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Abstract
Background There is a need to develop and validate a widely applicable nomogram for predicting readmission of 
respiratory failure patients within 365 days.

Methods We recruited patients with respiratory failure at the First People’s Hospital of Yancheng and the People’s 
Hospital of Jiangsu. We used the least absolute shrinkage and selection operator regression to select significant 
features for multivariate Cox proportional hazard analysis. The Random Survival Forest algorithm was employed to 
construct a model for the variables that obtained a coefficient of 0 following LASSO regression, and subsequently 
determine the prediction score. Independent risk factors and the score were used to develop a multivariate COX 
regression for creating the line graph. We used the Harrell concordance index to quantify the predictive accuracy 
and the receiver operating characteristic curve to evaluate model performance. Additionally, we used decision curve 
analysiso assess clinical usefulness.

Results The LASSO regression and multivariate Cox regression were used to screen hemoglobin, diabetes and 
pneumonia as risk variables combined with Score to develop a column chart model. The C index is 0.927 in the 
development queue, 0.924 in the internal validation queue, and 0.922 in the external validation queue. At the same 
time, the predictive model also showed excellent calibration and higher clinical value.

Conclusions A nomogram predicting readmission of patients with respiratory failure within 365 days based on three 
independent risk factors and a jointly developed random survival forest algorithm has been developed and validated. 
This improves the accuracy of predicting patient readmission and provides practical information for individualized 
treatment decisions.
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Introduction
Respiratory failure is a common medical emergency 
that leads to inadequate blood oxygen levels and/or an 
increase in blood carbon dioxide levels [1]. Patients with 
respiratory failure often have multiple cardiovascular and 
pulmonary complications or may be simultaneously suf-
fering from multiple diseases, and therefore often require 
prolonged hospitalization, ventilatory support, and 
intensive care unit admission, resulting in high mortality 
and high readmission rates [2, 3]. To better address these 
issues, many experts and clinicians have been dedicated 
to identifying prognostic models for respiratory failure 
[4, 5]. We chose readmission as our research indicator 
because it might be expensive for the healthcare system 
[6], and it represented an economic and clinical burden 
for patients [7].

A report on specific disease readmission rates sug-
gested that strategies to reduce readmission rates could 
be successful, such as with heart failure [8, 9]. However, 
there are few studies on readmission for respiratory fail-
ure. Currently, most research focuses on subtypes of 
respiratory failure or is limited to early readmission stud-
ies [10]. Studies also often include patients with respira-
tory failure who have other co-occurring conditions [11]. 
Because respiratory failure is a complex chronic disease 
caused by multiple risk factors, building a predictive 
model using Cox regression may not be very effective in 
predicting individual disease risk [12].

Therefore, the establishment of the readmission model 
for respiratory failure with complex diseases requires not 
only accurate risk assessment, but also the interpreta-
tion of results based on the importance of covariates to 
evaluate risk factors, with the ultimate goal of developing 
better diagnostic and treatment strategies [13]. In fact, 
important covariates may vary due to environmental fac-
tors, and from a clinical perspective, all selected covari-
ates are meaningful [14]. In this case, it is necessary to 
ensure that the designed model has high prediction accu-
racy without overfitting, and is universally applicable in 
clinical diagnosis in the real world [15, 16].

In this study, we attempted to use the random for-
est model in machine learning to solve this problem, 
which has good processing capabilities for complex 
high-dimensional data. The purpose of this study was 
to establish a widely applicable line chart to predict the 
occurrence of readmission in patients with respiratory 
failure at 365 days.

Materials and methods
Study design
The flowchart of this experiment for a multi-center pro-
spective cohort study was depicted in Fig.  1. The study 
event was respiratory failure. The start time of the study 
was when the patient was admitted to the hospital with 

a diagnosis of respiratory failure based on blood gas 
analysis.The endpoint of the study were the occurrence 
of another respiratory failure event and the time point of 
hospitalization for the event.

First, the samples collected from the First People’s Hos-
pital of Yancheng were divided into a modeling dataset 
and an internal validation dataset, and then a line chart 
was proposed for the study work. Second, the model was 
evaluated using the internal validation dataset. Third, 
external validation was performed using data provided 
by the People’s Hospital of Jiangsu Province. The current 
project followed the principles of the Helsinki Declara-
tion. This study was approved by the ethics committees 
of the First People’s Hospital of Yancheng (No.2020-
K062) and the People’s Hospital of Jiangsu Province (No. 
2021-SR-346). In addition, participants from both hospi-
tals provided written informed consent to support clini-
cal research.

Participants and data collection
We selected 744 patients with respiratory failure who 
were hospitalized in the First People’s Hospital of 
Yancheng from October 2020 to September 2021. For 
external validation, we used a dataset of 223 respiratory 
failure patients who were hospitalized in Jiangsu Provin-
cial People’s Hospital from October 2021 to December 
2021.

