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Abstract
Background Studies have shown that mitochondrial function and macrophages may play a role in the development 
of idiopathic pulmonary fibrosis (IPF). However, the understanding of the interactions and specific mechanisms 
between mitochondrial function and macrophages in pulmonary fibrosis is still very limited.

Methods To construct a prognostic model for IPF based on Macrophage- related genes (MaRGs) and Mitochondria-
related genes (MitoRGs), differential analysis was performed to achieve differentially expressed genes (DEGs) between 
IPF and Control groups in the GSE28042 dataset. Then, MitoRGs, MaRGs and DEGs were overlapped to screen out 
the signature genes. The univariate Cox analysis and the least absolute shrinkage and selection operator (LASSO) 
algorithm were implemented to achieve key genes. Furthermore, the independent prognostic analysis was employed. 
The ingenuity pathway analysis (IPA) was employed to further understand the molecular mechanisms of key genes.
Next, the immune infiltration analysis was implemented to identify differential immune cells between two risk 
subgroups.

Results There were 4791 DEGs between IPF and Control groups. Furthermore, 26 signature genes were achieved by 
the intersection processing. Three key genes including ALDH2, MCL1, and BCL2A1 were achieved, and the risk model 
based on the key genes was created. In addition, a nomogram for survival forecasting of IPF patients was created 
based on riskScore, Age, and Gender, and we found that key genes were associated with classical pathways including 
‘Apoptosis Signaling’, ‘PI3K/AKT Signaling’, and so on. Next, two differential immune cells including Monocytes and 
CD8 T cells were identified between two risk subgroups. Moreover, we found that MIR29B2CHG and hsa-mir-1-3p 
could regulate the expression of ALDH2.

Conclusion We achieved 3 key genes including ALDH2, MCL1,, and BCL2A1 associated with IPF, providing a new 
theoretical basis for clinical treatment of IPF.
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Introduction
Idiopathic Pulmonary Fibrosis (IPF) is a chronic, pro-
gressive, and highly fatal interstitial lung disease charac-
terized by progressive dyspnea and irreversible decline 
in lung function [1], which seriously threatens patients’ 
quality of life and survival time [2]. IPF is variable, unpre-
dictable and significantly heterogeneous, and the rate of 
progression in a single patient in the short term is dif-
ficult to predict [3]. Repeated damage and dysrepair of 
alveolar epithelial cells cause pulmonary fibrosis, includ-
ing uncontrolled proliferation of lung fibroblasts and 
excessive deposition of extracellular matrix proteins in 
the interstitial space, leading to irreversible changes in 
lung parenchyma and ultimately IPF [4]. The exact mech-
anism of pulmonary fibrosis involves many theories, such 
as excessive epithelial damage repair, cellular senescence 
and mitochondrial dysfunction, insufficient autophagy, 
epithelial-mesenchymal transformation (EMT), activa-
tion of macrophage subpopulation, and telomere short-
ening [5, 6]. At present, the only anti-fibrosis drugs 
approved by the FDA are pirfenidone and Nintedanib, 
both of which have obvious drug toxicity, and the treat-
ment of IPF remains to be explored [7, 8]. Key genes 
involve many aspects such as immunity and genetics, 
and can be used to evaluate physiological and pathologi-
cal processes and responses to drug intervention from an 
objective perspective. Exploring the pathogenesis of IPF 
from the level of key genes is helpful for the diagnosis, 
treatment and prognosis evaluation of the disease [9, 10].

Mitochondria are membrane-closed organelles with 
independent circular genomes in eukaryotic cells [11]. 
Mitochondria can not only provide energy for cells by 
producing ATP through oxidative phosphorylation, but 
also play an important role in many processes such as 
apoptosis, signal transduction and substance metabolism 
[12]. Mitochondria undergo fission and fusion, destroy-
ing the original physiological functions and leading to 
cellular senescence [13]. Mitochondrial autophagy is an 
important way to maintain functional homeostasis and is 
closely related to pulmonary fibrosis [14]. Animal experi-
ments have shown that p53 and p21 activate age-related 
pathways and promote fibrosis [15]. The pathological 
results of the lung tissues of IPF patients also showed that 
the expression of telomere-associated DDR sites (TAFs), 
p16 and other aging markers was increased [16]. Studies 
have shown that the expression of mitochondrial DNA 
is negatively correlated with the survival of IPF patients, 
and therefore, mitochondrial DNA may be a biomarker 
for predicting acute exacerbation and progression of IPF 
[17]. In summary, mitochondria are closely related to the 
occurrence and development of IPF.

