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Abstract 

Background Pneumocystis jirovecii pneumonia (PJP) is an interstitial pneumonia caused by pneumocystis jirovecii (PJ). 
The diagnosis of PJP primarily relies on the detection of the pathogen from lower respiratory tract specimens. How-
ever, it faces challenges such as difficulty in obtaining specimens and low detection rates. In the clinical diagnosis pro-
cess, it is necessary to combine clinical symptoms, serological test results, chest Computed tomography (CT) images, 
molecular biology techniques, and metagenomics next-generation sequencing (mNGS) for comprehensive analysis.

Purpose This study aims to overcome the limitations of traditional PJP diagnosis methods and develop a non-
invasive, efficient, and accurate diagnostic approach for PJP. By using this method, patients can receive early diagnosis 
and treatment, effectively improving their prognosis.

Methods We constructed an intelligent diagnostic model for PJP based on the different Convolutional Neural Net-
works. Firstly, we used the Convolutional Neural Network to extract CT image features from patients. Then, we fused 
the CT image features with clinical information features using a feature fusion function. Finally, the fused features were 
input into the classification network to obtain the patient’s diagnosis result.

Results In this study, for the diagnosis of PJP, the accuracy of the traditional PCR diagnostic method is 77.58%, 
while the mean accuracy of the optimal diagnostic model based on convolutional neural networks is 88.90%.

Conclusion The accuracy of the diagnostic method proposed in this paper is 11.32% higher than that of the tradi-
tional PCR diagnostic method. The method proposed in this paper is an efficient, accurate, and non-invasive early 
diagnosis approach for PJP.
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Introduction
Pneumocystis jirovecii (PJ) is a common opportunistic 
pathogen causing pulmonary infections and is one of 
the leading causes of high mortality in immunocompro-
mised patients. Pneumocystis jirovecii pneumonia (PJP) 
occurs in 70–80% of patients with patients with human 
immunodeficiency virus (HIV) [1]. Over the past decade, 
the incidence of PJP in patients with HIV has decreased 
due to the widespread use of antiretroviral therapy. Sta-
tistics from the United States on opportunistic infec-
tions of PJ in acquired immune deficiency syndrome 
(AIDS) patients showed a five-fold reduction in incidence 
per 100,000 person-years between 2000 and 2010 [2]. 
These findings are supported by research from England, 
where the number of PJP cases in HIV-infected patients 
decreased by approximately half during the same period. 
However, in recent years, there has been an increasing 
number of non-HIV-infected patients with PJ infections. 
This includes patients with solid malignancies, solid 
organ transplant and hematopoietic stem cell transplant 
recipients, those who have undergone chemotherapy and 
molecular targeted therapy, patients receiving immuno-
suppressive therapy due to autoimmune and inflamma-
tory conditions, and individuals with genetic or primary 
immunodeficiency disorders [3].

Due to the difficulty of culturing PJ in the laboratory, 
microscopic examination of the pathogen in respiratory 
specimens has become the gold standard for diagnosing 
PJP [4]. However, whether cysts and trophozoites of PJ 
can be observed under the microscope depends on the 
technical skills and experience of the examining physi-
cian, so the level of the observer has a significant impact 
on the detection rate and sensitivity. Additionally, non-
HIV-infected patients with PJ infections typically have 
lower fungal loads compared to HIV-infected patients 
[5]. This lower fungal load can result in false-negative 
microscopic examination results. Currently, PJP diagno-
sis guidelines recommend a comprehensive analysis of 
host factors, microbiological evidence, chest CT find-
ings, polymerase chain reaction(PCR), and detection of 
 CD4+T cells, lactate dehydrogenase(LDH), and 1,3-β-d-
glucan (BDG) in serum for HIV-positive patients with 
PJP, categorized by severity [6]. However, in clinical prac-
tice, PJP has a rapid onset and a poor prognosis. Early 
diagnosis is largely influenced by the treating physician’s 
experience and judgment. Most non-HIV patients are 
already at a severe stage when diagnosed [7]. Without 
timely and effective treatment, the mortality rate can be 
as high as 30% to 59%, with even higher mortality rates 
(48% to 70%) among allogeneic hematopoietic stem cell 
transplant (allo-HSCT) recipients [8]. Therefore, there is 
an urgent need for an efficient, objective, and convenient 
method to diagnose PJP.

