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Abstract
Introduction  Lung cancer is a common malignant tumor, and different types of immune cells may have different 
effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) 
and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is 
still unclear.

Methods  This study utilized a comprehensive dataset containing 731 immune phenotypes from the European 
Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC 
and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, 
including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study 
results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the 
Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings.

Results  Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically 
significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627–1.1344, 
p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated 
with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177–0.9625, 
p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established 
between any immune cell phenotypes and LUAD.

Conclusion  This study demonstrates that specific immune cell types are associated with the risk of LUSC but not 
with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper 
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Introduction
Lung cancer is the second most prevalent cancer world-
wide, where non-small cell lung cancer (NSCLC) is the 
principal pathological phenotype [1]. NSCLC encom-
pass two major subtypes, lung squamous cell carcinoma 
(LUSC) and lung adenocarcinoma (LUAD), based on 
their cell origin, morphology, and biological characteris-
tics [2]. Research recognizes a number of risk factors that 
contribute to lung cancer, such as smoking, past pulmo-
nary diseases, air pollutants, and occupational carcino-
gens [3, 4]. The identification and screening of potentially 
alterable risk factors are essential to lower the incidence 
of lung cancer, thereby aiding in its early diagnosis and 
treatment.

Research has reported that the inflammatory immune 
mechanism is an important feature of the tumor immune 
microenvironment (TIME) and is associated with poor 
prognosis in cancer [5, 6]. The location, type, density, and 
functional status of immune cells constitute the immune 
structure of the TIME, which varies among patients with 
NSCLC [7]. Immune cells may exhibit dual roles in both 
anti-tumor and pro-tumor effects. For example, CD8+ 
T cells and natural killer (NK) cells mediate anti-tumor 
responses, showing better overall survival, disease-free 
survival, and progression-free survival [8, 9]. Conversely, 
regulatory T cells (Tregs) can secrete inhibitory cyto-
kines such as transforming growth factor-beta (TGF-
β) and interleukin-10 (IL-10). By inhibiting anti-tumor 
responses of helper T cells (Th1) and attracting activated 
Th2 cells, Tregs promote the progression of lung cancer 
through angiogenesis and immune suppression [10–12]. 
Observational research revealed that increased propor-
tions of regulatory T cells and M2 macrophage indicated 
poor survival in advanced NSCLC patients [13]. Gaud-
reau et al. found that neoadjuvant chemotherapy is asso-
ciated with increased infiltration of cytotoxic CD8+ T 
cells and CD20+ B cells, promoting anti-tumor immunity 
through changes in the phenotype of cytotoxic and mem-
ory CD8+ and CD4+ T cells [14]. McGrail et al. suggested 
that the count of CD8+ T cells in lung cancer is positively 
correlated with neoantigen load, with a significantly 
higher objective response rate in tumors with high tumor 
mutation burden (TMB) compared to those with low 
TMB [15]. Devi-Marulkar et al. observed high expres-
sion of TIGIT and CTLA-4 in TIL-Tregs within tertiary 
lymphoid structures (TLS) and non-TLS areas, indicating 
their involvement in the immune inhibitory mechanisms 
of lung tumors [16]. Moreover, chronic inflammation 
is also closely associated with the development of lung 

cancer, manifested by the infiltration and accumulation of 
inflammatory cells and the buildup of pro-inflammatory 
factors [17]. Despite extensive research on the genomic 
landscape of lung cancer, new factors that contribute to 
lung cancer are still being discovered [18, 19].

Mendelian randomization (MR) is an analytical method 
used for epidemiological causal inference, based on Men-
del’s law of independent assortment [20]. A recent MR 
analysis demonstrated that C-C motif chemokine 27 
(CCL27) levels in circulation are positively associated 
with the risk of lung cancer, whereas interleukin-18 levels 
are inversely associated with such risk [21].