Macrophages are an important part of innate immu-
nity. They exist in different tissues as alveolar mac-
rophages, microglia and Kupfer cells. They play an 

important role in maintaining the balance of the envi-
ronment in tissues and regulating immunity. Depending 
on their environment, they can be polarized into differ-
ent subtypes such as M1 macrophages (also known as 
classical activated macrophages) and M2 macrophages 
(also known as alternative activated macrophages) 
[18]. Both M1 and M2 macrophages are involved in the 
pathogenesis of pulmonary fibrosis. M1 plays a major 
pro-inflammatory role in the early inflammatory stage. 
Subsequently, M2 increases, sustained damage repair 
and reduction of inflammatory response through various 
signaling pathways such as TGF-β1/Smad2/3, leading to 
pulmonary fibrosis [19]. Studies have shown that IPF is 
related to apoptosis resistance of M2 macrophages [20, 
21]. Mitochondrial autophagy, fission, fusion and other 
dysfunction exist in pulmonary fibrosis [22]. The absence 
of miR-33 in alveolar macrophages can stabilize the 
structure and increase the number of mitochondria, thus 
improving pulmonary fibrosis. Akt1-mediated mitochon-
drial autophagy can promote the apoptotic resistance of 
alveolar macrophages and further aggravate pulmonary 
fibrosis [14]. The above illustrates the mechanisms asso-
ciated with mitochondrial function and apoptosis and 
apoptosis and macrophages in IPF. Therefore, further 
study of the relationship between mitochondria, alveolar 
macrophages and IPF may enrich the pathogenesis of IPF 
and contribute to diagnosis and treatment.

Therefore, in this study, genes related to mitochon-
drial function and macrophages were first obtained, 
and bioinformatics methods such as univariate Cox and 
least absolute shrinkage and selection operator (LASSO) 
regression analysis were used to construct prognostic risk 
models and search for key genes of IPF to better predict 
the disease progression and prognosis of patients.

Materials and methods
Data sources
The gene expression and sample clinical information 
data of IPF were achieved by the Gene Expression Omni-
bus (GEO) online database. The GSE28042 dataset con-
tained 75 IPF samples and 19 Control samples, and these 
samples were utilized for training set. Moreover, the 
GSE27957 dataset had 45 IPF samples with clinical infor-
mation, and it was utilized as validation set. All the sam-
ples in GSE28042 and GSE27957 datasets were peripheral 
blood mononuclear cell (PBMC) samples [23]. The sup-
plementary Tables 1–2 listed details of the clinical char-
acteristics of IPF patients in GSE28042 and GSE27957. 
In addition, 1136 Mitochondria-related genes (MitoRGs) 
were achieved through the MitoCarta3.0 online database 
(http://www.broadinstitute.org/mitocarta). Besides, we 
acquired 3201 Macrophage-related genes (MaRGs) by 
the GeneCards online database (https://www.genecards.
org/) (Score > 2.5).

http://www.broadinstitute.org/mitocarta
https://www.genecards.org/
https://www.genecards.org/
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Screening of signature genes
In our study, we used the Benjamini-Hochberg (BH) cor-
rection and adjusted the p-value by controlling for the 
false discovery rate (FDR). To explore the mechanism of 
IPF pathogenesis and to find genes associated with IPF 
pathogenesis we performed differential expression analy-
sis. DEGs between IPF and Control groups were acquired 
by the limma (v 3.50.1) package [24].(p.adjust < 0.05). 
A heat map and a volcano map of DEGs were plotted 
by pheatmap (v 1.0.12) and ggplot2 (v 3.3.5) [25]pack-
ages, respectively. Furthermore, 1136 MitoRGs, 3201 
MaRGs and DEGs were overlapped to screen out the sig-
nature genes. For further exploring the biological func-
tions and signaling pathways involved in the signature 
genes, the Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment analyses 
(p.adjust < 0.05) were employed by the clusterProfiler (v 
4.2.2) package [26]. In addition, for further understand-
ing the potential interactions of the signature genes, a 
Protein Protein Interaction (PPI) network was estab-
lished using the STRING online (https://string-db.org/) 
database (minimum required interaction score = 0.4).

