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Abstract
Background The question as to whether or not diabetes mellitus increases the risk of idiopathic pulmonary fibrosis 
(IPF) remains controversial. This study aimed to investigate the causal association between type 1 diabetes (T1D), type 
2 diabetes (T2D), and IPF using Mendelian randomization (MR) analysis.

Methods We used two-sample univariate and multivariate MR (MVMR) analyses to investigate the causal relationship 
between T1D or T2D and IPF. We obtained genome-wide association study (GWAS) data for T1D and T2D from the 
European Bioinformatics Institute, comprising 29,652 T1D samples and 101,101 T1D single nucleotide polymorphisms 
(SNPs) and 655,666 T2D samples and 5,030,727 T2D SNPs. We also used IPF GWAS data from the FinnGen Biobank 
comprising 198,014 IPF samples and 16,380,413 IPF SNPs. All cases and controls in these datasets were derived 
exclusively from European populations. In the univariate MR analysis, we employed inverse variance-weighted (IVW), 
weighted median (WM), and MR-Egger regression methods. For the MVMR analysis, we used the multivariate IVW 
method primarily, and supplemented it with multivariate MR-Egger and multivariate MR- least absolute shrinkage 
and selection operator methods. Heterogeneity tests were conducted using the MR-IVW and MR-Egger regression 
methods, whereas pleiotropic effects were assessed using the MR-Egger intercept. The results of MR and sensitivity 
analyses were visualized using forest, scatter, leave-one-out, and funnel plots.

Results Univariate MR revealed a significant causal relationship between T1D and IPF (OR = 1.118, 95% CI = 1.021–
1.225, P = 0.016); however, no significant causal relationship was found between T2D and IPF (OR = 0.911, 95% 
CI = 0.796–1.043, P = 0.178). MVMR analysis further confirmed a causal association between T1D and IPF (OR = 1.133, 
95% CI = 1.011–1.270, P = 0.032), but no causal relationship between T2D and IPF (OR = 1.009, 95% CI = 0.790–1.288, 
P = 0.950). Sensitivity analysis results validated the stability and reliability of our findings.

Conclusion Univariate and multivariate analyses demonstrated a causal relationship between T1D and IPF, whereas 
no evidence was found to support a causal relationship between T2D and IPF. Therefore, in clinical practice, patients 
with T1D should undergo lung imaging for early detection of IPF.

Keywords Idiopathic pulmonary fibrosis, Diabetes mellitus, Type 1 diabetes, Type 2 diabetes, Mendelian 
randomization, Hyperglycemia

Diabetes mellitus and idiopathic pulmonary 
fibrosis: a Mendelian randomization study
Quou Kang1,2, Jing Ren1,2, Jinpeng Cong1 and Wencheng Yu1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-024-02961-7&domain=pdf&date_stamp=2024-3-19


Page 2 of 11Kang et al. BMC Pulmonary Medicine          (2024) 24:142 

Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic 
interstitial pneumonia of unknown etiology character-
ized by cough, dyspnea, and a progressive decline in lung 
function that primarily affects the elderly population [1]. 
The radiological and histological features are predomi-
nantly consistent with usual interstitial pneumonia [1]. 
According to a statistical analysis of 12 countries, the 
incidence and prevalence rates of IPF range from 0.09–
1.30/10,000 and 0.33–4.51/10,000, respectively, exhib-
iting a sharp increase with advancing age [2]. Globally, 
the number of patients with IPF is increasing, potentially 
due to factors such as an aging demographic, height-
ened disease awareness, and advancements in diagnostic 
technologies [2]. Patients diagnosed with IPF may have 
a poorer prognosis than those with many cancers that 
affect similar populations [3], as evidenced by a median 
survival rate of only 3–5 years in the absence of treat-
ment [4]. Age, sex, and comorbidities significantly affect 
the clinical outcomes of patients with IPF, with mortal-
ity associated with congestive heart failure (CHF), diabe-
tes mellitus (DM), and cancer, whereas hospitalization is 
linked to CHF and chronic obstructive pulmonary dis-
ease (COPD) [5].