While many pieces of evidence suggest that immune 
cells play a role in lung cancer risk and outcome, the sys-
temic analysis of immune cells in this context remains 
undefined, making further comprehensive investiga-
tions necessary. In this study, we aimed to comprehen-
sively explore the causal effects of 731 immune cells on 
lung cancer through a genome-wide association study 
(GWAS) pooled data using two-sample Mendelian ran-
domization approach. To enhance persuasion, we also 
performed replication and meta-analysis on another lung 
cancer cohort. This is the most comprehensive study of 
the causal link of immune cells with lung cancer, and 
we hope that our results will provide a more informed 
assessment of lung cancer risk regarding immune cells.

Materials and methods
Study design
We utilized MR methodology to investigate the potential 
causal relationship between 731 immune cells and LUSC 
and LUAD. In our research, MR uses SNPs as “instrumen-
tal variables”(IV). For MR effect estimation to be robust, 
and for SNPs to serve as IVs. These assumptions must be 
as follows: (1) Assumption of Association: Genetic vari-
ants are strongly correlated with the exposure factor. 
(2) Assumption of Independence: Genetic variants are 
independent of confounding factors. (3) Assumption of 
Exclusivity: Genetic variants can only affect the outcome 
through the exposure factor [22]. Based on this, we make 
three assumptions:

Assumption 1  Gene SNPs are closely associated with 
immune cells.

Assumption 2  Gene SNPs are not associated with the 
outcome variable lung cancer or other confounding 
factors.

understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future 
therapeutic strategies and preventive measures.
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Assumption 3  Gene SNPs only affect lung cancer 
through their influence on immune cells and cannot affect 
lung cancer through other pathways (Fig. 1).

STROBE-MR (strengthening the reporting of observational 
studies in epidemiology using mendelian randomisation) 
checklist
This study was guided by the STROBE-MR guidelines. 
This article adheres to the STROBE-MR checklist for 
reporting. (Supplementary STROBE-MR-checklist)

Genome-wide association study (GWAS) data sources for 
LUSC and LUAD
GWAS summary data for lung cancer (including LUSC 
and LUAD) were download from GWAS Catalog (https://
www.ebi.ac.uk/gwas/) and the GWAS Catalog acces-
sion number is GCST004750 (LUSC) and GCST004744 
(LUAD). The study performed a GWAS on 129,809 Euro-
pean individuals (Ncase=18,699, Ncontrol=111,110), with 
approximately 156,688,129 variants analyzed after qual-
ity control and imputation. Genetic information for lung 
cancer subtypes (LUSC: Ncase=7,426 and Ncontrol=55,627; 
LUAD: Ncase=11,273 and Ncontrol=55,483) were utilized for 
subgroup analysis. More detailed information about the 

GWAS data can be obtained from the study of James D 
McKay et al. [23]. The GWAS data for LUSC and LUAD 
mentioned above were used for preliminary analysis.

Immunity-wide GWAS data sources
We collected statistical data for each immune feature 
from the GWAS catalog, referencing accession num-
bers ranging from GCST0001391 to GCST0002121 [24] 
(Supplementary Table S1). This study utilized a com-
prehensive dataset containing 731 immune phenotypes, 
which were classified based on absolute cell counts (AC, 
n = 118), median fluorescence intensity reflecting surface 
antigen levels (MFI, n = 389), morphological parameters 
(MP, n = 32), and relative cell counts (RC, n = 192). The 
MFI, AC, and RC features included B cells, conventional 
dendritic cells (cDCs), mature T cells, monocytes, bone 
marrow cells, TBNK (T cells, B cells, NK cells), and Treg 
panel. The MP parameters (FSC-A and SSC-A) differen-
tiated the size and intracellular complexity of immune 
cells for classification, including cDCs and TBNK panel 
(Appendix 1). This research conducted original GWAS 
studies on immune features using data from 3,757 Euro-
pean individuals, without overlapping cohorts. Approxi-
mately 22  million SNPs genotyped using high-density 

Fig. 1  Overview of this Mendelian randomization (MR) analysis. Assumption 1, genetic instruments are strongly associated with the exposures of inter-
est; Assumption 2, genetic instruments are independent of confounding factors; Assumption 3, genetic instruments are not associated with outcome 
and affect outcome only via exposures. LUSC lung squamous cell carcinoma; LUAD lung adenocarcinoma; IVW inverse variance weighted; LD linkage 
disequilibrium; LOO analysis leave-one-out analysis; MR-PRESSO MR‐Pleiotropy RESidual sum and outlier; SNPs single nucleotide polymorphisms; WM 
weighted median
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chips were analyzed for association using a reference 
panel based on the Sardinian sequence, adjusting for 
covariates such as gender and age [25].