The inclusion criteria for research patients were as fol-
lows: Arterial oxygen partial pressure (PaO2) was less 
than 8.0 kPa (60 mmHg) or arterial carbon dioxide partial 
pressure (PaCO2) was greater than 6.0  kPa (45 mmHg) 
based on blood gas analysis [17].

Patients with incomplete clinical data, age less than 
18 years, death within 24  h, trauma, malignant tumors, 
malignant hematological diseases, or pregnancy were 
excluded.

Follow-up index
The primary indicator for respiratory failure patients was 
the time from discharge to readmission due to respira-
tory failure. The information was collected from the two 
centers mentioned above and followed up for 365 days 
after discharge. To better track patients, we conducted 
telephone interviews and used hospital systems to verify 
the patient’s condition further.

Model specification
Firstly, the variables with non-zero coefficients were 
screened using LASSO regression, followed by multi-
variate COX regression to identify significant variables. 
Secondly, the variables excluded by setting their LASSO 
regression coefficient to 0 and performing multiariable 
COX regression together were used to construct a new 
model using the RSF method for prediction. Finally, the 
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Fig. 1 Flow chart of this study
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meaningful variables identified through COX regression 
were combined with scores to establish a new multiari-
able COX regression model.

Statistical analysis
To ensure comparability between the two groups of 
patients, 744 respiratory failure patients were randomly 
divided into two groups, with 70% and 30% of patients in 
each group, respectively. One group (n = 520) was used to 
develop the Nomogram, while the other group (n = 224) 
was used to verify the predictive ability of the con-
structed model.

To test the balance between two groups, categorical 
variables were expressed as frequencies and percent-
ages, and their differences were compared using the Chi-
square test. For continuous variables, if they followed a 
normal distribution, they were expressed as mean ± SD, 
and their differences were compared using the t-test. 
If they did not follow a normal distribution, they were 
expressed as median and quartiles, and their differences 
were compared using the Mann-Whitney test.

The LASSO regression method was utilized to select 
significant features from the modeling set for multivari-
ate Cox proportional hazard analysis, screening inde-
pendent risk factors. The Random Survival Forest (RSF) 
algorithm was employed to construct a model for the 
variables exhibiting a coefficient of 0 following LASSO 
regression, and subsequently compute the prediction 
Score. The predictive accuracy of the nomogram was 
quantitatively measured using the Harrell consistency 
index (C index), which calculated time-related receiver 
operating characteristic (ROC) curves and areas under 
the curve to evaluate the model’s performance. The accu-
racy of the nomogram prediction was evaluated using 
the calibration curve. Additionally, decision curve anal-
ysis (DCA) was used to assess the clinical utility of the 
nomogram.

Individual risk scores were obtained based on the 
established nomogram. Risk stratification was deter-
mined using the ROC curve to identify the optimal 
threshold for risk score. The critical value divided 
patients into high-risk and low-risk groups and provided 
the best difference for survival analysis between the risk 
groups. A p-value < 0.05 was considered statistically sig-
nificant. All statistical analyses were performed using R 
(version 4.1.3).

Result
Baseline characteristics
In this study, we prospectively evaluated a total of 744 
patients with respiratory failure who met the inclu-
sion criteria. The evaluation data were summarized 
and randomly divided into two groups at a ratio of 7:3. 
Table 1 shows the baseline characteristics of patients in 

the modeling (n = 520) and validation (n = 224) cohorts. 
In the entire cohort, there were 487 males (65.46%) and 
257 females (34.54%), with a median age of 74 years. 
Type 2 respiratory failure patients accounted for 68.15% 
of the cohort, while type 1 respiratory failure patients 
accounted for 31.85%. There were 448 (60.22%) smok-
ers. The top three chronic diseases in terms of prevalence 
were COPD, with 536 (72.04%) patients, hypertension 
with 289 (38.84%) patients, and pneumonia with 169 
(22.72%) patients. Additionally, 186 patients were read-
mitted, resulting in a readmission rate of 25%. The clini-
cal characteristics between the two groups were well 
balanced and comparable. The external test set, which 
met the inclusion criteria, was obtained from the People’s 
Hospital of Jiangsu Province.

Feature selection and nomogram construction
We applied the LASSO regression algorithm to each 
feature for feature selection in the modeling queue. The 
biased binomial’s partial likelihood deviance reached 
its minimum, and the most suitable adjustment param-
eter λ for LASSO regression was 0.028. Figure  2A dis-
played the coefficient path generated by the logarithmic 
λ series values. The LASSO analysis retained 11 variables 
with non-zero coefficients (Fig.  2B): Glutamyltransfer-
ase, triglyceride, total cholesterol, myoglobin, lactic acid, 
carboxyhemoglobin, respiratory failure type, diabetes, 
cardiovascular disease, asthma, and pneumonia. Multi-
variate Cox proportional hazards analysis was performed 
using eleven variables. Ultimately, three independent 
risk factors were retained: Myoglobin, Diabetes, and 
Pneumonia (Table 2). The RSF algorithm was utilized to 
establish a model for the variables with a coefficient of 
0 following LASSO regression and compute the predic-
tion score. Then, the three independent risk factors and 
prognostic scores were integrated into a multivariate 
Cox regression model to construct a nomogram based 
on nomogram, showing the probability of recurrence 
(Fig.  3). To make the prediction model easy to use, we 
also developed a web-based format(https://respiratory.
shinyapps.io/DynNomapp/).