Construction and verification of risk model
According to above signature genes, the univariate Cox 
analysis was performed to identify the candidate genes 
that related to prognosis of IPF (p < 0.05). Furthermore, 
the LASSO algorithm was implemented to achieve key 
genes. In addition, we compared differences in key genes 
between live and dead samples. According to the expres-
sion of above key genes, the risk model was created, and 
the samples in the GSE28042 and GSE27957 datasets 
were classified into the high- and low-risk groups using 
the optimum cut-off value of the risk score (risk score 
= 

∑n
1 coef (genei) *expression (genei).) respectively. In 

addition, the Kaplan-Meier (K-M) survival curves and the 
ROC curves (1-, 2- and 3-year) were plotted, respectively.

Independent prognostic analysis
In order to construct a prognostic model for clinical sur-
vival prediction of IPF patients, riskScore and clinical 
characteristics (Age and Gender) were combined, then 
univariate Cox and multivariate Cox analyses were con-
ducted to achieve the independent prognostic factors. 
Furthermore, a nomogram for forecasting survival rates 
of the IPF patients (1-, 2- and 3-year) was created. More-
over, the calibration curve was employed to verify the 
validity of the above nomogram.

Functional enrichment analysis
In our study, the Gene Set Enrichment Analysis (GSEA) 
was conducted on all genes (High-risk vs. Low-risk 
groups) in the GSE28042 dataset (p.adj < 0.05 and|NES| 
> 1). Furthermore, to further understand the molecular 

mechanism of key genes, the classical signaling pathway 
analysis was performed by the ingenuity pathway analy-
sis (IPA) to explore the signaling pathways that key genes 
were mainly involved in (p.value < 0.05). Subsequently, we 
selected the largest|z-score| signaling pathway for further 
displaying the signal pathway transduction process.

The immune infiltration analysis
For evaluating the degree of the immune cell infiltration, 
the CIBERSORT algorithm was performed in GSE28042 
dataset and we took LM22 as the signature [27]. Mean-
while, immune cells that did not exist in 75% samples 
were excluded. Subsequently, the Wilcoxon test was 
implemented to analyze differential immune infiltrating 
cells between the two risk subgroups. The IPF samples 
were classified into high- and low-expression groups 
based on the median expression of key genes. The differ-
ences in the differential immune cells between the two 
expression subgroups of key genes were analyzed. More-
over, the relationships between biomarker and differen-
tial immune cells were computed (|cor| > 0.3, p < 0.05).

Regulatory network and the drug prediction
To create the regulatory network, the miRNAs and long 
noncoding RNA (lncRNA) genes were forecasted using 
the miRNet online database (www.mirnet.ca). In addi-
tion, for exploring potential drugs for the treatment of 
IPF, the potential drugs for key genes were acquired 
based on the DGIdb database (www.dgidb.org), and a 
biomarker-drug network was created. Besides, all the 
networks were visualized using the cytoscape software 
[28].

RT-qPCR
The blood samples were gained from the 5 IPF patients in 
Affiliated Hospital of Shandong University of Traditiona. 
And the blood samples obtained from 5 healthy individu-
als were utilized as Control samples. The blood samples 
were acquired from the samples to perform RT-qPCR. 
This study was approved by Ethics Committee of the 
Affiliated Hospital of Shandong University of Traditional 
Chinese Medicine. All patients had signed an informed 
consent form. The expression of the four key genes was 
further validated via RT-qPCR. Total RNA of 20 samples 
were extracted using TRIzol (Ambion, Austin, USA) 
according to the manufacturer’s guidance. Reverse tran-
scription of total RNA to cDNA was carried out by using 
SureScript-First-strand-cDNA-synthesis-kit (Servicebio, 
Wuhan, China) based on the manufacturer’s instruc-
tions. RT-qPCR was performed utilizing the 2xUniversal 
Blue SYBR Green qPCR Master Mix (Servicebio, Wuhan, 
China). The primer sequences for PCR were shown in 
Table 1. GAPDH was as an internal reference gene. The 

https://string-db.org/
http://www.mirnet.ca
http://www.dgidb.org
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2−ΔΔCt method was utilized to calculate the expression of 
key genes [29].