In recent years, deep learning has made significant 
progress in the field of medicine and has been shown 
to outperform traditional machine learning techniques. 
Convolutional Neural Networks (CNN) is an efficient 
deep learning method for image recognition, with pow-
erful feature extraction capabilities. They can quickly 
analyze and process clinical data and medical images to 
provide diagnostic results. Many studies have reported 
that deep learning algorithms can improve the accuracy 
of diagnoses for various diseases, including gastric can-
cer, thyroid cancer, liver cancer, colorectal cancer, breast 
cancer, lung cancer, cervical cancer, skin cancer, cata-
racts, and diabetic retinopathy [9–18]. Recognizing the 
importance of clinical features and chest CT images in 
PJP diagnosis, we have developed a novel early diagnostic 
model for PJP based on CNN and evaluated its diagnostic 
performance for the first time.

Materials and methods
This section introduces the experimental methods for the 
entire article. Figure 1 shows the experimental flowchart 
of the study.

Firstly, we will identify all possible diagnostic indica-
tors, clinical features, and chest CT imaging features 
related to PJP based on the literature and guidelines. 
Then, from these clinical features, we will select indepen-
dently significant risk factors with statistical significance.

Next, We are using a Pneumocystis jirovecii DNA 
extraction kit to extract DNA from sputum and bron-
choalveolar lavage fluid samples of both PJP and non-PJP 
patients in the laboratory. Subsequently, we amplify the 
target DNA fragments using a PCR thermal cycler. Then, 
we observe the amplification curve and Ct value of the 
products in the analysis software provided by the instru-
ment to determine whether the PCR result is positive.

Finally, there is the CNN diagnostic method: first, the 
patient’s CT images are read into CNN to extract CT 
image features. Then normalize the patient’s risk fac-
tors to obtain clinical features. Due to the fact that the 
clinical features of patients are binary variables, we will 
mark positive clinical features as "1" and negative clini-
cal features as "0". In addition, due to the possibility of 
missing clinical features in patients, we will mark miss-
ing clinical features as "2". Using the feature fusion func-
tion, the obtained CT image features are fused with 
clinical features to obtain the fused features. Finally, the 
fused features are read into the fully connected layer 
(FC) structure classification to obtain the final diagnostic 
result.

PCR diagnostic method
Pulmonary alveolar lavage fluid (BALF) or sputum was 
centrifuged at 13,000 rpm for 10 min. Sample DNA was 
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extracted using a nucleic acid extraction kit produced 
by Hangzhou Dilan Biotechnology Co., Ltd., following 
the manufacturer’s instructions. Subsequently, the tar-
get gene was amplified using the Dilan Biotechnology PJ 
nucleic acid detection kit, as shown in Fig.  2. The main 
reaction system consisted of 4 μL of extracted DNA 

sample, 4 μL of dNTP Mix, 1 μL of primers, 0.5 μL of 
probes, and 10.5 μL of distilled water (dd  H2O). After 
amplification using a PCR machine, the results were 
analyzed based on a standard curve. The dNTP Mix is a 
premixed reagent containing dNTPs, Taq enzyme, UNG 
enzyme,  MgCl2, and Buffer.