Evaluation and validation of nomogram
A model used to estimate the probability of readmission 
at 3, 6, and 10 months demonstrated good predictive 
ability. The C-index was 0.927 (95% CI: 0.910–0.944) in 
the development cohort, 0.924 (95% CI: 0.901–0.948) in 
the internal validation cohort, and 0.922 (95% CI: 0.898–
0.946) in the external validation cohort.

ROC curve analysis of the line graph in the model-
ing queue showed excellent classification accuracy, with 
an AUC of 0.960 (95%CI: 0.942–0.978) at 3 months, 
0.970 (95%CI: 0.957–0.983) at 6 months, and 0.963 
(95%CI: 0.946–0.981) at 10 months(Fig.  4A). The ROC 

https://respiratory.shinyapps.io/DynNomapp/
https://respiratory.shinyapps.io/DynNomapp/
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Variables Total (n = 744) Training set (n = 520) Validation set (n = 224) P value statistic
status 0.999 0

0 558 (75) 390 (75) 168 (75)
1 186 (25) 130 (25) 56 (25)

month 12 (12, 12) 12 (11.975, 12) 12 (12, 12) 0.818 58710.5
respiratory failure type 0.883 0.022

1 237 (31.855) 167 (32.115) 70 (31.25)
2 507 (68.145) 353 (67.885) 154 (68.75)

Smoking history 0.950 0.004
0 296 (39.785) 206 (39.615) 90 (40.179)
1 448 (60.215) 314 (60.385) 134 (59.821)

Gender 0.983 0
Male 487 (65.457) 341 (65.577) 146 (65.179)
Female 257 (34.543) 179 (34.423) 78 (34.821)

Hypertension 0.683 0.167
0 455 (61.156) 321 (61.731) 134 (59.821)
1 289 (38.844) 199 (38.269) 90 (40.179)

Diabetes 0.241 1.378
0 639 (85.887) 441 (84.808) 198 (88.393)
1 105 (14.113) 79 (15.192) 26 (11.607)

Cerebrovascular disease 0.241 1.378
0 639 (85.887) 441 (84.808) 198 (88.393)
1 105 (14.113) 79 (15.192) 26 (11.607)

Cardiovascular disease 0.101 2.683
0 592 (79.57) 405 (77.885) 187 (83.482)
1 152 (20.43) 115 (22.115) 37 (16.518)

Chronic bronchitis emphysema 0.608 0.262
0 208 (27.957) 142 (27.308) 66 (29.464)
1 536 (72.043) 378 (72.692) 158 (70.536)

Asthma 0.999 0
0 725 (97.446) 507 (97.5) 218 (97.321)
1 19 (2.554) 13 (2.5) 6 (2.679)

Interstitial lung disease 0.323 0.977
0 702 (94.355) 494 (95) 208 (92.857)
1 42 (5.645) 26 (5) 16 (7.143)

Bronchiectasis 0.284 1.147
0 657 (88.306) 464 (89.231) 193 (86.161)
1 87 (11.694) 56 (10.769) 31 (13.839)

Pneumonia 0.378 0.776
0 575 (77.285) 407 (78.269) 168 (75)
1 169 (22.715) 113 (21.731) 56 (25)

length of stay 10 (7, 14) 10 (7.75, 14) 10 (7, 14) 0.840 58783.5
height 165 (160, 170.25) 165 (160, 170.25) 165 (158, 170.25) 0.839 58786.5
weight 60 (50, 70) 60 (50, 70) 60 (50, 68.875) 0.593 59675.5
age 74 (66, 80) 74 (67, 80) 72.5 (66, 80) 0.097 62699.5
VTE score 3 (1, 4) 3 (1, 4) 3 (1, 4) 0.951 58076.5
White Blood Cells 7.85 (5.803, 10.803) 7.855 (5.803, 10.825) 7.69 (5.808, 10.498) 0.742 59,126
hematocrit 39.2 (34.95, 43.825) 39.05 (34.8, 43.5) 39.3 (35, 44.3) 0.691 57,171
red blood cell 4.34 (3.83, 4.78) 4.345 (3.828, 4.77) 4.32 (3.83, 4.802) 0.964 58,362
Lymphocyte 0.92 (0.597, 1.322) 0.97 (0.61, 1.35) 0.81 (0.575, 1.223) 0.027 64,193
hemoglobin 130 (116, 145) 130 (116, 145) 131 (116, 144) 0.965 58,122
platelet 175.5 (130, 225.25) 176.5 (130, 228.5) 172 (128, 223) 0.442 60,310
neutrophil 6.125 (4.175, 9.102) 6.07 (4.16, 9.203) 6.33 (4.22, 9.062) 0.818 57,622
D- dimer 0.75 (0.39, 1.632) 0.78 (0.41, 1.632) 0.715 (0.338, 1.628) 0.317 60,932

