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Abstract

Background The application of radiomics in thoracic lymph node metastasis (LNM) of lung adenocarcinoma

is increasing, but diagnostic performance of radiomics from primary tumor to predict LNM has not been systemati-
cally reviewed. Therefore, this study sought to provide a general overview regarding the methodological quality

and diagnostic performance of using radiomic approaches to predict the likelihood of LNM in lung adenocarcinoma.

Methods Studies were gathered from literature databases such as PubMed, Embase, the Web of Science Core Collec-
tion, and the Cochrane library. The Radiomic Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy
Studies-2 (QUADAS-2) were both used to assess the quality of each study. The pooled sensitivity, specificity, and area
under the curve (AUQC) of the best radiomics models in the training and validation cohorts were calculated. Subgroup
and meta-regression analyses were also conducted.

Results Seventeen studies with 159 to 1202 patients each were enrolled between the years of 2018 to 2022, of which
ten studies had sufficient data for the quantitative evaluation. The percentage of RQS was between 11.1% and 44.4%
and most of the studies were considered to have a low risk of bias and few applicability concerns in QUADAS-2. Pyra-
diomics and logistic regression analysis were the most commonly used software and methods for radiomics feature
extraction and selection, respectively. In addition, the best prediction models in seventeen studies were mainly based
on radiomics features combined with non-radiomics features (semantic features and/or clinical features). The pooled
sensitivity, specificity, and AUC of the training cohorts were 0.84 (95% confidence interval (Cl) [0.73-0.91]), 0.88 (95%
C1[0.81-0.93]), and 0.93(95% CI [0.90-0.95]), respectively. For the validation cohorts, the pooled sensitivity, specificity,
and AUC were 0.89 (95% CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]) and 0.94 (95% CI [0.91-0.96]), respectively.

Conclusions Radiomic features based on the primary tumor have the potential to predict preoperative LNM
of lung adenocarcinoma. However, radiomics workflow needs to be standardized to better promote the applicability
of radiomics.
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Introduction

Lung cancer is currently the second most common
cancer in incidence and the leading cause of cancer-
related mortality in the world [1]. Adenocarcinoma is
the most common histological subtype [2] and lymph
node metastasis (LNM) is the main mode of cancer
metastasis. Accurate preoperative prediction of LNM
is of great significance in the treatment and prognosis
prediction of adenocarcinoma [3]. Currently, diagnos-
tic methods are classified as either invasive or non-
invasive. Invasive procedures such as mediastinoscopic
biopsy, ultrasound-guided bronchial needle aspira-
tion or lymph node sampling, which will carry risks of
postoperative complications to the patient [4, 5]. Non-
invasive measures on the other hand are commonly the
next best test of choice. Radiological studies like com-
puted tomography (CT), magnetic resonance imaging
(MRI) and positron emission tomography/computed
tomography (PET/CT), have all demonstrated potential
diagnostic efficacy in identifying LNM [6, 7]. Yet, false
negative and false positive judgments may be occurred
on CT and PET/CT due to some clinical and radiologi-
cal factors, such as micrometastasis or inflammatory
hyperplasia [8, 9]. While MRI is non-radiation and can
offers apparent diffusion coefficient characteristics,
motion artifacts would limit its assessment in tumor
heterogeneity [7, 10].

To improve the efficacy of diagnosis, many studies
have relied on radiomics to predict LNM of non-small
cell lung cancer [11-13]. Radiomics is a non-invasive
technique which can be applied to traditional imaging
modalities to extract and quantify radiomic features
[14]. Recently, radiomics has already been applied for
the identification of malignancy [15] and histologi-
cal subtypes [16], prediction of gene expression [17],
and assessment of treatment response in lung cancer
[18]. Radiomic features can be extracted from differ-
ent regions of interest (ROIs) such as the intratumoral
and/or peritumoral areas [19-22]. For example, Das
SK et al. improved the performance of predicting
c¢T1INOMO lung adenocarcinoma by combining features
of the intratumor region, the peritumoral region and
lymph node [23].