Results
A total of 26 signature genes were acquired
In the GSE28042 dataset, there were 4791 DEGs between 
IPF and Control groups (Fig.  1A, Supplementary Table 
3). The expression heat map of the IPF-associated top 
10 up- and down-regulated DEGs was shown in Fig. 1B. 
Subsequently, 26 signature genes were achieved by the 
cross-processing (Fig.  1C). According to the functional 
enrichment analysis, 26 signature genes were mainly 
associated with ‘signal transduction in absence of ligand’, 
‘outer membrane’, ‘protein transmembrane transporter 
activity’ etc. GO items, and KEGG pathways such as 
‘Apoptosis’, ‘p53 signaling pathway’, ‘Apoptosis-multiple 
species’ and so on (Fig. 1D-E, Supplementary Tables 4–
5). Besides, the PPI network including 26 signature genes 
was established, there were interactions between 21 sig-
nature genes, and there was a relatively strong interaction 
between CYCS and BCL2L1 (Fig. 1F).

Three key genes were acquired
A total of 3 prognostic candidate genes including ALDH2, 
MCL1,and BCL2A1 were identified by the univariate Cox 
analysis (Fig.  2A). Furthermore, there were 3 key genes 
(ALDH2, MCL1, and BCL2A1) sifted out by the LASSO 
algorithm (Fig.  2B). In the GSE28042 dataset, IPF sam-
ples were classified into high- and low-risk groups based 
on the optimal cut-off value of risk scores that equal to 
21.8207, with the increase of risk score, the number of 
the dead patients also increased. Moreover, we found 
that the expression of ALDH2, MCL1, and BCL2A1 were 
downregulated in the low-risk group (Fig. 2C-D). In addi-
tion, it was found that there was a distinct difference in 
survival between these two subgroups (p < 0.0001), more-
over, the survival rate of the high-risk group was signifi-
cant decreased (Fig.  2E). The area under curve (AUC) 
values (1-, 2-, and 3-year) were all above 0.65, it demon-
strated that the model had a favorable prediction accu-
racy and favorable model performance (Fig. 2F). Besides, 
we verified the risk model in the GSE27957 dataset, 
moreover, we found that the results were consistent with 

the GSE28042 dataset (Fig. 3A-D). Finally, we found that 
BCL2A1 and MCL1 were highly expressed in the dead 
group (Fig. 3E).

A nomogram was created
Independent prognostic analysis was employed to estab-
lish a nomogram. First of all, the riskScore, Gender, and 
Age were screened out by the univariate Cox analysis 
(p < 0.05) (Fig. 4A). Furthermore, the Age, riskScore, and 
Gender were achieved as independent prognostic factors 
(Fig. 4B). Accordingly, a nomogram for survival forecast-
ing of IPF patients (1-, 2- and 3-year) was created based 
on those above independent prognostic factors (Fig. 4C). 
The calibration curve indicated that the nomogram had a 
high prediction accuracy (Fig. 4D).

The GSEA and IPA based on the risk model
We conducted the GSEA, and we found that some path-
ways such as ‘Osteoclast differentiation’, ‘TNF signaling 
pathway’, ‘Cell adhesion molecules’ and ‘Purine metabo-
lism’ were enriched in those two risk subgroups (Fig. 5A-
B, Supplementary Table 6). In addition, the IPA results 
showed that key genes were associated with 30 classical 
pathways including ‘Apoptosis Signaling’, ‘PI3K/AKT Sig-
naling’, ‘IL-7 Signaling Pathway’, and so on, and it showed 
that the influence of key genes on signaling pathways was 
mostly promoting (Fig. 5C, Supplementary Table 7). The 
‘IL-7 Signaling Pathway’ with the highest|z-score| (2.683) 
was selected to display, and we could find that ‘IL-7 Sig-
naling Pathway’ regulated the growth, proliferation, and 
survival of immune cells by activating multiple signal-
ing cascades such as JAK-STAT, PI3K-Akt and mTOR 
(Fig. 5D).