Fig. 1 The experimental flowchart of the study

Fig. 2 The PCR detection process of PJ DNA
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In this study, the target gene was amplified using a 
real-time PCR instrument (Thermo Fisher Scientific, 
Applied Biosystems 7500, USA) under the follow-
ing conditions: 37 °C for 3 min, 95 °C for 5 min. Then 
95 °C for 15 s and 60 °C for 30 s by 40 cycles, as shown 
in Fig.  3. Subsequently, the Ct values of amplifica-
tion curves for each sample were analyzed using ABI 
7500 software v2.3. Finally, experimental results were 
interpreted according to the manufacturer’s instruc-
tions. when the sample Ct values ≤ 36.00 with normal 
amplification curves and the internal reference Ct 
value < 40.00, the result was considered positive.

The CNN method
This paper proposes a method for diagnosing PJP 
using a CNN as the main framework. This study chose 
Densenet121 [19], Resnet50 [20], VGG19 [21] and Incep-
tion-V3 [22] network in convolutional neural networks as 
the core model structures. Taking Densenet121 network 
as an example. The Densenet121 network in the CNN 
is selected as the main framework. Compared to Tradi-
tional CNNs, the Densenet121 network has fewer param-
eters and is computationally more efficient [23].

Next, provide specific examples to introduce the struc-
ture and performance of Densenet121. Densenet121 con-
sists of three dense convolutional blocks [24]. The first 
advantage of the dense connection module is that it has 
fewer parameters compared to traditional CNNs because 

Fig. 3 Process of target gene amplification
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it does not need to re-learn redundant feature maps [25]. 
Secondly, the way dense block connects features makes 
the propagation of features and gradients more efficient, 
making the network easier to train [26]. Each layer of the 
dense block can directly utilize the gradient of the loss 
function as well as the initial input information, which is 
like a form of implicit deep supervision, aiding in training 
deeper networks [27]. The vanishing gradient problem 
becomes more likely to occur as the network gets deeper, 
and the reason for this is the propagation of input and 
gradient information across many layers [28, 29]. This 
dense connection is equivalent to directly connecting the 
input information and loss function to each layer, which 
can mitigate the effect of the vanishing gradient phenom-
enon [30].

Figure  4 illustrates the workflow of this proposed 
method (Taking Densenet121 network as an exam-
ple). Firstly, the patient’s CT images are input into the 
DenseNet121 network, which extracts features from 
the CT images through operations like convolution and 
pooling [31]. Then, a feature fusion function, Concat, is 
used to concatenate the patient’s CT image features with 
clinical information features [32]. Finally, the spliced fea-
tures are input into the last fully connected layer (FC) for 
classification, then the final diagnostic result is obtained 
[33].

Patients selection
The project collected clinical data of PJP at Zhujiang 
Hospital of Southern Medical University, from August 
2022 to August 2023. This study strictly adhered to ethi-
cal rules and obtained approval from the hospital’s Clini-
cal Medical Center Ethics Committee. Since the study 

was retrospective, informed consent from patients was 
not required.

The patient in our study met all of the following inclu-
sion criteria: 1. Age ≥ 18  years; 2. Diagnosed as PJP by 
two or more clinical physicians based on clinical pres-
entations, laboratory, and imaging examination results; 
3. Complete clinical data; 4. Patients can be followed up 
from admission to discharge or death through the elec-
tronic medical record system. At the same time, patients 
meeting any of the following criteria were excluded: 
1. Suspected PJP patients; 2. History of PJP diagnosis 
before; 3. Missing clinical data, including clinical features, 
laboratory results, and chest CT imaging results; 4. Pul-
monary infections caused by other fungi or pathogens.

To validate the reliability of the model, we used non-
PJP patients with other types of pneumonia (Non-PJP) as 
a control group, matched with PJP patients in a 1:1 ratio, 
with age (± 5 years) and gender as matching variables.