DM is a cluster of systemic metabolic disorders char-
acterized by persistent hyperglycemia, often resulting 
in chronic damage to the blood vessels, kidneys, retina, 
and nervous system [6]. DM presents a significant global 
health challenge, with the number of individuals affected 
worldwide reaching 424.9 million in 2017 and projected 
to increase by 48% to 628.6 million by 2045, resulting in 
substantial economic and social burdens [7].

DM is classified into type 1 diabetes (T1D), type 2 dia-
betes (T2D), gestational diabetes, and other specific types 
of diabetes caused by various etiologies [8]. Among these, 
T1D and T2D account for over 95% of the total diabetic 
population [8]. Patients with T2D exhibit varying degrees 
of relative insulin deficiency, which is often accompanied 
by insulin resistance. In contrast, T1D arises from auto-
immune destruction of pancreatic β cells, resulting in an 
absolute reliance on exogenous insulin for blood glucose 
regulation [8]. A meta-analysis of observational studies 
examining the relationship between DM and IPF revealed 
that individuals with IPF had a 1.54-fold higher likelihood 
of developing DM than those without IPF; nevertheless, 
whether DM increases the risk of IPF remains controver-
sial [9]. However, as DM was not classified in this study, 
causality between the different subtypes of DM and IPF 
could not be established.

Mendelian randomization (MR) studies have observa-
tional designs that employ randomly-assigned genetic 
variants as phenotypic instrumental variables (IVs) to 
establish reliable causal inferences regarding exposures 
and outcomes. Compared to traditional observational 

studies, MR is less susceptible to confounding or reverse 
causation [10].

Therefore, in this study, we aimed to examine the causal 
association between T1D and IPF, and between T2D and 
IPF using two-sample univariate and multivariate MR 
(MVMR) methods.

Methods
Study design
The causal relationships between T1D and IPF, as well 
as between T2D and IPF in the European population, 
were initially investigated using a two-sample univari-
ate MR analysis. A sensitivity analysis was conducted to 
ensure data reliability and validity. Subsequently, MVMR 
analysis was conducted to examine the significance of 
the causal relationship between diabetes and IPF estab-
lished by the univariate MR analysis. We applied a set of 
selection criteria to identify single nucleotide polymor-
phisms (SNPs) strongly associated with T1D and T2D, 
which were subsequently used as IVs in the MR analysis: 
(I) strong association between IVs and the exposure of 
interest; (II) no direct relationship between IVs and out-
come, with their effect only indicated through exposure 
[11]; and (III) independence of IVs from any confounding 
factors affecting both exposure and outcome. The current 
research design is depicted in Fig. 1. This study adhered 
to the STROBE-MR reporting guidelines (Supplementary 
Table 4) [12].

Genome-wide association study (GWAS) data source and 
instrument selection
We utilized GWAS datasets from various databases 
for exposure and outcome to mitigate potential bias 
in causal effect estimation due to sample overlap. The 
IVs were chosen based on SNPs that were associated 
with the exposure, as determined by our selection crite-
ria. The T1D and T2D datasets were obtained from the 
European Bioinformatics Institute. The T1D dataset (ID 
number: “ebi-a-GCST005536”) comprises 29,652 samples 
and 101,101 SNPs (https://gwas.mrcieu.ac.uk/datasets/ 
ebi-a-GCST005536/) [13]. The T2D dataset (ID num-
ber: “ebi-a-GCST006867”) comprises 655,666 samples 
and 5,030,727 SNPs (https://gwas.mrcieu.ac.uk/datasets/ 
ebi-a-GCST006867/) [14]. The GWAS dataset associ-
ated with IPF was established by FinnGen Biobank (ID 
number: “finn-b-IPF”), and it comprises 198,014 sam-
ples and 16,380,413 SNPs (https://gwas.mrcieu.ac.uk/
datasets/finn-b-IPF/). The diagnosis of IPF and DM was 
determined according to the International Classification 
of Diseases 10th Revision (ICD-10) codes. The detailed 
characteristics of the exposure and outcome datasets are 
presented in Table 1.