The immune infiltration analysis between two risk 
subgroups
There were 2 differential immune cells including Mono-
cytes and CD8 T cells between these two risk subgroups 
(Fig.  6A). Furthermore, two differential immune cells 
were all significantly different in the two expression 
subgroups of ALDH2 (Fig.  6B). The Monocytes had a 
positively association with ALDH2, and the correlation 
coefficient was 0.54. Meanwhile, there was a negatively 
relationship between ALDH2 and CD8 T cells (Cor = 
-0.36) (Fig. 6C-D).

The lncRNA-miRNA-mRNA network and the biomarker-
drug network were created
The lncRNA-miRNA-mRNA regulatory network was 
created in GSE28042, including 3 key genes, 10 miR-
NAs, and 64 lncRNAs. Further, we found that MIR29B-
2CHG and hsa-mir-1-3p could regulate the expression of 
ALDH2, and MCL1could be regulated by hsa-mir-15a-5p 
and XIST (Fig. 7A, Supplementary Table 8). Besides, the 

Table 1 Sequence of primers used in the RT-qPCR experiments
Gene name Primer sequences
ALDH2-F  G C A T G G A C G C A T C A C A C A G
ALDH2-R  T T G C C A T T G T C C A G G G T C T C
MCL1-F  T T G C C A T T G T C C A G G G T C T C
MCL1-R  A G G T T G C T A G G G T G C A A C T C
BCL2A1-F  A G T G C T A C A A A A T G T T G C G T T C
BCL2A1-R  G G C A A T T T G C T G T C G T A G A A G T T
GAPDH-F  C G A A G G T G G A G T C A A C G G A T T T
GAPDH-R  A T G G G T G G A A T C A T A T T G G A A C
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Fig. 1 Identification of 26 signature genes. The BH correction was used and the p-value was adjusted by controlling the FDR. (A) The volcano plot 
showed 2347 up-regulated (red) and 2444 down-regulated genes (blue) in the GSE28042 dataset (|log2FC|>0, p.adj < 0.05). (B) The heatmap of the 
Idiopathic Pulmonary Fibrosis (IPF)-associated top 10 up- and down-regulated differentially expressed genes (DEGs). (C) The venn diagram of DEGs, 
Macrophage-related genes (MaRGs), and Mitochondria-related genes (MitoRGs). (D) The bubble plot of the the top 5 Gene Ontology (GO) Biological 
Process (BP) terms, GO Cellular Components (CC) terms, GO Molecular Function (MF) terms were enriched for 26 signature genes. (E) The column plot of 
the top 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched for 26 signature genes. (F) The Protein Protein Interaction (PPI) 
network including 26 signature genes. Nodes represent genes and colors represent Degree values, the redder the value, the stronger the gene’s role 
relationship in the network
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key genes -drug network was created, including “OBA-
TOCLAX MESYLATE”, “SIROLIMUS”, “OMEPRA-
ZOLE”, etc. (Fig. 7B, Supplementary Table 9).

The expression levels of the key genes
The RT-qPCR results indicated that the expression of the 
ALDH2 and MCL1 between IPF and control groups were 
markedly different. The ALDH2 and MCL1 were highly 
expressed in IPF (Fig. 8A-C). In summary, the results of 

RT-qPCR suggested that ALDH2 and MCL1 had good 
diagnostic value for IPF.