Data collection
Review the literature and guidelines related to Pneumo-
cystis jirovecii pneumonia (PJP) [34], find out all possi-
ble diagnostic indicators, clinical features, and chest CT 
imaging characteristics in the diagnosis of PJP, and then 
collect this clinical information from both PJP patients 
and non-PJP patients. Categorize the clinical information 
into clinical manifestations, laboratory test results, chest 
CT images, diagnostic methods, treatment regimens, 
and prognosis. All information is entered into electronic 
medical record forms by one recorder and verified by 
another. Use the chi-square test to analyze the collected 
clinical information, select statistically significant indi-
cators, and identify these selected indicators as risk fac-
tors for PJP. Further, use multivariate logistic regression 

Fig. 4 The workflow of the CNN method
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analysis on these risk factors to identify more statistically 
significant indicators, which are then identified as inde-
pendent risk factors for PJP.

Because this study aims to construct a diagnostic 
model for early PJP, we only collected data from patients 
diagnosed with PJP for the first time, with diagnosis con-
firmed by two clinical physicians. Imaging data was only 
collected from chest CT images meeting the following 
criteria: no prior use of any PJP-specific treatment drugs 
before diagnosis based on clinical symptoms and labora-
tory test results. The chest CT reports for the matched 
patient group were independently classified and reviewed 
by two radiologists.

CT image preprocessing
In order to eliminate the differences in CT images col-
lected by different medical software and devices and 
facilitate model training, this study used image stand-
ardization and resizing methods to normalize CT images 
before model training.

All CT images used in the experiment are three chan-
nel grayscale images, where each pixel is composed of 
three values R, G, and B. In the process of image stand-
ardization, the average value is subtracted from the R, G, 
and B values of each channel in each CT image, and then 
divided by the standard deviation to obtain the standard-
ized image output. Calculate the average and standard 
deviation based on the R, G, and B values of CT images 
in the training set. Afterwards, adjust the size of the 
standardized image to a fixed 256 × 256 pixel size.

Results
Statistical analysis
As shown in Table 1 below, chi-square tests revealed 16 
clinical factors that were statistically significant, includ-
ing blood tumors, organ transplantation, immune-related 
diseases, respiratory failure, chronic kidney disease, 
hypoalbuminemia, mixed infections, immunosuppres-
sant use, long-term steroid use, surgical history, ground-
glass opacity (GGO) on chest CT, mediastinal lymph 
node enlargement, pleural effusion, lymphocyte reduc-
tion, elevated C-reactive  protein (CRP), and positive 
PCR (P < 0.05). To ensure the accuracy of the statistical 
results, laboratory test indicators with some missing data 
were excluded, including procalcitonin (PCT), LDH, and 
 CD4+ T < 200 pcs/μL. Then, multivariable logistic regres-
sion analysis was conducted on the clinically significant 
factors mentioned above, revealing four independent risk 
factors for PJP, which included blood tumors, long-term 
steroid use, ground-glass opacity on chest CT, and a posi-
tive result in PCR testing. All deep learning methods, sta-
tistical analyses, and graphing were performed using IBM 
SPSS Statistic 25.

Results of PCR diagnosis
As shown in Fig. 5, among the 58 cases of PJP, 51 cases 
(87.93%) had a positive PCR result with a Ct value ≤ 36 
and normal amplification curves, while 7 cases (12.07%) 
had a negative PCR result with a Ct value > 36 or no nor-
mal amplification curve. Among the 58 cases of Non-PJP, 
19 cases (32.76%) were positive, and 39 cases (67.24%) 
were negative. In this study, the sensitivity of the stan-
dalone PCR test for PJP was 87.93%, with a specificity of 
67.24% and an accuracy of 77.58%. There was a signifi-
cant statistical difference in PCR test results between PJP 
and Non-PJP (P < 0.001).

Results of the CNN diagnosis
Dataset partitioning
In this study, the CT images of PJP and Non-PJP patients 
were divided into training, validation, and test sets in an 
8:1:1 ratio. The specific division is shown in Fig. 6.