Selection of instrumental variables
In our study, we identified instrumental variables (IVs) 
based on three primary criteria. Firstly, we selected SNPs 
with a P-value of less than 1 × 10–5 from the GWAS data 
related to each immune trait [26, 27]. To ensure the inde-
pendence of the chosen SNPs, we employed the PLINK 
tool (version v1.90) to filter out SNPs exhibiting linkage 
disequilibrium (LD) r2 values greater than 0.1 within a 
500  kb range [28]. Following this step, we assessed the 
strength of the selected SNPs as instrumental variables 
by calculating the F-statistic for each immune trait. Gen-
erally. When the F-value surpasses 10, the SNP is deemed 
suitable for subsequent MR analysis [29]. Ultimately, we 
performed MR analysis on immune traits with more than 
two SNPs and ultimately included 729 immune cells.

MR analysis
In this MR analysis, inverse variance weighted (IVW) 
method was primarily used to evaluate the causal rela-
tionship between immune traits and LUSC as well as 
LUAD. The IVW estimates are derived from a meta-
analysis of the Wald ratios for all genetic variations 
[30]. IVW is based on the assumption that there is no 
horizontal pleiotropy across all SNPs, under which IVW 
provides the most accurate assessment of causal effects 
[31]. Therefore, we initially used IVW-based estimates 
to screen for immune cells that have causal impacts on 
LUSC and LUAD. The weighted median (WM) and MR-
Egger methods were defined as the complementary anal-
ysis [32]. These two methods can provide more robust 
estimates under relaxed conditions. WM allows for less 
than 50% of SNPs to be ineffective [33], whereas MR-
Egger provides detection of horizontal pleiotropy and 
heterogeneity when horizontal pleiotropy is present in 
all SNPs [30, 33]. However, inaccuracies may arise in the 
analysis outcomes when certain instrumental variables 
deviate from these assumptions. To tackle this problem, 
we conducted a series of sensitivity analyses. Initially, 
the Q-test method was utilized to evaluate potential het-
erogeneity among individual IVs, and p-value less than 
0.05 from the Cochran Q test is considered indicative 
of heterogeneity in the results [34]. Subsequently, the 
MR-Egger intercept test was applied to estimate hori-
zontal pleiotropy, guaranteeing that genetic variation 
has an independent relationship with both the exposure 
and outcome [35]. We used MR-PRESSO to re-examine 
the presence of heterogeneous SNPs [36]. Additionally, 
we conducted a leave-one-out (LOO) analysis, assessing 
whether the results were significantly influenced by indi-
vidual SNPs by sequentially dropping each SNP and then 

performing MR analysis [33]. In summary, we rigorously 
screened for immune traits with potential causal effects 
on LUSC as well as LUAD through various criteria: (1) 
significant p-values in preliminary analysis (p < 0.05 from 
IVW) that remained significant after FDR correction; 
(2) Consistency in direction and magnitude across three 
MR methods; (3) MR results showed no heterogeneity or 
horizontal pleiotropy; (4) MR estimates were not severely 
disrupted by individual SNPs [28].

Replication and meta-analysis
To comprehensively assess the stability of the candidate 
immune traits that were selected based on the crite-
ria mentioned earlier, we conducted a replication of the 
IVW analysis in an alternative LUSC and LUAD cohort 
for validation [37]. This cohort is derived from the Trans-
disciplinary Research Into Cancer of the Lung (TRICL) 
study, including 18,946 European ancestry lung can-
cer cases and 109,382 European ancestry controls, with 
specific subgroups for LUSC (Ncase=7,704 and Ncontrol= 
54,763) and LUAD (Ncase=11,245 and Ncontrol= 54,619). 
In this replication analysis, the GWAS data for lung can-
cer were sourced from the GWAS catalog, with accession 
numbers ieu-a-989 and ieu-a-984. To summarize, the ini-
tial analysis was conducted using GWAS data with acces-
sion numbers GCST004750 and GCST004744, while the 
replication analysis utilized GWAS data with accession 
numbers ieu-a-989 and ieu-a-984 (Fig. 2). Ultimately, we 
merged the outcomes of the two MR analyses through a 
meta-analysis to discern the immune traits with a causal 
effect on LUSC and LUAD (Supplementary Table S2). 
The meta-analysis was executed using the Generic Effect 
IVW model in Review Manager 5.4 software.