With radiomic approaches becoming more common
in medical research, it was hypothesized that radiomic
features of primary tumor would be instrumental in
predicting the possibility of LNM in lung adenocar-
cinoma. Therefore, the purpose of this review was to

provide a general overview of the methodological qual-
ity and evaluate diagnostic performance in radiomics
for the prediction of LNM in lung adenocarcinoma.

Methods

This systematic review and meta-analysis was reported in
accordance with the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses for Diagnostic Test
Accuracy (PRISMA-DTA) guidelines (Additional file 1:
Table S1) and was registered on PROSPERO database for
systematic reviews (CRD42022375712) [24].

Database search strategy

A comprehensive search of PubMed, Embase, the Web
of Science Core Collection and the Cochrane library was
conducted until November 16, 2022. Search terms such
as “lung adenocarcinoma’; “machine learning’, “radiom-
ics’, and “lymph node metastasis” were included. The
detailed search strategy was described in Table S2 (Addi-
tional file 1). No language or publication date restrictions
were placed on the initial database search.

Study selection

Studies were selected if they met all inclusion criteria: (1)
patients with lung adenocarcinoma confirmed by pathol-
ogy; (2) articles based on CT/MRI/PET-CT radiomics to
evaluate the likelihood of preoperative LNM; (3) the ROI
for segmentation contained the primary tumor; (4) arti-
cles were published in English. Studies were excluded if
they met any of the following exclusion criteria: (1) case
studies, editorials, letters, review articles and conference
abstracts; (2) studies not in the field of interest.

Data extraction

Two independent investigators firstly extracted the fol-
lowing information from each selected study: (1) study
details: first author, publication year, country of origin,
study design; (2) patient details: the source of data acqui-
sition, criteria for lymph node staging, diameter and
density of primary tumor, diagnostic method of LNM,
number of patients and negative/positive LNM in the
training/internal validation/external validation cohort,
clinical stage; (3) imaging details: imaging modality; (4)
radiomic details: segmentation method and software,
RO, radiomic feature extraction software and method,
number of radiomic features extracted, type of radiomic
features extracted, type of models constructed, the best
performance model, number of radiomic/non-radiomic
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features included in the best performance model; (5)diag-
nostic performance: sensitivity, specificity and area under
the curve (AUC)/concordance index (C-index) of the
prediction models.

If more than one predictive model was included in a
study, the radiomics model with the highest AUC/C-
index in the training and validation cohort was included
in the quantitative evaluation, respectively [25, 26]. If
an internal validation cohort and an external validation
cohort were included in a study, we included data from
both cohorts.

Risk of bias assessment

The Radiomic Quality Score (RQS) [27] was used to
evaluate the procedural validity of each study (Additional
file 1: Table S3). The RQS provided rigorous evaluation
criteria and reporting guidelines for radiomic studies
[27]. The total score ranged from -8 to 36, and sixteen
items are assigned corresponding scores [27]. The Qual-
ity Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) [28] was used to determine the risk of bias and
the applicability of each included study (Additional file 1:
Table S4). The QUADAS-2 tools was first divided into
two broad categories: the risk of bias and the applicabil-
ity concerns [28]. The former included features such as
patient selection, index test, reference standard, flow and
timing [28]. The latter examined similar parameters with
patient selection, index test and reference standard [28].
Based on basic answers of "yes", "no", or "unclear" for
each item, the level was rated as "low", "high", or "unclear”
[28]. The RQS and QUADAS-2 were used to evaluate the
quality of the literature independently by two authors.
Discrepancies were rediscussed and evaluated to reach a
consensus.

Statistical analysis
Firstly, we extracted sample size, sensitivity, and specific-
ity of the best radiomics models in the training and vali-
dation cohorts from the studies. Then the number of true
positives, false positives, false negatives, and true nega-
tives were calculated by Review Manager 5.4.
Quantitative evaluation was performed using the
midas command in Stata 17.0 software. Pooled sensitiv-
ity, specificity, positive likelihood ratio (PLR), negative
likelihood ratio (NLR), diagnostic odds ratio (DOR), and
AUC were calculated, and summary receiver operating
characteristic curve (SROC) was created. Heterogeneity
was assessed using Cochrane Q-test (two-sides p<0.05
was considered statistically significant) and I? statis-
tic (I? values of 25%, 50% and 75% represent low, mod-
erate and high heterogeneity, respectively) from forest
plots [29]. Spearman rank coefficients was performed to
determine whether there was heterogeneity caused by
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threshold effect. The sources of heterogeneity were fur-
ther analyzed by subgroup and univariate meta-regres-
sion analyses.