The dataset partitioning of this study is independent 
and random. As shown in Fig. 6, for 58 PJP patients, 46 
patients (464 CT images) were used as the training set, 6 
patients (58 CT images) were used as the validation set, 
and 6 patients (58 CT images) were used as the test set. 
The dataset partitioning rules for Non PJP patients and 
PJP patients are the same. For 58 Non PJP patients, 46 
patients (464 CT images) were used as the training set, 6 
patients (58 CT images) were used as the validation set, 
and 6 patients (58 CT images) were used as the test set.

Experimental design
A total of 600 rounds of training were conducted in this 
study, with the test model saved every 20 rounds, result-
ing in a total of 30 test models.

During the training process, a total of 600 train-
ing epochs were completed. In each epoch, the model 
received a batch of CT images of patients and corre-
sponding clinical information, and produced model 
parameters.

The batch size of the model training is 32. The initial 
learning rate for model training is set to 0.001, which 
determines the degree of continuous updating and auto-
matic adjustment of model parameters. Generate a set of 
model parameters every 20 training periods, which are 
saved and used for model validation on the validation set. 
Select the parameters with the best diagnostic perfor-
mance as the final model parameters, and use the test set 
for the next step of testing. The results of the tests were 
averaged for each model tested.

Statistical analysis
These test models were then used to evaluate the test 
dataset. In this study, accuracy, recall, precision, speci-
ficity, sensitivity, F1 score and Area Under Curve (AUC) 
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were selected as evaluation metrics for the CNN. All 
deep learning methods, statistical analyses, and graphing 
were performed using the Pytorch toolkit and Python 3.7 
(Python Software Foundation, www. python. org).

Training effect of network model
Taking the Densenet121 network model as an example. 
As shown in Figs. 7 and 8, during the 600 training periods 
of the model, the training accuracy and validation accu-
racy of the model gradually improved, while the training 
loss and validation loss gradually decreased. The accuracy 

and training loss curves eventually tend to stabilize. No 
obvious overfitting was observed.

Experimental results
First, input 16 risk factors that have undergone univari-
ate analysis, including the patient’s CT image features, as 
classification criteria into the network. The specific test-
ing results of the top-performing 4 out of 30 test models 
are shown in Table 2. The ROC curves for these four test 
models are shown in Fig. 9.

The four independent risk factors obtained through 
multivariate binary logistic regression analysis were 

Table 1 Clinical characteristics and statistical results of PJP and Non-PJP other types of pneumonia