A genome-wide search was conducted for SNPs 
(P < 5 × 10− 8) associated with T1D or T2D exposure, 

https://gwas.mrcieu.ac.uk/datasets/
https://gwas.mrcieu.ac.uk/datasets/
https://gwas.mrcieu.ac.uk/datasets/finn-b-IPF/
https://gwas.mrcieu.ac.uk/datasets/finn-b-IPF/
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which were used as IVs for genetic prediction. Non-
independent SNPs based on linkage disequilibrium 
(r2 < 0.001 within a 10,000 kb aggregation window) were 
excluded using the European population reference. To 
ensure independence and exclusivity, these SNPs were 
searched using Phenoscanner (University of Cambridge, 
Cambridge, UK; http://www.phenoscanner.medschl.
cam.ac.uk/) and any SNPs related to the outcome or con-
founding factors were excluded. Confounding factors 

included risk factors other than exposure that may con-
tribute to the outcome. The risk factors associated with 
IPF include smoking, gastroesophageal reflux, obstruc-
tive sleep apnea, herpes virus infection, and certain occu-
pational interstitial lung diseases [15]. To ensure a strong 
relationship between the IVs and exposure, it is neces-
sary to calculate F-statistics. The F-statistic formula used 
in this study was F = β2/se2 (β, effect size(exposure); se, 
standard error (exposure)). An F-statistic greater than 10 

Table 1 Characteristics of exposures and outcome
Variable GWAS ID PubMed ID Cases Controls Sample size Population
Exposure
T1D ebi-a-GCST005536 25,751,624 6,683 12,173 29,652 European
T2D ebi-a-GCST006867 30,054,458 61,714 1,178 655,666 European
Outcome
IPF finn-b-IPF 1,028 196,986 198,014 European
T1D, type 1 diabetes; T2D, type 2 diabetes; IPF, idiopathic pulmonary fibrosis

Fig. 1 Study design. (A) Univariable MR to identify the causal association between T1D or T2D and IPF, which involves IVs and requires three assump-
tions: (I) strong association between IVs and the exposure of interest; (II) no direct relationship between IVs and outcome, with their effect only indicated 
through exposure; (III) independence of IVs from any confounding factors affecting both exposure and outcome. (B) Multivariable MR to evaluate if T1D 
remains causal given T2D. MR, Mendelian randomization; T1D, type 1 diabetes; IPF, idiopathic pulmonary fibrosis; T2D, type 2 diabetes; IVs, instrumental 
variables
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indicates a robust association between the IVs and expo-
sure, thereby avoiding weak instrument bias.

Mendelian randomization analysis
We conducted a two-sample univariate MR analysis 
using T1D and T2D as exposures and IPF as the out-
come. In particular, we extracted 36 and 118 strongly-
associated SNPs from T1D and T2D GWAS datasets, 
respectively. Among the 36 SNPs that were strongly asso-
ciated with T1D in the IPF dataset, rs3184504 was 
excluded because of its correlation with smoking status 
(Supplementary Table 1). Among the 118 SNPs strongly 
associated with T2D in the IPF dataset, four palindromic 
SNPs were excluded: rs13234269, rs1758632, rs2058913, 
and rs6494307. Additionally, rs2867125 was excluded due 
to its association with smoking (Supplementary Table 2).

After retrieving SNPs that were strongly correlated 
with T1D and T2D in Phenoscanner (University of Cam-
bridge), we identified SNPs that were closely associated 
with both types of diabetes. To mitigate the potential bias 
of mutually-confounding factors in the MR analysis, we 
conducted an MVMR analysis. Fifty-nine SNPs strongly 
associated with either T1D or T2D were extracted from 
the IPF dataset, and the palindromic SNP, rs17411031, 
was excluded during reconciliation. Finally, in the MVMR 
analysis, 26 and 34 effective IVs were employed to esti-
mate the causal effects of T1D and T2D, respectively, on 
IPF.