Confounding analysis
In order to assess the potential horizontal pleiotropy of 
our MR results, we conducted several sensitivity tests to 
identify SNPs that may violate the MR assumptions. Nev-
ertheless, it remains possible that some pleiotropic SNPs, 
which are difficult to detect, might still exist. To further 
evaluate whether each SNP is associated with established 
risk factors of LUSC and LUAD, including smoking [38], 
rheumatoid arthritis [39], body mass index [40], pollution 
[41] and genetic factors [42], we utilized the PhenoScan-
ner V2 [43] website (http://www.phenoscanner.medschl.
cam.ac.uk/) to scrutinize immune trait-related instru-
mental variables (IVs). If we identify any SNPs are signifi-
cantly linked to the aforementioned confounding factors 
(p-value < 1 × 10− 5), we will exclude these SNPs and re-
conduct the MR analysis. This crucial step aims to ensure 
the robustness and reliability of our analysis results.

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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Statistical analysis
All statistical analyses were performed using R ver-
sion 4.3.0. Specifically, for MR analysis, we employed 
the MendelianRandomization package 0.9.0 [44]. and 
TwoSampleMR package 0.5.7, and for MR-PRESSO 
analysis, we utilized the MRPRESSO package 1.0 [45]. In 
instances where multiple testing was involved, we applied 
the False Discovery Rate (FDR) method for correction, 
thereby effectively mitigating the risk of false-positive 
findings. A statistically significant association with lung 
cancer was deemed present when the FDR value for the 
estimated causal effect of a particular immune trait was 
less than 0.05.

Data availability
All data used in this study are publicly available. No 
human subject approvals were necessary to conduct 
these analyses. All the data can be found from the GWAS 
directory (https://gwas.mrcieu.ac). The serial num-
bers of the immune cells are from GCST0001391 to 
GCST0002121, respectively. For the LUSC and LUAD 
data used for the primary analysis, the serial number 
is GCST004750 and GCST004744, and the LUSC and 
LUAD serial numbers used for the replication and meta-
analysis are ieu-a-989 and ieu-a-984.

Results
Selection of IVs
For LUSC, the number of IVs for the 729 selected 
immune phenotypes ranged from 3 to 1182, with a 
median of 27. The minimum F-statistic values for validity 
testing consistently exceeded 10, with a range of 20 to 63 
(Supplementary Table S3). Similarly, for LUAD, the num-
ber of IVs ranged from 3 to 1196. The minimum F-statis-
tic values for their validity testing surpassed 10, spanning 
from 20 to 60 (Supplementary Table S4). These results 
indicate that the potential bias from weak instruments 
has been adequately resolved.

Preliminary analysis of lung cancer risk on 
immunophenotypes
To assess the causal effects of immunophenotypes on 
LUSC or LUAD, our primary analytical approach was 
the IVW method. Utilizing the FDR method for multiple 
tests, we identified seven suggestive immunophenotypes 
with a significance level of 0.05 in LUSC (Fig. 3). In con-
trast, no suggestive immunophenotypes were detected 
at this significance level in LUAD (Supplementary Table 
S5).

Consistency was then observed in the direction and 
magnitude of the IVW, MR-Egger, and WM estimates 

Fig. 3  Forest plots showed the causal associations between lung squamous cell carcinoma and immune cell traits by IVW. IVW inverse variance weight-
ing; CI confidence interval; SNP single nucleotide polymorphisms

 

Fig. 2  Technical roadmap of this study. LUSC lung squamous cell carcinoma; LUAD lung adenocarcinoma; EBI European Bioinformatics Institute; TRICL 
Transdisciplinary Research Into Cancer of the Lung
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across these seven immune cells (Supplementary Fig. 
S1). Our subsequent analysis involved a further evalu-
ation of these seven immune cell traits. We excluded 
four immune cells - SSC-A on lymphocyte, HLA DR 
on CD33- HLA, CD20 on IgD- CD24- B cell, and HLA 
DR on Dendritic Cell - based on not meeting the crite-
ria of Q-test method p < 0.05, or MR-Egger intercept test 
p < 0.05, or MR-PRESSO method p < 0.05(Supplementary 
Table S5).