Table 1 Demographic and clinical characteristics of patients
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analysis of the internal validation set confirmed the clas-
sification performance, with an AUC of 0.949 (95% CI: 
0.920–0.977) at 3 months, 0.961 (95% CI: 0.939–0.984) 
at 6 months, and 0.966 (95% CI: 0.946–0.986) at 10 
months(Fig.  4B). In addition, the ROC analysis of the 
external test set also verified the classification perfor-
mance, with an AUC of 0.952 (95% CI: 0.926–0.979) at 
3 months, an AUC of 0.960 (95%CI: 0.937–0.983) at 6 
months, and an AUC of 0.971 (95%CI: 0.945–0.997) at 10 
months(Fig. 4C).The calibration curves for the modeling 
team, internal validation queue, and external validation 
queue demonstrate strong consistency between the pre-
dicted probability of readmission and the actual occur-
rence probability at 3, 6, and 10 months(Fig. 5).

Clinical application of nomogram
As shown in Fig.  6, the DCA algorithm demonstrated 
promising clinical value in predicting the probability of 
readmission at 3, 6, and 10 months. This was evident in 
the modeling queue, internal validation queue, and exter-
nal validation queue, where the algorithm outperformed 

the COX regression model established using three inde-
pendent risk factors. Specifically, the DCA algorithm 
utilized a calibration curve to achieve superior perfor-
mance. The time-dependent AUC revealed consistently 
higher AUC values for the training set, internal validation 
set, and external validation set at different time points, 
indicating a robust and stable discriminative ability of the 
prediction model across various time intervals (Fig.  7). 
We used nomogram to calculate the risk value for each 
patient and then utilized the ROC curve to determine the 
optimal threshold. Based on this, patients were classi-
fied into high-risk (total score ≥ 38.33) and low-risk (total 
score < 38.33) groups for predicting readmission. The 
K-M curve illustrated that high-risk patients had a sig-
nificantly higher readmission rate than low-risk patients 
across the training, internal validation, and external vali-
dation cohorts (Fig. 8).

Variables Total (n = 744) Training set (n = 520) Validation set (n = 224) P value statistic
fibrinogen 3.63 (2.74, 4.93) 3.6 (2.768, 4.84) 3.66 (2.678, 5.07) 0.800 57557.5
Glutamyltransferase 26.7 (17.65, 44.625) 25.05 (17, 43.75) 28 (18.3, 45) 0.199 54,788
albumin 35.408 ± 5.122 35.413 ± 5.171 35.397 ± 5.019 0.970 0.038
glutamic-pyruvic transaminase 25 (16, 38) 24 (16.375, 37) 25.5 (16, 38) 0.683 57,141
triglyceride 0.97 (0.74, 1.36) 1.005 (0.74, 1.4) 0.94 (0.758, 1.232) 0.342 60,797
creatinine 65 (53.175, 80.225) 65.5 (53.5, 82.275) 63.95 (52.45, 79.15) 0.630 59536.5
creatine kinase 39 (30, 68) 39 (30, 66.55) 41 (30, 70) 0.346 55710.5
creatine kinase-MB 10 (8, 15) 10 (8, 14) 10 (8, 17) 0.158 54,465
alkaline phosphatase 78.9 (66, 97.325) 78.05 (66, 97) 80.35 (66, 98.25) 0.541 56594.5
urea 6.965 (5.12, 8.995) 7.035 (5.135, 9.162) 6.585 (5.092, 8.623) 0.291 61081.5
globulin 28.7 (26, 32) 28.85 (26, 32.025) 28.6 (25.85, 31.6) 0.460 60225.5
lactic dehydrogenase 353.5 (214.9, 518) 360.5 (217.875, 524.25) 345.5 (207.425, 483) 0.603 59,639
aspartate aminotransferase 26 (20, 36) 25.1 (20, 35) 27 (20.325, 37) 0.189 54,709
total cholesterol 4 (3.34, 4.74) 4 (3.295, 4.72) 3.985 (3.423, 4.8) 0.717 57266.5
total bilirubin 11.96 (8.398, 17.36) 11.9 (8.377, 16.9) 12.345 (8.482, 18.91) 0.447 56,194
myoglobin 38.35 (27.1, 65.55) 38.65 (28.15, 66.3) 37.45 (23.8, 64.075) 0.576 59,743
N-telencephalic natriuretic peptide 419 (130, 1920) 419.29 (130, 1920) 417.5 (130, 1825) 0.576 59,744
PO22 41 (38, 44.25) 41 (38, 44) 40.5 (37.75, 45) 0.891 57870.5
PCO2 56 (45, 71) 56 (44.75, 71) 57 (46, 73) 0.304 55,475
standard bicarbonate 30.1 (27.3, 33.825) 30 (27.3, 33.9) 30.65 (27.275, 33.7) 0.623 56,916
methemoglobin 1.2 (1, 1.3) 1.2 (1, 1.3) 1.1 (1, 1.3) 0.366 60656.5
reduced hemoglobin 6.35 (2.7, 10.6) 6.4 (2.7, 10.6) 6 (2.775, 10.35) 0.499 60059.5
hematokrit 42 (36, 47) 42 (36, 47) 42 (37, 47) 0.862 57772.5
base excess 7 (3.4, 11.625) 6.9 (3.5, 11.8) 7.55 (3.3, 11.4) 0.646 57,005
lactic acid 1.5 (1.2, 2) 1.5 (1.2, 2) 1.5 (1.2, 1.9) 0.121 62402.5
actual bicarbonate 34 (29.1, 40.325) 34 (29.175, 39.95) 34 (29.1, 40.975) 0.521 56,515
carboxyhemoglobin 2.3 (1.8, 2.8) 2.2 (1.8, 2.725) 2.3 (1.9, 2.8) 0.206 54,840
Blood gas hemoglobin 13.7 (11.9, 15.125) 13.8 (11.9, 15.2) 13.7 (11.9, 15.1) 0.951 58,073
oxyhemoglobin saturation 93.5 (89.075, 97.2) 93.3 (88.975, 97.2) 93.8 (89.2, 97.125) 0.503 56,438
oxyhemoglobin 90.3 (86, 93.7) 90.2 (86, 93.625) 90.35 (86.275, 93.725) 0.567 56699.5
total carbon dioxide 35.9 (30.5, 42.6) 35.85 (30.5, 42.2) 35.95 (30.575, 43.35) 0.505 56448.5

