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Abstract 

Background Advanced lung adenocarcinoma patients often develop resistance to EGFR tyrosine kinase inhibitors 
(EGFR-TKIs), leaving uncertainties regarding subsequent treatment strategies. Although personalized therapy target-
ing individual acquired resistances (ARs) shows promise, its efficacy has not been systematically compared with plati-
num-containing doublet chemotherapy, a widely accepted treatment after EGFR-TKIs failure.

Methods A retrospective dual-center study was conducted involving patients with advanced lung adenocarcinoma 
and EGFR mutations who developed resistance to EGFR-TKIs between January 2017 and December 2022. Eligible 
patients were adults aged 18 years or older with an Eastern Cooperative Oncology Group score of 0–1, normal organ 
function, and no prior chemotherapy. Patients were divided into the chemotherapy group (CG) or personalized 
therapy group (PG) based on the treatment received after disease progression. The primary endpoints were progres-
sion-free survival (PFS) and objective response rate (ORR).

Results Of the 144 patients enrolled, there were 53 patients in the PG and 91 patients in the CG. The PG acquired 
resistance to EGFR-TKIs through the MET amplification (27, 50%) and small cell lung cancer transformation (16, 
30%) and 18% of them reported multiple resistance mechanisms. The ORR of the PG was similar to that of the CG 
(34% vs. 33%, P = 1.0) and the PFS of the PG patients was not statistically different from that of their CG counterparts 
[4.2 months (95% CI: 3.6–4.8 months) vs. 5.3 months (95% CI: 4.6–6.0 months), P = 0.77].

Conclusions These findings suggest that the therapeutic efficacy of chemotherapy approximates to that of person-
alized therapy, which signifies that chemotherapy is still a reliable choice for patients who develop resistance to EGFR-
TKIs and that further research is awaited to explore the benefit of personalized treatment.
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Introduction
Lung  cancer  is notorious for its high  morbid-
ity  and  mortality  rate worldwide [1], in which  non‐
small cell lung cancer (NSCLC) accounts for 80%‐85% of 
the incidences [2]. In the NSCLC population, epidermal 
growth factor receptor (EGFR) gene is found in 10–20% 
of Caucasians and at least 50% of Asian NSCLC patients 
[3]. EGFR tyrosine kinase inhibitors (EGFR-TKIs) have 
dramatically improved survival outcomes and are the 
first-line treatment for patients with EGFR-mutants [4].

Unfortunately, patients undergoing  tyrosine kinase 
inhibitor (TKI)  treatment eventually develop acquired 
resistance (AR). The common ARs include: (i) second-
ary mutations to EGFR, such as T790M mutation, C797S 
mutation [5]; (ii) activation of alternative pathways, such 
as MET amplification [6], ERBB2 amplification [7]; (iii) 
activation of downstream targets, for instance, RAS-
MAPK pathway signaling [8], PIK3CA mutations [9]; (iv) 
histologic transformation, for example, small-cell lung 
cancer (SCLC) transformation [10]; (v) others: fibroblast 
growth factor receptor (FGFR) amplification, cell cycle 
gene alterations [8]. Certain EGFR-mutant NSCLCs may 
harbor multiple mechanisms of EGFR-TKI resistance [9]. 
However, the potential mechanisms underlying the AR 
remains obscured in up to 50% of cases [11].

After the progression with EGFR-TKIs, different 
options are available, including chemotherapy and per-
sonalized  therapy that is based on  individual ARs. For 
example, the combined treatment with EGFR and MET-
TKIs can inhibit the growth of  EGFR-mutated NSCLC 
coupled with  MET  amplification [12]. The combination 
with 3rd and 1st or 2nd EGFR-TKIs is also a reason-
able strategy against the AR of T790M-trans-C797S [13]. 
Except for the 3rd EGFR-TKIs, which is approved for the 
treatment of NSCLC patients with positive T790M muta-
tion after developing AR to the first-line EGFR-TKIs [14], 
the efficacy of other personalized  therapeutic strategies 
is largely compromised by small samples and absence of 
comparison with chemotherapy.