In the univariate MR analysis, we employed inverse 
variance-weighted (IVW), weighted median (WM), and 
MR-Egger regression methods to examine the causal 
association between diabetes and IPF. The IVW method 
was used as the primary analytical approach. To ensure 
the reliability of our research findings, we employed MR-
IVW and MR-Egger regression methods to assess het-
erogeneity and quantified the results using Cochran’s Q 
statistics. We employed the MR-Egger intercept test to 
examine the presence of horizontal pleiotropy while uti-
lizing a scatter plot of effective IVs for estimation of the 
causal effect of T1D and T2D on IPF to visually assess 
whether the outcome effect is zero when the IV effect is 
zero. A non-zero cutoff indicated the existence of hori-
zontal pleiotropy. In addition, to assess the robustness of 
the findings, a leave-one-out approach was employed to 

remove SNPs individually and visualize the results using 
a leave-one-out plot in the MR analysis. The primary 
method employed for MVMR analysis was the extended 
multivariate IVW approach, complemented by secondary 
methods, such as multivariate MR-Egger and multivari-
ate MR-least absolute shrinkage and selection operator 
(LASSO). The extended IVW and MR-Egger methods 
were employed to assess heterogeneity, while the MR-
Egger intercept was used to evaluate pleiotropic effects. 
The statistical analyses in this study were performed 
using the “TwoSampleMR” and “MendelianRandomiza-
tion” packages in R v4.3.0 (R Foundation for Statistical 
Computing, Vienna, Austria).

Ethics
This study relied solely on published GWAS datasets, and 
all original studies obtained appropriate ethical approval; 
therefore, separate ethical approval was not required for 
this study.

Results
Univariable MR estimates
In the two-sample univariate MR analysis, we included 35 
and 113 SNPs associated with T1D and T2D, respectively, 
to estimate their effects on IPF (Supplementary Tables 1 
and 2). The F-statistics of the IVs exceeded 10, indicat-
ing their robustness and absence of instrumental variable 
bias [16]. Table 2; Fig. 2 show the results of the analyses 
of the causal relationship between T1D or T2D and IPF 
according to the IVW, MR-Egger, and WM methods. The 
IVW analysis revealed that T1D was associated with an 
increased risk of IPF (OR = 1.118, 95% CI = 1.021–1.225, 
P = 0.016), with a mean increase of 11.8% of the likelihood 
of developing IPF. The WM and MR-Egger methods did 
not yield statistically significant results (WM: OR = 1.113, 
95% CI = 0.983–1.259, P = 0.091; MR-Egger: OR = 1.068, 
95% CI = 0.909–1.255, P = 0.427); however, there was a 
tendency towards a causal effect of T1D on IPF. On the 
other hand, investigations examining the impact of T2D 
on IPF consistently indicated an absence of a causal asso-
ciation between T2D and IPF, as evidenced by P-values 
exceeding 0.05 for IVW, WM, and MR-Egger regression 
analysis (Table 2; Fig. 2).

Table 2 Two-sample univariable MR analysis of the relationship between IPF and type 1 or 2 diabetes
Exposure Outcome Method nSNP OR 95%CI P-Value
T1D IPF IVW 35 1.118 (1.021,1.225) 0.016

Weighted median 1.113 (0.983,1.260) 0.091
MR-Egger 1.068 (0.909,1.255) 0.427

T2D IPF IVW 113 0.911 (0.796,1.043) 0.178
Weighted median 0.862 (0.698,1.065) 0.169
MR-Egger 0.874 (0.634,1.205) 0.412