Table 1 (continued) 
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Fig. 2 LASSO regression model was used to select feature variables. (A) LASSO coefficient curves for the 11 features. (B) The adjustment parameter 
(lambda) in the Lasso regression was selected using 10-fold cross-validation
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Table 2 Parameters used to develop a predictive model for respiratory failure readmission
Variables HR 95%CI P Chi-square Estimate StdErr
glutamyltransferase 0.997 0.991–1.002 0.244 -1.165 -0.003 0.003
triglyceride 0.778 0.540–1.120 0.177 -1.351 -0.252 0.186
total cholesterol 0.900 0.749–1.080 0.257 -1.133 -0.106 0.093
myoglobin 0.996 0.993-1.000 0.048 -1.978 -0.004 0.002
lactic acid 0.960 0.774–1.190 0.707 -0.375 -0.041 0.110
carboxyhemoglobin 1.092 0.902–1.321 0.366 0.904 0.088 0.097
respiratory failure type

1
2 1.348 0.847–2.144 0.208 1.260 0.298 0.237

diabetes
0
1 1.974 1.282–3.039 0.002 3.087 0.680 0.220

cardiovascular disease
0
1 0.698 0.444–1.099 0.121 -1.551 -0.359 0.231

asthma
0
1 0.318 0.044–2.290 0.255 -1.138 -1.146 1.007

pneumonia
0
1 0.421 0.235–0.753 0.004 -2.916 -0.865 0.297

Fig. 3 A nomogram predicting readmission risk for respiratory failure
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Discussion
Our study includes demographic data and clinical infor-
mation such as body mass index, gender, age, various 
rating scales, smoking history, and laboratory data (e.g., 
complete blood count, blood biochemistry, blood gas, 
etc.). We also consider common and important comor-
bidities like diabetes, hypertension, cardiovascular dis-
ease, and pneumonia. All the features mentioned above 
are used to predict outcome models.

Improving the predictive form of the RSF model can 
lead to more accurate individual patient prognoses when 
establishing a model [18]. The Random Survival For-
est algorithm was employed to construct a model for 
the variables that obtained a coefficient of 0 following 
LASSO regression, and subsequently determine the pre-
diction score. Additionally, we employed independent 
risk factors and the score to establish a multivariate COX 
regression, which was something that traditional scoring 
systems were unable to achieve.

Fig. 6 Analysis of decision curve in nomogram. (A) the decision curve analysis of nomogram in the modeling set. (B) the decision curve analysis of 
nomogram in the internal validation set. (C) the decision curve analysis of nomogram in the external validation set. Solid red lines represent the columns

 

Fig. 5 Calibration curve of risk prediction model for respiratory failure readmission. (A) the calibration curve of the modeling set. (B) the calibration curve 
of the internal validation set. (C) the calibration curve of the external validation set

 