Here we conducted a retrospective multi-center study 
to explore the efficacy of chemotherapy and person-
alized  therapy. We found that the efficacy of chemo-
therapy approximated to that of personalized therapy, 
which indicates that chemotherapy may still serve as a 
promising option for patients who develop resistance to 
EGFR-TKIs.

Methods
Patients
A retrospective study was conducted at two centers, 
Fujian Cancer Hospital and Hunan Cancer Hospital, 
to collect data of patients with advanced NSCLC from 

January 1, 2017, to December 31, 2022, in China. The 
inclusion criteria for eligible patients were as follows: (i) 
aged 18 years or older; (ii) histologically-confirmed lung 
adenocarcinoma; (iii) Stage IV according to American 
Joint Committee on Cancer (AJCC) (8th edition); (iv) 
an Eastern  Cooperative Oncology  Group (ECOG) score 
of 0–1 and normal organ functions; (v) EGFR sensitive 
mutations (deletion of exon 19 or the L858R mutation); 
(vi) patients who developed resistance after the treat-
ment with the first- or second-generation EGFR-TKIs 
and were negative for T790M or patients who were 
positive for T790M after the treatment with the first- or 
second-generation EGFR-TKIs and developed resistance 
after the administration of the third-generation EGFR-
TKI or those who developed resistance after initial treat-
ment with the third-generation EGFR-TKI; (vii) available 
resistance mechanism confirmed by the next-generation 
sequencing (NGS) or Fluorescence in  situ hybridization 
(FISH) after progression.

The eligible patients were divided into the Chemother-
apy group (CG) or Personalized group (PG) according to 
the subsequent therapies after resistance to EGFR-TKIs. 
The CG patients received platinum-containing doublet 
chemotherapy, which was combined with  or  without 
antiangiogenic therapy and immunotherapy. Genetic 
testing post-EGFR TKI resistance was not deemed 
essential in this context. The therapies in the PG were 
prompted according to the genetic testing or histo-
logic transformation. Data regarding the demographic 
information, tumor histology and molecular pathology, 
clinical treatments and outcomes were collected for the 
further analysis.

The NGS was performed in Geneplus-Beijing Insti-
tute or Fujian Cancer Hospital, which covered genomic 
regions of 1,021 cancer-related genes. The sample 
included the peripheral blood or frozen tissue [15]. The 
FISH test was conducted in Fujian Cancer Hospital.

Response evaluation
The tumor response was assessed according to the 
Response Evaluation Criteria in Solid Tumors (RECIST 
version 1.1) in terms of partial response (PR), stable dis-
ease (SD), progressive disease (PD) or complete response 
(CR). The objective response rate (ORR) was defined as 
the percentage of patients with PR and CR. The disease 
control rate (DCR) was designated as the percentage of 
CR, PR and SD. The progression-free survival (PFS) was 
termed as the time from the initiation of treatment to 
disease progression or death from any cause. Treatment 
was considered censored if no evidence of progression 
was found at the last follow-up and time was recorded 
from start of treatment to the last follow-up.
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Statistical analysis
All data were analyzed using the SPSS 24.0 Software. 
Unadjusted PFS was estimated by the Kaplan–Meier 
product-limit method. The clinical and biological 

characteristics and ORR between two groups were ana-
lyzed by the chi-square test. The two-sided significance 
level was set at P < 0.05.

Results
The baseline characteristics were balanced between CG 
and PG
A total of 144 patients were enrolled, with a median age of 
57  years, of whom, 86 patients reported a deletion of 
EGFR exon 19. The enrolled patients were further cat-
egorized into PG (53 patients) and CG (91patients). The 
baseline characteristics, including the incidence of EGFR 
exon 19 deletions and L858R mutations, were balanced 
between the two groups, with no significant statistical 
differences observed (all P > 0.05) (Table 1).

The efficacy was no significant difference between CG 
and PG
Among the 53 PG patients, PR was reported in 18 
patients and SD in 21 patients. In the CG, PR was found 
in 30 patients and SD in 65 patients. No significant dif-
ferences were observed in ORR (34.0% vs. 33.0%, P = 1.0) 
and DCR (73.6% vs. 81.3%, P = 0.30) between two groups 
(Fig. 1).