Variables PJP (N = 58) Non-PJP (N = 58) P-value

Basic Diseases

 Hematologic Malignancies 27 (46.55%) 15 (25.86%) 0.003

 Organ Transplantation 17 (29.31%) 5 (8.62%) 0.008

 Bone Marrow Transplantation 7 (12.07%) 5 (8.62%) 0.762

 Immune Disorders 27 (46.55%) 8 (13.79%) < 0.001

 Respiratory Failure 16 (27.59%) 3 (5.17%) 0.002

 Hypertension 22 (37.93%) 14 (24.14%) 0.16

 Chronic Kidney Disease 26 (44.83%) 14 (24.14%) 0.031

 Chronic obstructive pulmonary disease (COPD) 8 (13.79%) 7 (12.07%) 0.782

 Low Serum Protein 26 (44.83%) 15 (25.86%) 0.033

Medical History

 Mixed Infection 27 (46.55%) 13 (22.41%) 0.011

 Use of Immunosuppressive Agents 42 (72.41%) 20 (34.48%)  < 0.001

 Long-term use of corticosteroids 36 (62.07%) 8 (13.79%)  < 0.001

 1 year with ≥ 2 hospitalizations 43 (74.14%) 33 (56.90%) 0.078

 Mechanical Ventilation 36 (62.07%) 32 (55.17%) 0.572

 Surgical History 34 (58.62%) 20 (34.48%) 0.015

 Radiation and Chemotherapy 24 (41.38%) 15 (25.86%) 0.115

Clinical Symptoms

 Fever (≥ 38℃) 22 (37.93%) 15 (25.86%) 0.232

Laboratory Tests

 Elevated Neutrophil Count 22 (37.93%) 20 (34.48%) 0.847

 Decreased Lymphocyte Count 44 (75.86%) 25 (43.10%) 0.001

 Elevated CRP 56 (96.55%) 45 (77.59%) 0.004

 Elevated procalcitonin 44 (75.86%) 21 (36.21%)  < 0.001

 Elevated LDH 27 (46.55%) 14 (24.14%)  < 0.001

  CD4+ T < 200 pcs/μL 19 (32.76%) 2 (3.45%)  < 0.001

 PJP PCR Positive 51 (87.93%) 19 (32.76%)  < 0.001

Chest CT Imaging

 Ground-glass opacity 30 (51.72%) 9 (15.52%)  < 0.001

 Consolidation 16 (27.59%) 11 (18.97%) 0.272

 Enlarged mediastinal lymph nodes 23 (39.66%) 12 (20.69%) 0.042

 Pleural Effusion 22 (37.93%) 9 (15.52%) 0.011

 Nodules 38 (65.52%) 45 (77.59%) 0.217

 Fibrous Strands Opacity 32 (55.17%) 25 (43.10%) 0.265

http://www.python.org
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used as classification criteria and input into the network 
to obtain four test models, with their corresponding 
AUC curves plotted. The high-performing test models 
obtained from the 4 independent risk factors are shown 
in Table 3, and their ROC curves are displayed in Fig. 10.

Discussion
Based on the above research, the sensitivity of the stan-
dalone PCR test for PJP was 87.93%, with a specificity of 
67.24% and an accuracy of 77.58%. However, the opti-
mal early PJP diagnostic model Densenet121 based on 

convolutional neural networks had a sensitivity of 98%, a 
specificity of 80% and an accuracy of 88.90%. The diag-
nostic model constructed by combining clinical features 
and chest CT images significantly improves diagnostic 
accuracy compared to a standalone PCR test report. In 
clinical practice, inputting a patient’s clinical informa-
tion and lung CT images into the model proposed in 
this study can efficiently and rapidly predict the risk of 
PJP infection. Timely clinical intervention can be taken 
for high-risk patients to reduce complications and lower 
mortality.

Although the current gold standard for diagnosing 
PJP is to detect cysts or trophozoites in lower respira-
tory tract specimens through traditional staining or 
immunofluorescence staining methods, with the lat-
ter having higher sensitivity than traditional staining, 
in actual clinical practice, due to cost considerations, 
immunofluorescence staining is rarely used, and most 
cases employ traditional staining methods. Therefore, 
the observation of pathogens through traditional stain-
ing methods often serves as the basis for diagnosis, 
despite the low sensitivity and cumbersome operation 
of traditional staining methods, and whether patho-
gens can be found depends on the observer’s experi-
ence. In addition, non-HIV patients are prone to false 
negatives due to low fungal loads. Among the 58 PJP 
patients in this experiment, two experienced senior 
laboratory physicians observed only 3 positive cases 
under a microscope using traditional staining methods, 

Fig. 5 PCR positivity rate in PJP and Non-PJP patients

Fig. 6 Schematic diagram of data partitioning
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further confirming the low sensitivity of traditional 
staining methods. In recent years, bronchoalveolar lav-
age fluid combined with metagenomic next-generation 

sequencing (mNGS) has been used in clinical practice 
due to its rapidity and high detection rate. However, 
the high cost of mNGS and its inability to distinguish 

Fig. 7 Trends in model training loss and validation loss

Fig. 8 Trends in model training accuracy and validation accuracy
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Table 2 Testing results of models using 16 risk factors as diagnostic indicators