The refined analysis focused on the remained three 
types of immune cells, comprising two from the Treg 
panel and one from the cDC panel. Our analysis revealed 
two subtypes associated with increased risks of LUSC: 
CD28 on resting CD4 regulatory T cells (OR = 1.11, 
95% CI = 1.06–1.16, p = 1.70E-05, FDR = 1.2E-02) and 
CD45RA + CD28- CD8 + T cell %T cell (OR = 1.00, 95% 
CI = 1.00–1.00, p = 2.60E-04, FDR = 3.10E-02). Addi-
tionally, we identified an immunophenotype, CCR2 on 
monocytes (OR = 0.93, 95% CI: 0.90–0.97, p = 8.10E-5, 
FDR = 1.6E-02), exhibiting protective effects against 
LUSC susceptibility.To address potential biases in MR 
estimation for these three immune cell types, we con-
ducted a leave-one-out (LOO) analysis, confirming that 
no single SNP caused significant bias.

In summury, The IVW estimates for the three selected 
immune cells were significant, maintained significance 
after FDR correction, and were consistent in direction 
and magnitude (Fig.  4). The Cochran Q Test (p > 0.05) 
and MR-Egger intercept test (p > 0.05) indicated no het-
erogeneity or pleiotropy for these immune cells. Simi-
larly, MR-PRESSO results, after outlier removal, suggest 
the absence of heterogeneous SNPs (Table 1). The LOO 
analysis further supported the reliability of our MR esti-
mation, as shown in Supplementary Figure S1. These 
findings led us to consider these three immune cells as 
prime candidates for further analysis (Supplementary 
Fig. S2).

Replication and meta-analysis
To enhance the persuasiveness of our estimates, we con-
ducted a replication of the MR analysis using additional 
GWAS data related to LUSC and LUAD. Similarly, we 
also found same three suggestive immunophenotypes at a 
significance level of 0.05 (Supplementary Table S6), while 
we did not identify any suggestive immunophenotypes 
with a significance level of 0.05 in LUAD (Supplementary 
Table S7). As anticipated, we observed similar trends in 
candidate immunophenotypes in this new LUSC data-
set. It’s important to note that, despite these consistent 
trends, the results did not achieve P FDR < 0.05 statis-
tical significance in replication analysis. This lack of 
significance can be attributed primarily to the minor dif-
ferences in experimental conditions or study designs.

To strengthen our findings, we combined the out-
comes of the GWAS data and conducted a meta-analysis 
that yielded further insights. As shown in Supplement 
Table S8, the analysis validated the causal relationship 
between three specific immunophenotypes and LUSC: 
CD28 expression on resting CD4 regulatory T cells (OR 
1.10, 95% CI: 1.06–1.13, p < 0.01) and CD45RA + CD28- 
CD8 + T cell %T cell (OR 1.00, 95% CI: 1.00–1.00, 
p < 0.01), suggesting increased risk of LUSC; the expres-
sion of CCR2 on monocytes (OR 0.94, 95% CI: 0.92–0.96, 
p < 0.01) was associated with a reduced risk of LUSC 
(Fig.  5). Notably, these findings exhibited consistent 
directions in both MR analyses, and the meta-analysis 
yielded statistically significant estimations (Supplemen-
tary Table S8).