With the cutoff date set on March 15, 2023, the median 
follow-up time was 26.9 months. The disease progression 
was reported in 89 (97.8%) CG patients and 46 (86.8%) 
PG counterparts. The median PFS was 5.3 months (95% 
CI, 4.6–6.0 months) in CG, and 4.2 months (95% CI, 3.6–
4.8 months) in PG (Fig. 2A), demonstrating no significant 
difference between two groups (HR, 0.95; P = 0.77).

Table 1 Demographics and characteristics of patients

Values are expressed as median [interquartile range] or n (%). PG Personalized 
group, CG Chemotherapy group

Characteristic PG(n = 53) CG(n = 91) P

Age, years, mean (SD) 56.2(10.4) 56.2(8.0) 0.98

Gender 0.49

 Male 20(37.7%) 40(44.0%)

 Female 33(62.3%) 51(56.0%)

Smoking Status 0.43

 Never 37(69.8%) 70(76.9%)

 Current/former 16(30.2%) 21(23.1%)

ECOG Score 0.60

 0 19(35.8%) 38(41.8%)

 1 34(64.2%) 53(58.2%)

EGFR mutation 0.60

 Exon 19 del 30(56.6%) 56(61.5%)

 Exon 21 L858R 23(43.4%) 35(38.5%)

The therapy modes of TKIs 0.07

 Only 1 or 2-generation TKIs 13(24.5%) 20(22.0%)

 Only 3rd-generation TKIs 16(30.2%) 14(15.4%)

 Sequential EGFR-TKIs 24(45.3%) 57(62.6%)

Location of Metastases

 Brain 22(41.5%) 25(27.5%) 0.10

 Liver 12(22.6%) 11(12.1%) 0.11

 Bone 29(54.7%) 48(52.7%) 0.86

Fig. 1 The ORR and DCR was no significant difference between CG and PG. PG, Personalized group; CG, Chemotherapy group; ORR, objective 
response rate; DCR, disease control rate
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In terms of EGFR 19 deletion, a cohort of 8 PG and 
19 CG patients were PR, with ORR 26.7% (8/30), PFS 
3.9  months (95% CI, 2.9–4.9  months) in PG and ORR 
33.9% (19/56), PFS 4.9 months (95% CI, 3.4–6.4 months) 
in CG. With EGFR L858R, there were 10 PG and 11 
CG patients were PR, with ORR 43.5% (10/23), PFS 
4.5  months (95% CI, 2.4–6.6  months) in PG and ORR 
31.4% (11/35), PFS 5.5 months (95% CI, 4.8–6.2 months) 
in CG. There were no statistic differences in ORR 

(P = 0.9) and PFS (P = 0.92) between PG and CG patients 
in terms of exons 19 and 21.

A cohort of 27 (50.9%) PG patients with MET ampli-
fication reported an ORR of 40.7% and a PFS of 4.2  m. 
Similar outcome was present in the SCLC transformation 
cohort (16, 30.2%), with an ORR of 37.5% and a PFS of 
3.9  months (Table  2). Ten PG patients showed multiple 
resistance mechanisms, with an ORR of 20% and a PFS of 
4.0 months.

Fig. 2 The PFS of different groups. A The PFS between CG and PG. B The PFS between four subgroups in CG. C Tumor response rates between AIC 
and PG. D The PFS between four subgroups in CG. PG, Personalized group; CG, Chemotherapy group; C, chemotherapy alone subgroup in CG; AC, 
anti-angiogenesis plus chemotherapy subgroup in CG; IC, immune checkpoint inhibitors plus chemotherapy subgroup in CG; AIC, a combination 
of immune checkpoint inhibitors, anti-angiogenesis and chemotherapy subgroup in CG. ORR, objective response rate; DCR, disease control rate

Table 2 Resistant mechanism, individual therapy strategy and efficacy in PG

PG Personalized group, ORR Objective response rate, DCR Disease control rate, PFS Progression-free survival