Results

Literature search and extraction

A total of 7087 studies were obtained by the search strat-
egy of which 1959 remained after removing duplicates.
After, 5034 articles did not meet the inclusion criteria
based on title and abstract and 94 studies were exam-
ined in full text. Among them, 42 studies were not related
to radiomics, 34 studies covered patients beyond lung
adenocarcinoma, and the imaging modality of 1 study
was not of interest (ultrasound). Finally, this systematic
review involved 17 studies containing a total of 7,117
patients [23, 30-45]. Seven studies [30, 31, 35, 37-39,
44] were excluded due to lack of sufficient data, and 10
studies [23, 32—-34, 36, 40—43, 45] were included in the
meta-analysis. Figure 1 illustrates the PRISMA flow chart
for the included studies in this review.

Patient and study characteristics

Table 1 presents the basic characteristics for all 17 ret-
rospective studies which were published between 2018
and 2022 [23, 30—45]. Most of the studies (14/17, 82.4%)
were derived from one center [30-39, 41, 42, 44, 45]. And
almost all of the studies (16/17, 94.1%) were from China
[23, 30, 32-45], except for one from the United States
[31]. The included studies (11/17, 64.7%) [23, 31-34, 36,
37, 39-41, 44] usually used the 8th edition of tumor-
node-metastasis staging system as the standard for
lymph node staging [46].

All studies relied on surgical resection for the diagnosis
of LNM. One study also included lymph node sampling
[43], and one study included CT follow-up validation
[44]. The number of patients included ranged from 159 to
1202. Eleven studies (11/17, 64.7%) [23, 32, 34, 35, 37, 38,
41-45] had internal validation cohorts and eight studies
[23, 30, 38—40, 43—-45] had external validation cohorts.
Eight studies selected patients with clinical stage NO at
enrollment [23, 30, 31, 33, 35, 36, 39, 40].

Radiomics workflow

CT was the primary imaging modality in 13 studies [23,
30-38, 40, 42, 45]. In addition, '*F-PET/CT was used in
five studies [36, 39, 41, 43, 44]. The ROIs were manually
segmented in 11 studies [23, 30, 33, 34, 3638, 40, 42, 44,
45], semi-automatically in five studies [31, 35, 39, 41, 43]
and fully automatically in one study [32] (Table 2). There
were eight types of ROI segmentation software, among
which the most frequently used was ITK-SNAP [23, 37,
41, 44, 45]. All studies included primary tumors in their
ROI segmentation [23, 30—45].
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Fig. 1 Flowchart of the study screening and selection process

A total of seven different software was applied for the
extraction of radiomic features in each study, among
which Pyradiomics was the most used [32, 34, 35, 37,
38, 40, 45] (Table 2). The common methods of radiomic
feature selection were logistic regression analysis [23,
30-32, 36, 39, 40, 42, 44, 45] and least absolute shrink-
age and selection operator method [23, 32, 34, 35, 39—
44]. The number of radiomics features included ranged
from 1 to 32 in each of the best models, except for one
study in which the best model included only seman-
tic features without radiomic features [36]. The types
of prediction models constructed ranged from 1 to 7,
and most of the best models (15/17, 88.2%) were mod-
els that combined radiomic and non-radiomic features

A4

® Lack of sufficient data (n =7)

(semantic features and/or clinical features) (Additional
file 1: Table S5) [23, 30-32, 34, 35, 37-45].