Confounding analysis
To ensure that our instrumental variables (IVs) are 
independent of confounding factors, we examined our 
selected SNPs for their autonomy from common risk 
factors for LUSC. Specifically, we assessed their asso-
ciations with recognized risk factors such as smoking, 
RA, BMI, pollution and genetic predispositions. In the 
CD45RA + CD28-CD8 + T cell percentage, three SNPs 
were identified as being associated with the risk fac-
tors for LUSC (Supplementary Table S9). The remain-
ing immune cells did not identify the suspected SNP. 
Re-analysis with exclusion of three SNPs demonstrated 
that our estimates remain significant: CD45RA + CD28- 
CD8 + T cell percentage: (OR 1.00 95% CI: 1.00–1.00, 
p < 0.01).

Discussion
In this study, we integrated two extensive GWAS datas-
ets to investigate the causal relationships between 731 
genetically proxied immune cell traits and LUSC or 
LUAD through a Mendelian randomization design. Our 
study suggests that CD28 on resting CD4 regulatory T 
cells and CD45RA + CD28- CD8 + T cell %T cell increases 
the risk of LUSC, while a phenotype of CCR2 on mono-
cytes is associated with a reduced risk of LUSC. However, 
we did not find any immune cells with a causal relation-
ship in LUAD. Our conclusions were further reinforced 
by replication and meta-analysis, and subsequently, our 
estimates remained significant after excluding SNPs asso-
ciated with confounding factors. To our knowledges, this 
study represents the first MR investigation to utilize com-
prehensive GWAS data on immune cell traits to explore 
their causal links with LUSC and LUAD.

Our study revealed that the expression of CD28 
on resting CD4 regulatory T cells correlates with an 
increased risk of LUSC. CD28 is a transmembrane pro-
tein located on the surface of T cells, which is crucial 
for signal transduction during T cell activation [46]. 
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Experimental studies indicate that CD28 conditional 
knockout results in severe autoimmunity and inappropri-
ate resolution of allergy, suggesting that CD28 plays post-
maturational roles in Tregs [47]. The expression of CD28 
on CD4 + Treg is essential for Treg homeostasis, and its 
interaction with B7 is required for their immunosuppres-
sive function [48, 49]. This phenotype suggests an immu-
nosuppressive milieu that may raise the vulnerability of 
LUSC, corroborating our MR analysis findings.

Meanwhile, the study found that the CD45RA + CD28- 
CD8 + T cell correlated with increased risk of LUSC. 

According to Orrù et al., we categorized CD8 + T cells 
into naïve T cells (CD45RA + CCR7+), central memory 
T cells (CD45RA − CCR7+), effector memory T cells 
(CD45RA − CCR7−), and terminally differentiated T cells 
(CD45RA + CCR7−) [24]. There are reports suggesting 
that the CD45RA + CD28 − CD8 + T cell subset appears to 
be similar to terminally differentiated CD45RA + CD8 + T 
cells with negative staining for the chemokine recep-
tor CCR7 [50–54]. Terminally differentiated T cells 
exhibit lower proliferative capacity, reduced differentia-
tion plasticity, but have strong effector activity (such as 

Fig. 4  Causal effects of lung squamous cell carcinoma on immune cells concentration. SNP single nucleotide polymorphisms. a: Scatter plot between 
CD28 on resting CD4 regulatory T cells and LUSC risk. b: Scatter plot between CD45RA + CD28- CD8 + T cell %T cell and LUSC risk. c: Scatter plot between 
CCR2 on monocytes and LUSC risk
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Table 1  Causal Relationship Between Positive immunophenotypes Identified by IVW Method and lung Squamous Cell Carcinoma
immune cell Number of SNPs Beta OR (95%CI) P P for heterogeneity test P for MR-Egger intercept P for MR-PRESSO

(0 outliers)
CD28 on resting CD4 regulatory T cell
IVW 21 0.104 1.11

(1.06–1.16)
1.70E-5 0.946 0.596 0.943

MR Egger 21 0.076 1.08
(0.96–1.21)

2.00E-1

Weighted median 21 0.092 1.10
(1.02–1.18)

1.10E-2

CD45RA + CD28- CD8 + T cell %T cell
IVW 207 0.001 1.00

(1.00–1.00)
2.60E-4 0.425 0.134 0.439

MR Egger 207 0.0007 1.00
(1.00–1.00)

7.10E-2

Weighted median 207 0.001 1.00
(1.00–1.00)