Rsistance mechanism Drugs Number ORR DCR PFS (m)

MET amplification MET plus EGFR-TKIs 27 40.7% 87.7% 4.2

SCLC transformation Etoposide plus platinum or carboplatin 16 37.5% 75.0% 3.9

BRAF mutation Dabrafenib, trametinib and EGFR-TKIs, 3 33.3% 33.3% 2.9

ERBB2 amplification Trastuzumab, chemotherapy and EGFR-TKIs 4 0% 100% -

RET fusion LOXO-292 plus EGFR-TKIs 1 0% 0% 0.9

T790M-trans-C797S the 1st and 3rd EGFR-TKIs 2 0% 50% 0.7
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The CG patients were further divided into the follow-
ing subgroups on basis of the received treatment scheme: 
chemotherapy alone subgroup (C), anti-angiogenesis 
plus  chemotherapy subgroup (AC), immune check-
point inhibitors plus chemotherapy subgroup (IC) or 
a combination of immune checkpoint inhibitors, anti-
angiogenesis and chemotherapy subgroup (AIC). The 
analysis revealed that the AIC subgroup with 15 (16.5%) 
patients reported significant difference in PFS (6.4 m vs. 

3.4  m, P = 0.004) and ORR (53.3% vs. 20.7%, P = 0.022) 
when compared the C subgroup, but no statistical differ-
ence when in comparison with the IC and AC subgroups 
(Table 3, Fig. 2B).

Continuing, we compared the AIC and PG groups. The 
analysis revealed a trend towards better outcomes in the 
AIC group, with a median PFS (6.4 m vs. 4.2 m, P = 0.24; 
Fig. 2C) and ORR (53.3% vs. 23.0%, P = 0.17; Fig. 2D) sug-
gesting a potential advantage. Furthermore, the advan-
tage in DCR reached statistical significance (100% vs. 
73.6%, P = 0.032; Fig. 2D).

The resistance mechanisms were complex after failure 
to EGFR‑TKI
Among the 144 patients, 67 patients reported a definite 
resistance mechanism, with TP53 as the most frequent 
co-occurring mutation (36/67, 53.7%) and MET amplifi-
cation as the main resistance mechanism (29/67, 43.2%) 
(Fig. 3A).

Table 3 Efficacy of different subgroup in CG

CG Chemotherapy group, C Chemotherapy alone subgroup, AC Anti-
angiogenesis plus chemotherapy subgroup, IC Immune checkpoint inhibitors 
plus chemotherapy subgroup, AIC A combination of immune checkpoint 
inhibitors, anti-angiogenesis and chemotherapy subgroup, ORR Objective 
response rate, PFS Progression-free survival, CI Confidence interval

C(n = 29) AC(n = 31) IC(n = 16) AIC(n = 15)

ORR 20.7% 38.7% 25% 53.3%

PFS(m,95% CI) 3.4(2.3–4.5) 5.1(3.5–6.6) 5.5(2.7–8.2) 6.4(5.7–7.1)

Fig. 3 The resistance gene spectrum of EGFR mutation in NSCLC patients. A The gene change frequency after progression to EGFR-TKIs in NSCLC 
patients. B The main resistance mechanism in PG. C The gene change in SCLC transformation subgroup. D The main resistance mechanism in CG. 
E The resistance mechanism after failure to 1st or 2nd generation EGFR-TKIs. F The resistance mechanism to the 3rd generation EGFR-TKIs. G The 
co-occurring resistance genes in the research. PG, Personalized group; CG, Chemotherapy group



Page 6 of 9Jiang et al. BMC Pulmonary Medicine           (2024) 24:96 

In the PG, 38 cases were detected by NGS and 9 were 
by FISH. The results showed that MET amplification 
(27/53, 50.9%) and SCLC (16/53, 30.2%) transforma-
tion were the most common AR types, which frequently 
received a personalized therapy (Fig.  3B). In the SCLC 
transformation samples, TP53, Rb1 and PIK3CA were 
the most common mutations (Fig.  3C). Of the 91 CG 
patients, 20 underwent NGS testing, with 18 reporting a 
detailed type of AR. Cell cycle gene alterations and EGFR 
amplification were the most common AR types (Fig. 3D).