Quality assessment

The overall RQS and percent RQS for each study are pre-
sented in Table 3 and Fig. 2, along with the scores for the
individual components. The median RQS total scores
was 14 (range 4 — 16) and 38.9% (range 11.1% — 44.4%).
Most studies (8/17, 47.1%) had RQS scores between 30%
and 40% (Fig. 2a). No study scored in the four items of
“Cost-effectiveness analysis’, “Prospective study” “Bio-
logical correlates” and “Imaging at multiple time points”

(Fig. 2b).
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Table 3 Radiomic quality scores for all included studies

Study ID Image Multiple  Inter-scan- Imaging at multiple time points Feature Non- Biological ~ Cut-off analyses
protocol  segmen-  ner Dif- 0—1) reduction radiomics  correlates  (0—1)
quality tations ferences or adjust- features 0—1)
(0—2) (0—1) 0—1) ment (-3—3) (0—1)
2018 Gu [30] 1 1 0 0 3 1 0 1
2018 Liu [31] 1 1 0 0 3 1 0 0
2018Yang [32] 1 0 0 0 3 1 0 1
2018 Zhong 1 1 0 0 3 0 0 1
[33]
2019 Wang [34] 1 1 0 0 3 1 0 1
2019Yang [35] 1 1 0 0 3 1 0 0
2020 Zhu [36] 1 1 0 0 3 0 0 1
2021 Das [23] 1 0 1 0 3 1 0 0
2021 Li[37] 1 1 0 0 3 1 0 0
2021 Ran[38] 1 0 0 0 3 1 0 0
2021 Wang [39] 1 1 0 0 3 1 0 0
2021 Zhang 1 1 0 0 3 1 0 0
[40]
2022 Chang 1 1 0 0 3 1 0 1
[41]
2022 Chen[42] 1 1 0 0 3 1 0 1
2022 Dai [43] 1 1 0 0 3 1 0 0
2022 Lv [44] 1 0 0 0 3 1 0 0
2022 Ma [45] 1 1 0 0 3 1 0 0
Median score 1 1 0 0 3 1 0 0
Study ID Discrimi-  Calibra- Prospec-  Validation (-5—5)  Comparison Potential Cost-effec- Open Total points
native tion tive study togold stand-  clinical utility tiveness science (-12—36)
statistics ~ statistics ~ (0—7) ard (0—2) (0—2) analysis and data
0—2) 0—2) 0—1) 0—4)
2018 Gu [30] 2 2 0 2 2 0 0 0 15
2018 Liu [31] 2 1 0 -5 2 2 0 0 8
2018Yang [32] 2 1 0 2 2 2 0 0 15
2018 Zhong 2 0 0 2 0 0 0 12
[33]
2019 Wang [34] 2 0 0 2 2 0 0 0 13
2019Yang [35] 2 1 0 2 2 0 0 0 13
2020 Zhu [36] 1 0 0 -5 2 0 0 0 4
2021 Das [23] 2 1 0 3 2 2 0 0 16
2021 Li [37] 1 1 0 2 0 2 0 0 12
2021 Ran [38] 2 1 0 2 2 2 0 0 14
2021 Wang [39] 1 1 0 2 2 2 0 0 14
2021 Zhang 2 1 0 3 2 2 0 0 16
[40]
2022 Chang 2 1 0 2 2 2 0 0 16
[41]
2022 Chen [42] 2 0 0 2 0 2 0 0 13
2022 Dai [43] 2 1 0 3 2 2 0 0 16
2022 Lv [44] 2 0 0 2 2 0 0 1 12
2022 Ma [45] 1 1 0 2 2 2 0 1 15
Median score 2 1 0 2 2 2 0 0 14
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(a) Proportion of studies with different RQS percentage score.
Radiomics Quality Score (%)
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(b) Percentage of the 16 components of the included studies with different scores in the RQS.
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Fig. 2 Qualitative quality assessment evaluated through the Radiomics Quality Score (RQS) tool. a Proportion of studies with different RQS
percentage score. b Percentage of the 16 components of the included studies with different scores in the RQS
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The distribution of the QUADAS-2 scores for each
included study was shown in Table S6 (Additional file 1)
and Fig. 3. The risk of bias in patient selection was low in
13 studies and unclear in 4 studies. The risk of bias for the
index test was low in 10 studies and unclear in 7 studies.
The risk of bias for the reference standard test was low in
17 studies. The risk of bias for flow and timing was low
in 14 studies, unclear in 2 studies, and high in 1 study.
Most studies were assessed as having a low risk of bias
and minimal concerns regarding applicability.