Fig. 4 Detection of receiver operating characteristic (ROC) curve. (A) the ROC curve of Modeling set. (B) the ROC curve of internal validation set. (C) the 
ROC curve of external validation set. The red, yellow, and blue AUC curves show the discrimination of the model at 3, 6, and 10 months. The corresponding 
95% confidence interval estimates are highlighted in black text
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In our study, we used the Cox model as a baseline pre-
dictive model due to its simplicity, allowing for reproduc-
ibility and universality [19]. Afterwards, we conducted a 
random forest survival analysis, in which all predictive 
factors were included in a single model, using variable 
importance measures to assess the contribution of each 
variable to predicting survival [20]. Through the predic-
tive model of readmission risk at 3, 6, and 10 months for 
patients with respiratory failure, we found that the joint 
predictive model showed better calibration and discrimi-
nation than the single Cox regression model. This model 
can provide a basis for clinical decision-making. The pre-
dictive performance of the model was further validated 
by employing Time-dependent AUC curves. Our analy-
sis provided insights into predictors of readmission for 
respiratory failure. We found that patients with acute 
respiratory failure often returned to the hospital, with 
pneumonia, diabetes, and myoglobin being identified as 
the most significant risk factors.

It has been confirmed that pneumonia is the most com-
mon cause of readmission for respiratory failure within a 
year, especially in subgroup analysis of patients undergo-
ing invasive Home mechanical ventilation (HMV) [21]. 

According to the American Association of Respiratory 
Care practice guidelines, readmission is usually caused 
by the worsening of underlying diseases, respiratory 
tract infections, airway-related side effects, and ventila-
tion failure [22]. In a previous study involving children, 
40–70% of discharged patients experienced unplanned 
readmissions within a short period of approximately 1–3 
months after starting HMV, mainly due to pneumonia 
and respiratory issues [23]. Pneumonia is the main cause 
of readmission for chronic obstructive pulmonary dis-
ease during a one-year period [24]. It can be seen that 
these reasons for readmission are preventable.

Additionally, patients with acute respiratory failure 
frequently have elevated blood sugar levels [25]. Dia-
betes is the most significant risk factor for respiratory 
failure [26]. Currently, there is no research on the rela-
tionship between diabetes and readmission of respiratory 
failure patients [27, 28]. However, diabetes is a risk fac-
tor for readmission of patients with chronic obstructive 
pulmonary disease [29]. This is mainly because patients 
with respiratory failure and diabetes are more prone to 
pulmonary infections, airway mucosal congestion, ciliary 
dysfunction, and airflow restriction, which can worsen 

Fig. 8 Individual risk scores obtained from the established nomogram. In the modeling set (A), internal validation set (B) and external validation set (C), 
individual risk scores were obtained according to the established nomogram, and patients were divided into high-risk group and low-risk group accord-
ing to the critical value to show the best difference in readmission analysis between risk groups

 

Fig. 7 The time-dependent AUC of risk prediction model for respiratory failure readmission. (A) the time-dependent AUC of the modeling set. (B) the 
time-dependent AUC of the internal validation set. (C) the time-dependent AUC of the external validation set
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respiratory failure and complicate treatment, necessitat-
ing timely intervention with ventilation measures [30].

Similarly, the association between myoglobin and read-
mission in patients with respiratory failure has not been 
studied. Myoglobin is an iron- and oxygen-binding pro-
tein that is involved in the regulation of the mitochon-
drial respiratory chain complex IV [31]. Myoglobin plays 
an important role in oxygen storage in skeletal and car-
diac muscles, especially in situations of hypoxemia [32]. 
Long-term hypoxia can cause non-specific damage to 
multiple organs. This can lead to increased myoglobin 
expression, which is related to the degree of hypoxia [33]. 
Elevated levels of myoglobin in critically ill patients with 
severe infections, burns, shock, and multiple traumas can 
predict survival rates and patient prognosis [34]. Studies 
have shown that myoglobin is a predictive indicator of 
mortality and risk of deterioration in coronavirus disease 
2019 (COVID-19) patients with respiratory failure [35]. 
Moreover, it has been discovered that elevated levels of 
myoglobin may be due to other comorbidities, such as 
chronic obstructive pulmonary disease, cardiovascular 
disease, and so on [36]. Myoglobin can rapidly be released 
into the bloodstream as a response to inflammatory stim-
uli [37]. It is negatively correlated with the percentage 
of predicted forced expiratory volume in 1  s (FEV1) in 
chronic obstructive pulmonary disease (COPD) patients 
[38]. Our results confirm that serum myoglobin levels 
may be useful in understanding the progression of criti-
cal illness, particularly in predicting readmission due to 
respiratory failure.

Our research has several advantages. Firstly, we pro-
vide a simple and feasible tool for identifying patients 
who are at risk of readmission. By doing so, interventions 
can be targeted towards reducing readmissions. Sec-
ondly, patients with respiratory failure are at high risk for 
readmission and should be studied as a group to benefit 
from personalized plans that reduce readmissions.

There are some limitations to this study. First, there 
may be potential selection bias, such as sample selec-
tion bias and patient inclusion bias. Second, larger-scale 
studies are needed to confirm the predictive ability of the 
respiratory failure prediction model.

In summary, this study employed a random survival 
forest algorithm to merge three independent risk factors 
for respiratory failure. The resulting model provided a 
simple and user-friendly tool for predicting the probabil-
ity of readmission within 365 days for patients with respi-
ratory failure. Internal and external validation further 
demonstrated the broad applicability and reliability of 
this model in the classification and management of respi-
ratory failure patients, thereby assisting in timely clinical 
decision-making.