Discussion
At present, the only anti-fibrosis drugs approved by the 
FDA are pirfenidone and Nidanib, both of which have 
obvious drug toxicity, and the treatment of IPF remains 
to be explored [7]. The median survival time after diag-
nosis of IPF is short, the prognosis is poor, and the 

Fig. 2 Construction of the risk model based on 3 key genes. (A) The forest plot of the univariate Cox analyses of the 3 key genes. (p-value < 0.05) (B) 
Least absolute shrinkage and selection operator (LASSO) analysis of the 3 key genes with minimum lambda value. (C-F) The risk score (C), heat map (D), 
Kaplan-Meier (K-M) survival (E), and time-dependent receiver operating characteristic (ROC) curves of overall surviva (OS) (F) in the GSE28042 dataset. 
The area under curve (AUC) was assessed at 1, 2 and 3 years
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Fig. 3 Validation of the risk model based on 3 key genes. (A-D) The risk score (A), heat map (B), K-M survival (C), and time-dependent ROC curves of OS 
(D) in the GSE27957 dataset. The AUC was assessed at 1, 2 and 3 years. (E) Expression of key genes in live and death groups
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mortality is high [2]. Mitochondria of IPF patients have 
different types of dysfunction. Macrophages regulate pul-
monary fibrosis through various pathways such as NF-kB 
and PI3K-Akt-mTOR. Moreover, studies have shown that 
mitochondrial autophagy and apoptosis resistance of M2 
macrophages are causally and causally involved in the 
process of IPF [14]. Mitochondria-related key genes may 

be able to predict the prognosis of IPF, and it is important 
for the treatment and prognosis prediction of IPF to con-
struct a prognostic model by combining the study with 
macrophages.

Using univariate cox regression to screen 26 shared 
genes, three genes, ALDH2, MCL1, and BCL2A1,were 
found to be significantly associated with survival. The 

Fig. 4 Construction of the nomogram model. (A-B) The forest plot of the univariate (A) and multivariate (B) Cox analyses of riskScore, Gender, and Age. 
(p-value < 0.05) (C) The nomogram model of riskScore, Gender, and Age in the GSE28042 dataset. (D) The calibration curve model to verify the predictive 
value of risk score regarding 1-, 2-, and 3-year survival
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Fig. 5 The Gene Set Enrichment Analysis (GSEA) and ingenuity pathway analysis (IPA) based on the risk model. (A-B) GSEA between high- and low-
expression of the GSE28042 dataset. p-value < 0.05,|NES|>1) (C) The column plot of the 30 classical pathways. (D) The diagram of IL-7 signaling pathway 
transduction
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risk ratio of all genes significantly associated with survival 
was greater than 1, indicating that they were all risk fac-
tors promoting disease development. ALDH2 gene (alde-
hyde dehydrogenase 2), located on human chromosome 
12, is a key mitochondrial enzyme in the metabolism of 
acetaldehyde and is closely related to oxidative stress [30, 
31]. ALDH2 gene enrichment in Alcoholic liver disease, 
Pantothenate and CoA biosynthesis pathways. The Alco-
holic liver disease pathway is closely related to oxidative 
stress [32], and the Pantothenate and CoA biosynthesis 
pathways are closely related to lipid, protein and other 
compounds and energy metabolism [33]. High expression 
of ALDH2 can reduce the expression of fibrotic genes and 
excessive deposition of extracellular matrix in fibroblasts 
[34]. ALDH2 deficiency can cause mitochondrial biogen-
esis disorder of cardiomyocytes [35]. The upregulation of 
ALDH2 can inhibit myocardial cell damage induced by 
high glucose and alleviate myocardial fibrosis in rats. The 

mechanism of action may be related to oxidative stress 
and inflammation involved in MMP14 and TIMP4 [36]. 
In addition, upregulation of ALDH2 can regulate autoph-
agy to protect renal tubular epithelial cells through the 
Beclin-1 pathway [37], thereby ameliorating acute kid-
ney injury and neuronal damage caused by hypoxia [38]. 
Both the MCL-1 gene and BCL2A1 gene are derived 
from the BCL-2 gene family. MCL-1 gene is one of the 
anti-apoptotic proteins, which can be targeted to induce 
mitochondrial autophagy and enriched in the Apoptosis 
Signaling pathway [39]. MCL-1 is overexpressed in breast 
cancer, lung cancer and other cancers, and is associated 
with resistance to chemotherapy drugs [40]. BCL2A1 is 
enriched in Apoptosis Signaling and NF-kappa B signal-
ing pathway. Studies have shown that BCL2A1 can inhibit 
TNF-α-induced endothelial cell damage and reduce 
cell death through the NF-κB pathway [41]. In addition, 
BCL2A1is involved in advanced metastasis of ovarian 