Data analysis

Diagnostic performance

The diagnostic efficacy of each study will be presented
in Table S7-S9 (Additional file 1:). Ten studies were
included in this meta-analysis, in which the pooled sensi-
tivity, specificity, PLR, NLR, DOR and AUC in the train-
ing cohorts were 0.84 (95% CI [0.73-0.91]), 0.88 (95% CI
[0.81-0.93]), 7.0 (95% CI [4.5-11.0]), 0.18 (95% CI [0.11-
0.31]), 39 (95% CI [19-78]), 0.93 (95% CI [0.90-0.95]),
respectively. Meanwhile, three studies did not evaluate
the diagnostic performance of the validation cohorts due
to the lack of validation cohorts [33, 34, 36]. The pooled
sensitivity, specificity, PLR, NLR and DOR of 11 internal
and external validation cohorts from 7 studies were 0.89
(95%CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]), 6.3 (95%
CI [3.4-11.8]), 0.12 (95% CI [0.08—0.20]), 52 (95% CI [27—
97]), 0.94 (95% CI [0.91-0.96]), respectively. Figure 4 and
Fig. 5 show the forest plots and SROC plots for the train-
ing and validation cohorts, respectively. High heteroge-
neity was observed in the sensitivity and specificity of the
training cohorts (p<0.01, ’=89.98; p<0.01, [>=92.84).
Since only seven studies involved the validation cohorts,
we mainly explored the sources of heterogeneity of the
ten studies for the training cohorts. Spearman correla-
tion coefficient was -0.45 (p=0.17), indicating that het-
erogeneity due to threshold effects may be low.

FLOW AND
TIMING

REFERENCE
STANDARD

INDEX
TEST

PATIENT
SELECTION

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Proportion of studies with low, high or unclear
RISK of BIAS
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Investigation of heterogeneity

Subgroup analysis was performed on the training cohorts
of 10 studies, mainly including the following categories:
(1) imaging modality: CT, PET/CT; (2) clinical stage:
clinical NO, others; (3) sample size: <300, >300; (4) pri-
mary tumor diameter:<30 mm, others; (5) segmenta-
tion method: manual, semi-automated/automated; (6)
ROL: only primary tumor, including peritumoral/lymph
node region; (7) radiomic software: Pyradiomics, oth-
ers. From Table 4, radiomic features based on primary
tumor showed high diagnostic performance in predicting
LNM of lung adenocarcinoma in all subgroups. Univari-
able meta-regression analysis further performed, which
showed that primary tumor diameter (p<0.01) was a
possible source of heterogeneity in sensitivity. Imaging
modalities (p <0.001), sample size (p <0.05), and radiom-
ics software (p <0.05) were possible sources of heteroge-
neity in terms of specificity (Fig. 6).

Discussion

This study revealed that radiomic features extracted from
the primary tumor have the potential to predict preoper-
ative LNM in lung adenocarcinoma. The QUADAS-2 and
RQS tools were applied to assess the risk of bias and the
quality of the radiomic method. Meta-analysis was used
to quantitatively evaluate the diagnostic performance
of the best radiomics models. Obviously, the radiomics
models achieved satisfactory diagnostic performance in
both the training and validation cohorts. However, the
low methodological quality of the systematic review and
the high heterogeneity of the quantitative meta-analysis
suggest that radiomics models still need to be further
improved to better assist the clinical practice.

The clinical diagnosis of positive LNM is usually based
on imaging findings (e.g., short axis diameter of lymph
nodes>10 mm on CT, maximum standardized uptake
value >2.5 on PET/CT). However, the subjective factors

low © high © unclear

REFERENCE
STANDARD

INDEX
TEST

PATIENT
SELECTION

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Proportion of studies with low, high or unclear
CONCERNS regarding APPLICABILITY

Fig. 3 The percentage of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) scoring criteria
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Fig. 4 Coupled Forest plots of pooled sensitivity and specificity. a The training cohorts. b The validation cohorts. (internal: an internal validation
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The validation cohorts.
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Fig. 5 Summary receiver operating characteristic curves (SROC) of the diagnostic performance. a The training cohorts. b The validation cohorts