The T790M (81 of 124 patients, 65.3%) was the most 
frequent AR for patients who were irresponsive to the 
1st or 2nd generation EGFR-TKIs (Fig.  3E). The resist-
ance mechanisms were complex and the multiple resist-
ance genes more often appeared after the progression to 
the 3rd generation EGFR-TKIs (Fig. 3F). The alterations 
of cell cycle genes and EGFR amplification were the most 
common co-occurring resistance genes (Fig. 3G).

Discussion
For patients with disease progression after EGFR-TKI 
failure, the optimal treatment strategy remains con-
troversial and no consensus has been reached. Our ret-
rospective study found that the therapeutic efficacy of 
chemotherapy was comparable to that of personalized 
therapy. Interestingly, we found that when chemother-
apy was supplemented with immune checkpoint inhibi-
tors (ICIs) and anti-angiogenic drugs, there was a trend 
towards providing additional clinical benefits compared 
to personalized therapy. This highlights the enduring 
clinical significance of chemotherapy for patients experi-
encing relapse after prior EGFR-TKI therapy. Moreover, 
in some cases, combination therapy based on chemother-
apy may provide incremental benefits. This emphasizes 
that chemotherapy is a promising option for treating 
patients with EGFR-TKI resistance.

PFS with traditional chemotherapy offers a length of 
4.4–5.4 months for previously EGFR-TKI treated patients 
[16]. The data from clinical trials have not shown substan-
tial survival benefits of single-agent ICI [17]. The combi-
nation therapy of chemotherapy and ICI or chemotherapy 
with anti-angiogenesis reported an efficacy with an ORR 
of 30–60% and a PFS of 5.0–7.0 m [18–20]. ICIs combined 
with chemotherapy and anti‐angiogenic drugs showed 
excellent benefits for patients receiving prior EGFR-TKI 
treatment, with an ORR of 73.5% and a PFS of 10.2 m in 
the IMpower150 subgroup, and an ORR of 43.9% and a 
PFS of 6.9 m in the ORIENT-31 trail [21–23]. In our study, 
the efficacy of the combined modality was superior to the 
chemotherapy alone, particularly in the “quad” model. 
The patients with EGFR mutations reported a high Treg 
infiltration, reduced CD8 + T-cell number and decreased 
tumor mutation burden (TMB) [24–26], which induced a 

poor clinical efficacy of ICI. EGFR-TKIs can remodel the 
tumor microenvironment (TME) by increasing  CD8+ T 
cell infiltration and the presentation of MHC class I and II 
molecules, reducing the infiltration and function of Tregs 
[27]. So immunotherapy is applied after EGFR-TKIs fail-
ure. However, the efficacy and responsiveness of ICI mon-
otherapy are far from satisfactory. Anti‐angiogenic drugs 
can reduce hypoxia, increase the delivery and efficacy of 
cytotoxic agents, and reduce immunosuppression through 
preventing angiogenesis and normalizing the tumor vascu-
lature [28]. Consistent with the previous study, the current 
study revealed a satisfactory outcome when anti-angiogen-
ics was combined with chemotherapy and immunother-
apy. It would be beneficial to conduct further large-scale 
and prospective studies to confirm these results.