Fig. 6 The immune infiltration analysis in high-risk and low-risk subgroups. (A) The abundance of 9 immune cells estimated by CIBERSORT algorithm in 
high-risk and low-risk groups in the GSE28042 dataset. (ns: no significance.) (B) The abundance of monocytes and CD8 T cells estimated by CIBERSORT 
algorithm in high-risk and low-risk groups based on the expression of ALDH2 in the GSE28042 dataset. (p-value < 0.05) (C-D) The scatter plot of correlation 
analysis between ALDH2 expression and abundance of monocytes and CD8 T cells. The gray area outside the slash indicates the 95% confidence interval 
of the slash
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cancer, breast cancer, acute and chronic leukemia and 
other blood diseases and cancers [42]. In addition, TNF 
released by M1 macrophages changes the phenotype of 
macrophages and fibroblasts, delays tissue repair, and 
also produces TGF-β1 and platelet-derived growth fac-
tor (PDGF), promoting pulmonary fibrosis [43]. There-
fore, it is speculated that the profibrotic effect of ALDH2 
gene is related to oxidative stress and energy metabolism. 
In addition, this study found for the first time that MCL-
1 and BCL2A1 genes may play an important role in the 
occurrence and development of IPF, and both genes are 
enriched in the Apoptosis Signaling pathway. We specu-
late that the mechanism of MCL-1 and BCL2A1 par-
ticipating in promoting pulmonary fibrosis is related to 
apoptosis resistance. But the specific functional mecha-
nism needs to be further studied.

We found that monocytes and CD8 T cells were differ-
ent between the high and low risk groups of IPF. There 
were significant differences in ALDH2 gene expression 

between the two types of immune cells, but no significant 
differences in MCL-1 and BCL2A1 expression between 
the two groups. Monocytes are derived from hemato-
poietic stem cells in bone marrow and can differentiate 
into macrophages and myeloid dendritic cells. A retro-
spective analysis in 2021 indicated that monocyte count 
was positively correlated with the number of acute exac-
erbations and mortality in patients with IPF, and the 
blood routine was simple and convenient, so monocytes 
could be a promising serum biomarker for the prognosis 
of IPF [44]. CD8 T is a key component of the adaptive 
immune system that monitors the body and clears infec-
tions. Bleomycin was injected into both IL-21 receptor 
deficient mice and wild mice, but collagen deposition 
and α-smooth muscle actin expression were significantly 
reduced in lung tissue of IL-21 receptor deficient mice. 
IL-21 is a key cytokine for differentiation of CD8 T into 
Tc2 cells, demonstrating that CD8 T is involved in pul-
monary fibrosis in an IL-21-dependent manner [45]. We 

Fig. 8 The Expression Levels of the key genes. (A-C) ALDH2, MCL1 and BCL2A1 expression in the IPF and control group (* p < 0.05, ns: no significance)

 

Fig. 7 The bioinformatic analysis of molecular mechanisms. (A) The competing endogenous RNAs (ceRNA) of prognostic gene. Blue nodals represent 
long noncoding RNA (lncRNA), green nodals represent miRNAs, and red nodals represent mRNAs. (B) The network diagram of prognostic gene-drug. Blue 
nodals represent drugs and pink nodals represent prognostic genes
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analyzed the differences in immune cells between ALDH2 
expression subgroups and found that ALDH2 was posi-
tively correlated with monocytes and negatively corre-
lated with CD8 T cells. Studies have shown that people 
with ALDH2 genotype (ALDH2 *1/*2 and ADH1B*2) are 
more likely to have damage to the number and function 
of peripheral blood monocytes after receiving alcohol 
[46], which is different from our analysis results, and may 
be related to the existence of monocytes in peripheral 
blood or differentiation into macrophages. In summary, 
the occurrence and development of IPF may be closely 
related to monocytes and CD8 T cells.