Table 4 Diagnostic performance of subgroup analysis

Subgroup No. of studies Sensitivity (95% Cl) Specificity PLR(95% Cl) NLR(95%Cl) DOR(95% Cl) AUC(95% Cl)
(95% Cl)
Overall 10 0.84(0.73-0.91) 0.88(0.81-0.93) 7.0(4.5-11.0) 0.18(0.11-0.31) 39(19-78) 0.93(0.90-0.95)
Imaging Modality
cT 0.84(0.70-0.92) 0.87(0.79-0.92) 6.3(4.0-9.8)  0.19(0.10-0.36)  34(15-79) 0.92(0.89-0.94)
PET-CT / / / / / /
Clinical Stage
Clinical NO 0.78(0.48-0.93) 0.89(0.80-0.95) 7.4(4.1-132)  0.24(0.09-0.68)  30(9-102) 0.92(0.89-0.94)
Others 0.87(0.79-0.92) 0.87(0.76-0.94) 6.8(3.6-12.8) 0.15(0.10-0.24)  44(20-96) 0.93(0.90-0.95)
Sample Size
<300 0.78(0.57-0.91) 0.85(0.75-091) 5.3(3.6-7.6) 0.26(0.13-0.52)  21(11-37) 0.89(0.86-0.92)
>300 0.87(0.78-0.93) 0.90(0.80-0.95) 9.0(4.3-188) 0.14(0.08-0.25) 65(24-174) 0.95(0.92-0.96)
Primary Tumor Diameter
<30 mm 0.73(0.51-0.87) 0.89(0.72-0.96) 6.9(2.8-17.1)  0.31(0.17-0.56)  23(9-56) 0.88(0.85—0.91)
Others 0.89(0.80-0.94) 0.87(0.82-0.91) 7.0(4.7-10.5)  0.12(0.07-0.23) 56(23-136) 0.94 (0.92-0.96)
Segmentation Method
Manual 7 0.84(0.67-0.93) 0.88(0.80-0.93) 6.8(4.1-11.0)  0.19(0.09-0.39) 36(14-94) 0.92(0.90-0.94)
Semi-automated / 3 / / / / / /
Autometed
ROI
Only primary tumor 0.84(0.70-0.92) 0.91(0.85-0.94) 8.9(5.7-13.9) 0.18(0.09-0.34) 51(24-108) 0.94(0.92-0.96)
Including peritumora/ / / / / / /
LN reigon
Radiomic Software
Pyradiomics 4 0.82(0.69-0.90) 0.85(0.74-0.92) 54(2.8-10.3) 0.22(0.12-0.39) 25(8-78) 0.90(0.87-0.92)
Others 6 0.86(0.69-0.95) 0.90(0.81-0.95) 8.6(4.8-154) 0.15(0.07-0.36) 55(25-122) 0.94(0.92-0.96)

AUC area under the curve, Cl confidence interval, DOR diagnostic odds ratio, NLR negative likelihood ratio, PLR positive likelihood ratio, ROl region of interest
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Univariable Meta-regression & Subgroup Analyses
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Fig. 6 Univariable Meta-regression analysis plot to investigate sources of heterogeneity. (Small Sample Size: sample sizes < 300; Diameter: primary

tumor diameter <30 mm)

of manual identification and the limits of the naked eye
are highly likely to induce unwanted bias, such as occult
LNM [8, 9, 47, 48]. Radiomics can directly extract fea-
tures from the ROIs of macroscopic images (such as
primary tumor, peritumoral area, etc.) for quantitative
analysis in a high-throughput manner [49]. In this review,
radiomics studies based on the primary tumor were
included. Based on the characteristics of the primary
tumor, the severity of tumor hypoxia and angiogenic
effects of the primary lesion can be identified to evaluate
tumor heterogeneity [50]. Cancerous cells within the pri-
mary tumor can proliferate by generating new lymphatic
vessels in a variety of ways [51] or they can metastasize to

the mediastinum through abundant subpleural drainage
(37, 52].