Acknowledgements
Not applicable.

Author contributions
Zhongxiang Liu and Bingqing Zuo designed the study. Zhixiao Sun, Hang Hu 
and Yuan Yin collected data on clinical patients. Zhongxiang Liu, Zhixiao Sun 
and Bingqing Zuo builded and validated disease modeling. Zhongxiang Liu 
and Zhixiao Sun wrote the main manuscript text. All authors reviewed the 
manuscript.

Funding
Not funding.

Data availability
All data generated or analysed during this study are included in this published 
article.

Declarations

Competing interests
The authors declare no competing interests.

Ethics approval and consent to participate
This study was approved by the ethics committees of the First People’s 
Hospital of Yancheng (No.2020-K062) and the People’s Hospital of Jiangsu 
Province (No. 2021-SR-346). Participants from both hospitals provided written 
informed consent to support clinical research.

Consent for publication
Not applicable.

Received: 3 August 2023 / Accepted: 11 January 2024

References
1. Lamba TS, Sharara RS, Singh AC, et al. Pathophysiology and classification of 

respiratory failure [J]. Crit Care Nurs Q. 2016;39(2):85–93.
2. Fuller GW, Goodacre S, Keating S, et al. The diagnostic accuracy of pre-hospi-

tal assessment of acute respiratory failure [J]. Br Paramed J. 2020;5(3):15–22.
3. Dziadzko MA, Novotny PJ, Sloan J, et al. Multicenter derivation and validation 

of an early warning score for acute respiratory failure or death in the hospital 
[J]. Crit Care. 2018;22(1):286.

4. Cavalot G, Dounaevskaia V, Vieira F, et al. One-year readmission follow-
ing undifferentiated Acute Hypercapnic Respiratory failure [J]. COPD. 
2021;18(6):602–11.

5. Chu CM, Chan VL, Lin AW, et al. Readmission rates and life threatening events 
in COPD survivors treated with non-invasive ventilation for acute hypercap-
nic respiratory failure [J]. Thorax. 2004;59(12):1020–5.

6. Jencks SF, Williams MV, Coleman EA. Rehospitalizations among patients in the 
Medicare fee-for-service program [J]. N Engl J Med. 2009;360(14):1418–28.

7. Kash BA, Baek J, Davis E, et al. Review of successful hospital readmission 
reduction strategies and the role of health information exchange [J]. Int J 
Med Inform. 2017;104:97–104.

8. Gonseth J, Guallar-Castillon P, Banegas JR, et al. The effectiveness of disease 
management programmes in reducing hospital re-admission in older 
patients with heart failure: a systematic review and meta-analysis of pub-
lished reports [J]. Eur Heart J. 2004;25(18):1570–95.

9. Hauptman PJ, Rich MW, Heidenreich PA, et al. The heart failure clinic: a 
consensus statement of the Heart Failure Society of America [J]. J Card Fail. 
2008;14(10):801–15.

10. Chen R, Xing L, You C, et al. Prediction of prognosis in chronic obstructive 
pulmonary disease patients with respiratory failure: a comparison of three 
nutritional assessment methods [J]. Eur J Intern Med. 2018;57:70–5.

11. Kovalsky D, Roberts MB, Freeze B, et al. Posttraumatic stress disorder 
symptoms after respiratory and cardiovascular emergencies predict risk 
of hospital readmission: a prospective cohort study [J]. Acad Emerg Med. 
2022;29(5):598–605.



Page 12 of 12Liu et al. BMC Pulmonary Medicine           (2024) 24:82 

12. Qian X, Keerman M, Zhang X, et al. Study on the prediction model of ath-
erosclerotic cardiovascular disease in the rural Xinjiang population based on 
survival analysis [J]. BMC Public Health. 2023;23(1):1041.

13. Pittman J, Huang E, Dressman H, et al. Integrated modeling of clinical and 
gene expression information for personalized prediction of disease outcomes 
[J]. Proc Natl Acad Sci U S A. 2004;101(22):8431–6.

14. Bussy S, Veil R, Looten V, et al. Comparison of methods for early-readmission 
prediction in a high-dimensional heterogeneous covariates and time-to-
event outcome framework [J]. BMC Med Res Methodol. 2019;19(1):50.

15. Taylor JM. Random Survival forests [J]. J Thorac Oncol. 2011;6(12):1974–5.
16. Ambale-Venkatesh B, Yang X, Wu CO, et al. Cardiovascular Event Prediction 

by Machine Learning: the multi-ethnic study of atherosclerosis [J]. Circ Res. 
2017;121(9):1092–101.

17. Roussos C, Koutsoukou A. Respiratory failure [J]. Eur Respir J Suppl. 
2003;47:3s–14s.

18. LIN J, YIN M, LIU L et al. The Development of a Prediction Model Based on 
Random Survival Forest for the Postoperative Prognosis of Pancreatic Cancer: 
A SEER-Based Study [J]. Cancers (Basel), 2022, 14(19).