T1D, type 1 diabetes; T2D, type 2 diabetes; IPF, idiopathic pulmonary fibrosis; IVW, inverse variance weighted
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Multivariable MR estimates
We conducted an MVMR analysis to confirm the per-
sistence of a causal relationship between T1D and IPF 
even after adjusting for T2D. A total of 58 effective IVs 
were retained for MVMR analysis, of which 26 SNPs 
were included in the MR analysis of T1D and IPF and 34 
SNPs were included in the MR analysis of T2D and IPF 
(Supplementary Table 3). When T1D was adjusted for 
T2D, the results of the multivariate analysis were con-
sistent with the results of the univariate MR, suggesting 

that T1D was significantly associated with an increased 
risk of IPF (IVW: OR = 1.133, 95% CI = 1.011–1.270, 
P = 0.032, MR-Lasso: OR = 1.114, 95% CI = 1.004–1.236, 
P = 0.042, Table  3; Fig.  3). The results of the MR-Egger 
and median methods were not statistically significant, 
but tended towards a causal effect consistent with that of 
the IVW and MR-LASSO analyses, indicating that T1D 
increases the risk of IPF. Additionally, multivariate analy-
sis of the effect of T2D on IPF yielded results consistent 
with those of the univariate analysis, indicating no causal 

Table 3 Two-sample multivariable Mendelian randomization analysis of the relationship for T1D or T2D on IPF
Exposure Outcome Method nSNP OR 95%CI P-value
T1D IPF IVW 26 1.133 (1.011,1.270) 0.032
T2D IPF IVW 34 1.009 (0.790,1.289) 0.946
T1D, type 1 diabetes; T2D, type 2 diabetes; IPF, idiopathic pulmonary fibrosis

Fig. 3 Forest plots of causal effect estimates in multivariable Mendelian analysis. T1D, type 1 diabetes; T2D, type 2 diabetes; MVMR, multivariate Mende-
lian randomization; IVW, inverse variance weighted

 

Fig. 2 Forest plots of causal effect estimates in univariable Mendelian analysis. T1D, type 1 diabetes; T2D, type 2 diabetes
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relationship. Furthermore, all P-values from IVW, MR-
Egger, MR-LASSO, and median analyses were greater 
than 0.05 (Table 3; Fig. 3).

Sensitivity analysis
In the sensitivity analysis, the effective IVs used to esti-
mate the effect of T1D on IPF showed no heterogeneity 
(IVW: I2 = 0.14, P = 0.232; MR-Egger: I2 = 0.15, P = 0.217, 
Table 4). The effective IVs used to estimate the effect of 
T2D on IPF also showed no heterogeneity (I2 = 0, P > 0.05, 
Table 4). The MR-Egger intercepts for the effects of T1D 
and T2D on IPF were close to 0, with P-values of 0.464 
and 0.777, respectively, suggesting no substantial hori-
zontal pleiotropic bias (Fig. 4). In addition, the leave-one-
out analysis showed that no single SNP in T1D or T2D 
on IPF affected causal effect estimates (Figs.  5 and 6), 
whereas effect SNPs in the univariate MR analysis were 
approximately symmetrical in a funnel plot (Fig. 4). The 
results of the MVMR heterogeneity test showed no sig-
nificant heterogeneity and no pleiotropic bias (MR-IVW: 
P = 0.125, MR-Egger: P = 0.109; MR-Egger intercept esti-
mate = 0.003, P = 0.758). These sensitivity analysis results 
demonstrated the reliability and statistical power of our 
univariate and MVMR analyses.

Discussion
In this study, we assessed the causal effects of T1D and 
T2D on IPF using a two-sample univariate MR approach. 
We identified a causal relationship between T1D and 
IPF, but no such association was observed between T2D 
and IPF. Furthermore, the findings of the MVMR analy-
sis were consistent with those of the univariate analysis: 
namely, that only T1D was associated with an increased 
risk of IPF. The polygenic genetic predisposition to T2D 
is certainly greater than that to T1D; therefore, the cur-
rent study’s finding of an association between T1D and 
IPF, rather than T2D, looks even more interesting.

Our univariate and multivariate MR analyses indicated 
that T1D is associated with an average increase in IPF 
risk of 11.8% and 13.3%, respectively, and genetically-pre-
dicted T1D increases the risk of developing IPF. Previous 
case-control studies have demonstrated a higher preva-
lence of diabetes among patients with IPF than among 
healthy individuals or those with other lung diseases [17–
21]; however, these studies did not differentiate between 
specific types of diabetes or only examined patients with 

T2D. Owing to potential confounding factors in observa-
tional studies, recall bias in retrospective cohort studies, 
and limited sample sizes in some studies, it is not feasible 
to establish an accurate causal relationship between dia-
betes and IPF based solely on these types of observational 
cohort studies.