The RQS was able to assess the quality of the radi-
omic methods; however, the best score achieved in the
included studies was 16 (44.4%) [23, 40, 41, 43]. The rea-
son for this result was that 17 studies had a low score
in each item of the RQS, which meant that there was a
lack of standardized workflow for radiomics research
(Table 3). In terms of imaging, all studies documented
good image protocol quality and multiple segmentations.
However, few studies explored the differences between
various scanners and provided open data sources, which
will lead to low reproducibility of radiomics research. The
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choice of ROI segmentation method also had a certain
effect. The accuracy of manual segmentation is high, but
it is limited by time consumption and inter-reader vari-
ation. In one study, radiomic features were not included
in the best prediction model, likely because only three
independent features were selected for analysis due to
the small sample size [36]. Skewness was incorporated
as a radiomics feature in the best prediction models of 5
studies [30, 34, 35, 38, 43], and one study found that the
skewness of lymph node positive lesions was significantly
lower than that of negative lesions [30]. Meanwhile, the
biological validation of models can facilitate the clini-
cal translation of radiomics. Although two studies com-
bined genes or proteins [44, 45], neither of them was
statistically significant. Finally, multi-center validation
is an important key to reduce overfitting and optimize
the model. Therefore, future radiomics studies would be
better follow standardized workflows, such as obtain-
ing large and high-quality multi-center datasets, ensur-
ing consistent image acquisition parameters, developing
accurate and reproducible segmentation methods, and
correlating with genomics or proteomics.

According to the QUADAS-2 results, most studies were
of a low risk and had good applicability, which may be due to
the inclusion of appropriate patient groups and the selection
of gold standards for reference. However, some studies were
unclear about the selection of participants and whether
the use of gold standards was made uninformed decisions.
Thus, future studies are needed to illustrate the exclusion
criteria and procedures for patient selection clearly, as well
as whether there is an appropriate time interval between the
reference standard and imaging examination.

The high heterogeneity of radiomics models in quantita-
tive evaluation cannot be ignored, although they showed
good diagnostic performance. We observed whether the
primary tumor was<30 mm as a possible source of heter-
ogeneity in sensitivity. Tumor diameter was also identified
as an important predictor among non-radiomic features in
this review (Additional file 1: Table S5) [34, 35, 37, 40, 43].
Similarly, patients with a relatively large primary tumor
diameter tend to have a relatively high probability of LNM
and poor prognosis [46]. Meanwhile, in terms of specific-
ity, imaging modality, sample size and radiomics software
were possible sources of heterogeneity. This review mainly
included CT-based radiomics models, and its diagnostic
performance compared with other imaging modalities (PET
or PET/CT) remains to be studied. One of the included
studies compared the performance of radiomic prediction
models derived from different imaging modalities (CT, PET,
or PET/CT) and showed that PET/CT yielded best results
than the other [41]. Larger sample size will allow for a more
comprehensive assessment of a radiomics study, and public
database could expand the sample size for the study [53].
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Different radiomics feature extraction software was used
in this review, which led to the heterogeneity in specificity.
One study showed that discrepancies were present in seven
different radiomics feature extraction software [54]. There-
fore, for the differences caused by image acquisition, it is
necessary to perform image normalization (such as resam-
pling, etc.) or follow the standardization protocol of image
acquisition and reconstruction in further studies [55], which
will be of great help to the stability of radiomics feature
extraction. In addition, the algorithms and codes of radiom-
ics feature software would be better conform to the image
biomarker standardization initiative to improve its repro-
ducibility and verify in multiple cohorts [54].

There were also some limitations in this systematic
review. Firstly, almost all the included studies were from
China. Therefore, some geographic bias may be present
due to the greater prevalence of adenocarcinoma in Asian
populations. Secondly, all studies were retrospective, and
only three studies used multicenter data. This may lead to
selection bias. Third, studies on MRI were not included
in this review due to a lack of matching studies. Fourthly,
low RQS and high QUADAS-2 results may have some
impact on the literature quality assessment. Finally, only
10 of the included articles were used for meta-analysis,
and they showed high heterogeneity. Although we found
possible sources of heterogeneity, more studies are
needed to further explore it in the future.

Conclusions

In conclusion, this review summarized that radiomic
features based on the primary tumor have the potential
to predict preoperative LNM of lung adenocarcinoma.
However, future research needs standardized radiomics
workflow such as multi-center and prospective studies to
promote the applicability of radiomics.
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