To date, many efforts have been invested in the search 
for effective treatment strategies to overcome EGFR-TKI 
resistance according genetic testing and histologic trans-
formation. In case of EGFR C797S mutation, the follow-
up treatment depends on the allelic relationship with 
T790M: T790M-trans-C797S is sensitive to the combina-
tion of first and third-generation of EGFR-TKIs [29], and 
a combination of brigatinb with cetuximab can achieve a 
favorable outcome with a PFS of 14 months and an ORR 
of 60%, in patients with T790M-cis-C797S [30]. The con-
comitant treatment with Trastuzumab and EGFR-TKIs 
has been demonstrated to possibly overcome the resist-
ance to EGFR-TKIs as result of ERBB2 amplification [31]. 
SCLC transformation is responsive to platinum etopo-
side regimens with a PFS of 3.0–4.0 m [10, 32]. A retro-
spective trial found it is invalid to ICIs [10]. But another 
retrospective trial discovered that immunochemotherapy 
significantly prolonged the OS than chemotherapy. Posi-
tive PD-L1 status was associated with PFS benefit. And 
the expression of SFTPA1 in RNA sequencing predicted 
the durable clinical benefit. Large sample and prospec-
tive studies were needed to explore the efficacy of ICIs 
in SCLC transformation patients [33]. In our study, the 
patients reported a PFS of 4.2 m and an ORR of 34% in 
the PG, which is no better than the data in the CG and 
the data of previous studies, demonstrating that chemo-
therapy is an acceptable choice after the EGFR-TKIs fail-
ure. The above-mentioned findings also suggest that the 
evidence from personalized treatment is insufficient, for 
most of the above data are derived from retrospective 
research, preclinical studies, or small sample trials.

MET amplification has been implicated as one of the 
bypass resistance mechanisms to EGFR-TKI therapy. 
Numerous case reports and a growing number of clinical 
studies have documented the efficacy of the combinato-
rial regimen of EGFR-TKI and MET-TKI in simultane-
ously inhibiting both EGFR and MET signaling pathways 
to overcome EGFR-TKI resistance [34]. The combination 
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of Tepotinib and Gefitinib has reported an amazing effi-
cacy, with an ORR of 66.7% and a PFS of 16.6 m in the 
INSIGHT study [12]. Osimertinib plus savolitinib dem-
onstrates a strong anti-tumor activity, with an ORR 
of 52% and a median duration of response (DOR) of 
7.1  months in the TATTON Phase Ib expansion cohort 
[35]. In some trials and the real-world study, however, 
other MET inhibitors combined with EGFR-TKIs report 
a PFS of only 5-6  m [34, 36–38]. Amivantamab (EGFR-
MET bispecific antibody) with lazertinib has shown anti-
tumor activity with ORR 36% and PFS 4.9 m in patients 
of disease progression upon EGFR-TKI [39]. But emi-
betuzumab (monoclonal bivalent MET antibody) plus 
erlotinib could not reverse the AR to EGFR-TKI [40]. 
In our research, the PFS was 4.2 m and ORR was 40.7% 
in patients with MET amplification in the PG. There-
fore, the “quad” model chemotherapy may be a favorable 
choice to these patients and further studies are awaited to 
explore the beneficiary group of a personalized therapy.

The analysis of circulating tumor DNA from NSCLC 
patients reveals that 46% of patients treated with EGFR-
TKIs may have multiple resistance mechanisms [41]. 
Alterations to cell cycle gene and the PI3K pathway were 
the most common co-occurring resistance mechanism 
[42]. The multiple resistance mechanisms pose a  chal-
lenge to personalized therapy. Our study found that 13 
patients had the multiple resistance mechanisms; cell 
cycle gene alterations and EGFR amplification were the 
most common co-occurring resistance mechanisms; 10 
PG patients displayed multiple resistance mechanisms, 
with an ORR of 20% and a PFS of 4.0 m, which indicated 
no impact on the efficacy of the therapy.

Some limitations remain in this retrospective study. 
First, the data of overall survival and adverse events were 
not available, which may affect the benefit elucidation 
between the CG and PG. Second, only a small number of 
patients received ICI plus chemotherapy with or without 
anti‐angiogenic drugs, which might limit the interpreta-
tion to determine the optimal therapeutic strategy. Third, 
the data regarding PD-L1 expression were insufficient 
to determine whether PD-L1 expression was balanced 
across groups or to analyze the correlation between 
PD-L1 expression and ICI efficacy. There is not ongoing 
study to compare OS between two therapy modes, a pro-
spective study in these patients can be conducted.

Conclusion
This retrospective study demonstrates that chemother-
apy, especially combined with  antiangiogenic therapy 
and immunotherapy, may serve as the standard treat-
ment strategy for patients who experience disease pro-
gression after EGFR-TKIs failure.
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