A large community-based study conducted in the 
United States demonstrated that patients with T1D 
exhibit a higher susceptibility to respiratory disease than 
those with T2D [22], Therefore, we postulated that T1D 
has a mechanism that impacts the lungs that is unrelated 
to hyperglycemia. In a UK population-based case-control 
study including 920 patients with IPF and 3593 controls, 
significant associations were observed between IPF and 
diabetes-related exposures, with the strongest associa-
tion found with insulin use (OR = 2.36, 95% CI = 1.46–
3.83, P < 0.001), and this association was much stronger 
than that of IPF and oral hypoglycemic drugs [19].

This study revealed the distinct effects of T1D and 
T2D on IPF. Patients with T2D do not typically require 
insulin therapy at disease onset or throughout their life-
time, whereas patients with T1D usually require insulin 
therapy from the outset because of absolute insulin defi-
ciency [8]. Thus, we deduced that the stronger correlation 
between IPF and insulin use was attributable to a higher 
proportion of patients with T1D. However, since the dia-
betes type was not stratified in the original study and 
the causality direction remained uncertain, we did not 
make causal inferences. Future studies should conduct 
more in-depth analyses of the T1D and T2D subtypes to 
explore their distinct associations with IPF. Differentiat-
ing between the subtypes may provide valuable insights 
into the specific causal mechanisms underlying the rela-
tionship between diabetes and IPF.

Our study revealed no causal relationship between 
T2D and IPF; however, the results of previous observa-
tional studies on the association between these two con-
ditions have been controversial. In a retrospective cohort 
study using the US Centers for Disease Control and Pre-
vention Multi Cause of Death database, patients with dia-
betes had a lower overall probability of developing IPF 
compared to healthy controls (OR = 0.81, 95% CI = 0.79–
0.82, P < 0.05); moreover, when data were stratified by 
age, race, and sex, patients with diabetes remained at a 
reduced risk of developing IPF [23]. This may be attrib-
uted to either the occurrence of cardiovascular mortality 

Table 4 Sensitivity analyses of MR
Exposure Heterogeneity test Pleiotropy test

IVW MR-Egger MR-Egger intercept

Q Q_df I2 Q_pval Q Q_df I2 Q_pval Intercept SE P
T1D 39.682 34 0.143 0.232 39.034 33 0.155 0.217 0.0128 0.0173 0.464
T2D 96.322 112 0 0.854 96.242 111 0 0.840 0.003 0.012 0.777
T1D, type 1 diabetes; T2D, type 2 diabetes; IVW, inverse variance weighted; SE, standard error
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prior to the development of IPF in patients with diabetes 
or the prolonged survival of patients with coexisting dia-
betes and IPF [23]. Another population-based case-con-
trol study reported that the incidence of IPF was higher 
in individuals with T2D compared to non-T2D popu-
lation (incidence rate ratio = 1.40, 95% CI = 0.76–2.44, 
P = 0.22), although this difference did not reach statistical 
significance [24]. Notably, the level of glycemic control 
was not mentioned among participants with T2D in the 
original study.

Exposure to genetically-determined T2D does not con-
fer an increased risk of IPF; however, the opposite results 
have been reported in case-control studies, possibly due 
to the involvement of persistent hyperglycemia in the 
development of pulmonary fibrosis caused by unstable 
glycemic control in certain patients with diabetes. Since 
our study suggests no causal association between T2D 
and IPF, future research should focus on investigating 
the characteristics and pathophysiological processes in 
patients with T2D to elucidate why they may have a rela-
tively lower risk of developing IPF.

