLM-induced mice with or without OM-MSCs treatment. Scale bar: 200 mm. 
n = 4 per group. (C-D) Representative images and quantification of ACTA2 staining of lung tissues from control mice or BLM-induced mice with or without 
OM-MSCs treatment. Scale bar: 200 mm. n = 4 per group. (E-F) Representative images and quantification of MMP13 staining of lung tissues from control 
mice or BLM-induced mice with or without OM-MSCs treatment. Scale bar: 200 mm. n = 4 per group. (G) Measurement of hydroxyproline depositions 
in lung tissue of control mice or BLM-induced mice with or without OM-MSC treatment. n = 4 per group. (H-K) Representative western blot analysis and 
quantification of COL1A1, MMP13, ACTA2. n = 3 per group. Full-length blots/gels are presented in Supplementary file 2. (L-N) QPCR analysis of Col1a1, 
Mmp13, Acta2. n = 6 per group
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Fig. 4  Administration of OM-MSCs promotes pro-resolution LY6C1. low monocyte generation on bleomycin-induced pulmonary fibrosis. (A-B) Flow 
cytometry analysis of LY6C1 monocytes from lung tissues of control mice or BLM-induced mice with or without OM-MSCs treatment

 

Fig. 3  Administration of OM-MSCs downregulates the expression of inflammatory factors from BLM-induced pulmonary fibrosis. (A-D) Representative 
images and quantification TGFB1, IL1B staining of lung tissues from control mice or BLM-induced mice with or without OM-MSCs treatment. Scale bar: 
200 mm. n = 4 per group. (E-G) Representative western blot analysis and quantification of TGFB1, IL1B. n = 3 per group. Full-length blots/gels are presented 
in Supplementary file 2. (H-I) QPCR analysis of Tgfb1, Il1b. n = 6 per group
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for the treatment of pulmonary fibrosis in the context of 
coronavirus disease.
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