We further made potential drug prediction of key 
genes, and found that Obatoclax is a hydrophobic small 
molecule inhibitor of the BCL-2 family, which mainly 
acts on tumors, respiratory diseases, and immune system 
diseases [47]. The MCL-1 gene and BCL2A1 gene that 
can promote fibrosis are derived from the BCL-2 family. 
Obatoclax may play an anti-fibrosis role by regulating cell 
apoptosis resistance. Docetaxel is a plant-derived drug 
that exerts anti-tumor effects by inducing cell cycle arrest 
and is closely related to CD8 T cells [48]. Docetaxel may 
be associated with IPF via CD8 T cells and the ALDH2 
gene. There are also Sirolimus, Aspirin, Prochlorazine, 
Disulfiram, Romidepsin and Omeprazole 6 drugs. Siro-
limus is a specific mTOR inhibitor used to suppress the 
function of the human immune system [49]. Aspirin is 
mainly used as antipyretic and analgesic drugs, non-
steroidal anti-inflammatory drugs, anti-platelet aggre-
gation drugs [50]. Prochlorperazine is a phenothiazine 
drug with a piperazine side chain, which has antipsy-
chotic effects [51]. Disulfiram acts primarily by irrevers-
ibly inhibiting intracytoplasmic and intracmitochondrial 
acetaldehyde dehydrogenase in the treatment of alcohol-
dependent and cooperative alcoholics [52]. Romidepsin 
is a histone deacetylase (HDAC) inhibitor with antitumor 
activity for cutaneous T-cell lymphoma [53]. Omepra-
zole is a first-generation proton pump inhibitor, which 
can inhibit gastric acid secretion and protect the stom-
ach mucosa [54]. The above-mentioned drugs have been 
widely used in other fields, but the anti-fibrotic effect still 
needs further study.

A risk model for predicting the prognosis of IPF was 
developed using univariate Cox analysis and Lasso 
regression analyses. The model was validated using data 
from the GSE27957 dataset, and ROC curves showed that 
the three key genes obtained were able to predict poor 
prognosis in IPF patients. A nomogram was constructed 
to visualize the 1 to 3 year overall survival (OS) rates, 
demonstrating that our model has clinical advantages 
and performs well in predicting outcomes. Yu Li et al. 
constructed a prognostic model in the GSE28042 dataset. 
By comparison, we found that our results showed better 
AUC values at 1-year and 2-year time points, indicating a 

more accurate prediction of patient prognosis. Addition-
ally, Lu Y et al. also constructed a prognostic model in 
GSE28042 similar to ours, further validating the superior 
performance of our model [55, 56]. 

Validation of the prediction model using mitochondria 
and macrophagerelated genes for IPF in a clinical patient 
population is crucial to ensure its generalizability and 
applicability in real-world settings. The sample size in 
this study was relatively small, underscoring the need for 
future research with larger sample sizes to improve the 
reliability and robustness of the predictive model. As this 
study relied on retrospective data analysis, conducting 
prospective studies is necessary to validate and corrobo-
rate the findings in an independent cohort. Furthermore, 
given the substantial size of the MaRGs gene set, the 
identified genes are inclined towards mitochondrial func-
tions. Consequently, additional delineation is essential to 
elucidate the interplay between MaRGs, MitoRGs, and 
IPF DEGs in future investigations.

Conclusions
IPF is an irreversible chronic lung disease with poor 
prognosis, poor quality of life and short survival time. 
Its course and survival rate are difficult to predict. In this 
study, clinical and biological characteristics of patients 
were analyzed and comprehensively evaluated. The 
intersection of IPF differentially expressed genes, mac-
rophage related genes and mitochondria related genes 
was combined with database analysis to obtain ALDH2, 
MCL1, and BCL2A1genes, and it was speculated that 
the mechanism of their participation in IPF was related 
to oxidative stress, energy metabolism and cell apopto-
sis resistance. Moreover, a prognostic model of IPF was 
constructed to identify two related immune cells, mono-
cyte and CD8T, and to predict potential effective drugs. 
However, the specific experimental mechanism needs to 
be further studied, and we will continue to pay attention 
to the research progress of 13 genes ALDH2, MCL1, and 
BCL2A1in the future. In conclusion, this study fills the 
gap in prognostic key genes of IPF, can better predict the 
disease progression and prognosis of patients with IPF, 
and promote the development and progress of clinical 
research.
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