19. Ji GW, Zhu FP, Xu Q, et al. Machine-learning analysis of contrast-enhanced CT 
radiomics predicts recurrence of hepatocellular carcinoma after resection: a 
multi-institutional study [J]. EBioMedicine. 2019;50:156–65.

20. Puterman E, Weiss J, Hives BA, et al. Predicting mortality from 57 economic, 
behavioral, social, and psychological factors [J]. Proc Natl Acad Sci U S A. 
2020;117(28):16273–82.

21. Kim EY, Suh HJ, Seo GJ, et al. Predictors of early hospital readmission 
in patients receiving home mechanical ventilation [J]. Heart Lung. 
2023;57:222–8.

22. Care Focus AARCRH. AARC clinical practice guideline. Long-term invasive 
mechanical ventilation in the home–2007 revision & update [J]. Respir Care. 
2007;52(8):1056–62.

23. Kun SS, Edwards JD, Ward SL, et al. Hospital readmissions for newly 
discharged pediatric home mechanical ventilation patients [J]. Pediatr Pulm-
onol. 2012;47(4):409–14.

24. Hakim MA, Garden FL, Jennings MD, et al. Performance of the LACE index 
to predict 30-day hospital readmissions in patients with chronic obstructive 
pulmonary disease [J]. Clin Epidemiol. 2018;10:51–9.

25. Edriss H, Molehin AJ, Gavidia R, et al. Association between acute respiratory 
failure requiring mechanical ventilation and the production of advanced 
glycation end products [J]. J Investig Med. 2020;68(7):1235–40.

26. Edriss H, Selvan K, Sigler M, et al. Glucose levels in patients with Acute 
Respiratory failure requiring mechanical ventilation [J]. J Intensive Care Med. 
2017;32(10):578–84.

27. Roberts MH, Clerisme-Beaty E, Kozma CM, et al. A retrospective analysis to 
identify predictors of COPD-related rehospitalization [J]. BMC Pulm Med. 
2016;16(1):68.

28. Barba R, De Casasola GG, Marco J, et al. Anemia in chronic obstructive 
pulmonary disease: a readmission prognosis factor [J]. Curr Med Res Opin. 
2012;28(4):617–22.

29. Lau CS, Siracuse BL, Chamberlain RS. Readmission after COPD Exacerbation 
Scale: determining 30-day readmission risk for COPD patients [J]. Int J Chron 
Obstruct Pulmon Dis. 2017;12:1891–902.

30. Sun JA, Wang X, Liu Y et al. An Analysis of the Effect of Noninvasive Positive 
Pressure Ventilation on Patients with Respiratory Failure Complicated by 
Diabetes Mellitus [J]. Dis Markers, 2022, 2022: 3597200.

31. Yamada T, Takakura H, Jue T, et al. Myoglobin and the regulation of mitochon-
drial respiratory chain complex IV [J]. J Physiol. 2016;594(2):483–95.

32. Collman JP, Boulatov R, Sunderland CJ, et al. Functional analogues of 
cytochrome c oxidase, myoglobin, and hemoglobin [J]. Chem Rev. 
2004;104(2):561–88.

33. Olson JS. Kinetic mechanisms for O(2) binding to myoglobins and hemoglo-
bins [J]. Mol Aspects Med. 2022;84:101024.

34. Yao L, Liu Z, Zhu J, et al. Higher serum level of myoglobin could predict more 
severity and poor outcome for patients with sepsis [J]. Am J Emerg Med. 
2016;34(6):948–52.

35. Zhu F, Li W, Lin Q, et al. Myoglobin and troponin as prognostic fac-
tors in patients with COVID-19 pneumonia [J]. Med Clin (Engl Ed). 
2021;157(4):164–71.

36. Ma C, Tu D, Gu J, et al. The predictive value of myoglobin for COVID-19-Re-
lated adverse outcomes: a systematic review and Meta-analysis [J]. Front 
Cardiovasc Med. 2021;8:757799.

37. Hendgen-Cotta UB, Kelm M, Rassaf T. Myoglobin functions in the heart [J]. 
Free Radic Biol Med. 2014;73:252–9.

38. Loza MJ, Watt R, BaribauD F, et al. Systemic inflammatory profile and response 
to anti-tumor necrosis factor therapy in chronic obstructive pulmonary 
disease [J]. Respir Res. 2012;13(1):12.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	Development and validation of a prospective study to predict the risk of readmission within 365 days of respiratory failure: based on a random survival forest algorithm combined with COX regression modeling
	Abstract
	Introduction
	Materials and methods
	Study design
	Participants and data collection
	Follow-up index
	Model specification


	Statistical analysis
	Result
	Baseline characteristics
	Feature selection and nomogram construction
	Evaluation and validation of nomogram
	Clinical application of nomogram

	Discussion
	References