Fig. 4 (A) Scatter plots of causal effect for T1D on IPF, (B) T2D on IPF, (C) Funnel plots to visualize overall heterogeneity of MR estimates for the effect of 
T1D on IPF, (D) T2D on IPF.T1D, type 1 diabetes; IPF, idiopathic pulmonary fibrosis; T2D, type 2 diabetes; IVW, inverse-variance weighted; MR, Mendelian 
randomization
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IPF is a progressive interstitial lung disease character-
ized by autoreactive CD4 T cells, and abnormalities in 
multiple pathways involved in wound healing and inflam-
mation lead to IPF [25, 26]. T1D is an organ-specific 
autoimmune disease caused by autoimmune-mediated 
destruction of insulin-producing β-cells in the pancreas 
[27], and its pathogenesis is intricate, involving a multi-
tude of factors in its development. Characteristics of T1D 
such as autoimmune processes, autonomic nerve injury, 

and systemic vascular injury may increase the risk of 
respiratory disease [22], but the specific mechanisms by 
which T1D increases the risk of IPF are not clear. A study 
that included 120 patients with IPF found that the pres-
ence of specific anti-modifier protein antibodies (AMPA) 
in the serum of a substantial proportion of patients 
with IPF, suggesting that autoimmunity may character-
ize a subgroup of IPF and potentially exert an influence 
on disease progression [28]. KAT2B is a transcriptional 

Fig. 6 Forest plot of included SNPs in the MR analysis for causal effect of T2D on IPF. (A) Meta-analysis of SNPs’ effects on IPF based on IVW method with 
random effect model. (B) Sensitivity analysis by omitting every SNP. T2D, type 2 diabetes; IPF, idiopathic pulmonary fibrosis; IVW, inverse variance weighted

 

Fig. 5 Forest plot of included SNPs in the MR analysis for causal effect of T1D on IPF. (A) Meta-analysis of SNPs’ effects on IPF based on IVW method with 
random effect model. (B) Sensitivity analysis by omitting every SNP. T1D, type 1 diabetes; IPF, idiopathic pulmonary fibrosis; IVW, inverse variance weighted
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co-activator that mediates anti-apoptotic effects under 
metabolic stress conditions and increases cellular resis-
tance to cytotoxic compounds. High KAT2B expression 
has been identified as a predictive marker for disease 
progression to transplantation or mortality in patients 
with IPF, and was observed to be specifically and progres-
sively upregulated in both individuals who progressed to 
T1D and those who developed islet cell autoantibodies 
[29]. Elevated KAT2B expression was observed in periph-
eral blood mononuclear cells (PBMC) of non-obese 
diabetic (NOD) mice of T1D, preceding the onset of dia-
betic hyperglycemia [29]. Collectively, this suggests that 
KAT2B may play a role in the shared pathogenesis of IPF 
and T1D during disease development.

Citrullination of proteins may contribute to the 
shared pathogenesis of both T1D and IPF. Citrullina-
tion was identified to modify the bioactivity of glucoki-
nase and inhibit glucose-stimulated insulin secretion 
in the peripheral blood of T1D patients and NOD mice 
[30]. Autoreactive T cells and autoantibodies targeting 
citrullinated beta-cell antigens have been detected in the 
peripheral circulation and immune infiltrates of individu-
als with T1D, suggesting that citrullination of β-cell anti-
gens may contribute to the pathogenesis of T1D [31–33]. 
Citrullinated proteins have been detected in bronchoal-
veolar lavage (BAL) cells from IPF patients, suggest-
ing that the citrullinated pathway is upregulated in IPF 
[34]. Taken together, post-translational modifications of 
proteins, particularly citrullination, may contribute to 
the pathogenesis of IPF and activate immune responses 
through antibody reactivity [28]. However, limited 
research has been conducted on the shared pathogenesis 
of IPF and T1D, and further investigations are required 
to elucidate their underlying mechanisms.