Models Accuracy Recall Precision Specificity Sensitivity F1 AUC 

Resnet50 81.30% 0.93 78.30% 0.73 0.93 0.76 0.85

VGG19 83.50% 0.97 79.50% 0.79 0.97 0.81 0.81

Inception-V3 80.60% 0.95 76.40% 0.74 0.95 0.78 0.84

Densenet121 84.50% 0.97 78.00% 0.73 0.97 0.86 0.84

Fig. 9 ROC curves for the models: Graphs (a) to (d) show the ROC curves of Resnet50, VGG19, Inception-V3, Densenet121, respectively
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Table 3 Testing results of models using 4 independent risk factors as diagnostic indicators

Models Accuracy Recall Precision Specificity Sensitivity F1 AUC 

Resnet50 85.60% 0.93 86.40% 0.73 0.93 0.76 0.85

VGG19 86.20% 0.99 82.30% 0.80 0.99 0.86 0.89

Inception-V3 84.50% 0.96 81.50% 0.74 0.96 0.77 0.87

Densenet121 88.90% 0.98 82.90% 0.80 0.98 0.90 0.88

Fig. 10 ROC curves for the models: Graphs (a) to (d) show the ROC curves of Resnet50, VGG19, Inception-V3, Densenet121, respectively
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colonization from infection can lead to unnecessary 
overtreatment based solely on mNGS results. Moreo-
ver, interference from human DNA, microbial loads, 
and incomplete fungal databases are all shortcomings 
of mNGS. The PCR mentioned in this study is a com-
monly used PJP detection method in clinical practice. It 
not only has high sensitivity, capable of detecting very 
low levels of fungal loads undetectable by immuno-
fluorescence staining, and can essentially rule out PJP 
based on negative predictive values, but it is also much 
cheaper than mNGS. However, PCR has relatively low 
specificity, so standalone PCR test results also have lim-
itations in distinguishing colonization from infection.

Given the current state of PJP diagnosis, we will iden-
tify all possible diagnostic indicators, clinical features, 
and chest CT imaging features related to PJP based on 
the literature and guidelines. Then, from these clinical 
features, we will select independently significant risk 
factors with statistical significance. We will build an 
early diagnosis model for PJP by combining PCR test 
results with clinically significant features and lung CT 
imaging. Compared to standalone PCR testing, this 
model showed an increase in sensitivity, specificity, 
and accuracy by 10.07%, 12.76%, and 11.32% respec-
tively. Additionally, colonization and infection of PJP 
also depend on the patient’s own immune status. In our 
model, clinical features are closely related to this con-
dition, demonstrating that our model provides a more 
comprehensive and reliable diagnosis compared to 
standalone PCR analysis.

However, it is important to note that this study has 
limitations, including limited sample size and the 
lack of validation through animal model experiments. 
Although the preliminary results are promising, the 
lack of data may affect the diagnostic performance of 
the model. We believe that incorporating more CT 
images and a larger volume of clinical information from 
patients can improve the model’s diagnostic efficacy. 
Although this paper used statistical methods to iden-
tify patient risk factors as diagnostic indicators for the 
neural network model, clinical physicians need to com-
prehensively consider the patient’s clinical presentation 
in the diagnostic process, rather than solely focusing on 
statistically significant risk factors. Therefore, in practi-
cal applications, this method can serve as an auxiliary 
diagnostic tool for clinicians in disease assessment.

As medical research continues to advance, treatment 
methods evolve, algorithmic capabilities improve, and 
medical diagnostic technologies enhance, the future 
holds promise for the integration of artificial intelli-
gence techniques with clinical data to offer new diag-
nostic and treatment strategies for PJP patients in 
clinical practice.

Conclusion
This article proposes an early diagnosis method for 
PJP based on CNN. Compared with independent PCR 
methods, the accuracy of CNN-based PJP diagnostic 
methods is 11.32% higher than that of PCR detection. 
This study overcomes the limitations of traditional PJP 
diagnostic methods and develops a non-invasive, effi-
cient, and accurate PJP diagnostic method. By using 
this method, PJP patients can receive early diagnosis 
and treatment, effectively improving prognosis.
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