Hyperglycemia is now known to exert a favorable 
effect in increasing the risk of IPF, diabetic damage to 
systemic multi-systems, such as that observed in dia-
betic nephropathy and diabetic retinopathy, is usually 
mediated by microvascular injury [35]. The pulmonary 
interstitium is composed of connective tissue, lymphatic 
vessels, nerve fibers, and blood vessels, suggesting that 
diabetes can lead to interstitial lung disease. Both T1D 
and T2D can affect microvessels through persistent 
hyperglycemia [35], leading to the development of IPF. 
However, further research is required to investigate the 
role of mechanisms other than elevated blood glucose 
levels in mediating the development of IPF.

In animal models of T1D and T2D, the simulation of 
clinical hyperglycemia has revealed an increase in DNA 
double-strand break signals that could not be repaired 
in a timely manner, resulting in sustained DNA damage 
[36]. Impaired DNA repair capacity leads to cell senes-
cence, activates the senescence-associated secretory phe-
notype (including interleukins, inflammatory cytokines, 

and growth factors), and affects other cell tissues through 
paracrine signaling, which in turn leads to pulmonary 
fibrosis [37]. Future research should combine long-term 
follow-up and clinical case studies of individuals with 
T1D and IPF to help validate the causal associations and 
investigate potential biological mechanisms.

Our study presents novel evidence indicating that indi-
viduals with a genetic predisposition to T1D were asso-
ciated with an increased risk of IPF, while no significant 
association was observed between T2D and IPF. Con-
flicting results from case-control study results may be 
due to hyperglycemia resulting from unstable blood glu-
cose control during the development of pulmonary fibro-
sis. The utilization of diverse hypoglycemic agents could 
potentially ameliorate pulmonary fibrosis. Recently, sev-
eral hypoglycemic agents, including metformin, liraglu-
tide, rosiglitazone, and empagliflozin, have been shown 
to improve pulmonary fibrosis in animal models [38–42].

Currently, apart from metformin, the protective effects 
of hypoglycemic drugs against pulmonary fibrosis have 
only been demonstrated in animal and in vitro experi-
ments. Further clinical research is necessary to gain a 
better understanding of the effects of different types of 
hypoglycemic drugs on IPF. Additionally, studying the 
effect of different types of antidiabetic medications on 
IPF could reveal their potential protective effects and 
therapeutic strategies.

This study has certain limitations. First, we examined 
the causal impact of both diabetes types on IPF without 
exploring the reverse causal effect. When we performed 
a reverse causality analysis, only six SNPs were screened 
from the IPF dataset, and these six SNPs did not corre-
spond with the GWAS of T1D and T2D. However, our 
causal inferences about the two types of diabetes and IPF 
were reliable; the F-statistics of the IVs we selected were 
all greater than 10, and the sensitivity analysis did not 
suggest the existence of significant heterogeneity or plei-
otropy. Furthermore, owing to the utilization of GWAS 
summary-level data instead of individual-level data, we 
were unable to investigate the impact of variables such 
as sex, age, and specific types of exposure on outcome or 
stratify the impact of different glycemic control condi-
tions on IPF. The outcome population in our study con-
sisted of the FinnGen population, although of European 
origin, represents a distinct and extant group, which may 
limit the generalization of our conclusions. When ana-
lyzing the association between T1D and IPF, researchers 
should consider exploring factors such as age, sex, spe-
cific types of diabetes, diabetes duration, and blood glu-
cose control levels among patients with T1D, and their 
relationship with IPF development. This would enhance 
our understanding of the complex relationship between 
T1D and IPF, and guide clinical management and treat-
ment strategies.
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Conclusion
In summary, our MR study demonstrated that T1D signifi-
cantly elevates the risk of IPF, whereas no significant asso-
ciation was observed between T2D and IPF. Future studies 
should consider using larger clinical cohorts or conducting 
clinical trials to validate our findings to ensure more robust 
and comprehensive conclusions. Moreover, DM should be 
considered in future studies on the pathogenesis of IPF, 
particularly focusing on factors other than hyperglycemia 
in T1D, and attention should be directed towards explor-
ing the potential antifibrotic effects of hypoglycemic drugs. 
In clinical practice, patients with T1D should undergo lung 
imaging for early screening for IPF.
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