1.20E-2

CCR2 on monocyte
IVW 40 -0.068 0.93

(0.90–0.97)
8.10E-5 0.904 0.903 0.925

MR Egger 40 -0.064 0.94
(0.87–1.01)

9.90E-2

Weighted median 40 -0.078 0.93
(0.88–0.97)

2.00E-3

IVW inverse variance weigh

Fig. 5  Meta-analysis of significantly associated (IVW derived p < 0.05) between immune cells and lung Squamous Cell Carcinoma. 95% CI, 95% confi-
dence interval; OR, odds ratio. a: Meta plot between CD28 on resting CD4 regulatory T cells and LUSC. b: Meta plot between CD45RA + CD28- CD8 + T cell 
%T cell and LUSC. c: Meta plot between CCR2 on monocytes and LUSC
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cytotoxicity and cytokine release), even without T cell 
receptor cross-linking through antigen exposure (via 
bystander activation through cytokine receptor) [55]. 
Terminally differentiated T cells are frequently linked to 
chronic inflammatory conditions in the setting of aging 
and chronic infections [56, 57]. Recent studies have con-
firmed that the terminally differentiated T cells and its 
CD28- subsets have the potential to serve as a biomarker 
of immunosenescence in the context of cytomegalovi-
rus infection [58]. The absence of CD28 expression on 
CD8 + TEMRA possibly indicates weak T cell receptor 
engagement, suggesting weaker protective effects against 
infection and cancer development. These findings are in 
harmony with our MR analysis, indicating that this phe-
notype was associated with an increased risk of LUSC. 
Additionally, research has found that terminally differen-
tiated CD8 + T cells originate from TCF-1 + stem-like T 
cells in the tumor microenvironment [59]. Activation of 
STAT3 signaling by IL-10 and IL-21 promotes the devel-
opment and survival of terminally differentiated T cells 
[60]. Activated terminally differentiated T cells are pro-
ducers of inflammatory cytokines, and the inflammatory 
cytokines found in tumors are more likely to promote 
tumor growth, progression, and immune suppression 
rather than eliciting effective host anti-tumor responses 
[61, 62]. Therefore, further research and analysis are 
needed to elucidate the exact role of CD45RA + CD28- 
CD8 + T cells in LUSC.

Notably, our study revealed one immune cell trait, 
CCR2 on monocytes, as a protective factor against 
LUSC. CCR2 is generally considered to have a detrimen-
tal role in various cancers, particularly in prostate cancer 
[63]. But in our MR analysis, the expression of CCR2 on 
monocytes seems to be a protective factor in LUSC. This 
finding challenges the existing research on the function 
of CCR2 in cancer.

The role of CCR2 in cancer is complex and diverse. 
CCR2 is primarily expressed by monocytes/macrophages 
with strong pro-inflammatory functions [63], which 
is expected to prevent carcinogenesis. Paradoxically, 
increased expression of CCL2, a molecule that inter-
acts with CCR2, has been linked to the accumulation 
of tumor-associated macrophages in esophageal squa-
mous cell carcinoma (ESCC). These macrophages exhibit 
potent immunosuppressive activities within the tumor 
microenvironment, which could potentially facilitate 
cancer progression [64, 65].

Moreover, it has been observed that CCR2 can play a 
dual role in cancer. On one hand, it may boost immune 
responses against tumors by encouraging the migration 
of immune cells to the tumor site. On the other hand, 
once these CCR2-positive immune cells are within the 
tumor microenvironment, they might contribute to 
tumor growth, metastasis, and immune evasion through 

their interaction with CCL2 [66, 67]. This dual role pres-
ents a paradox: while CCR2 is expected to aid in cancer 
prevention through its pro-inflammatory action, it can 
also inadvertently support tumor progression in certain 
contexts. Our MR analysis, which suggests a protective 
role of CCR2 in LUSC, adds to this complexity. These 
conflicting perspectives highlight the need for more in-
depth investigations to fully understand the multifaceted 
role of CCR2 in cancer biology.

These findings suggest a dualistic and context-depen-
dent role of CCR2 in cancer, which our study contributes 
to by highlighting its potential protective role in LUSC. 
This underscores the need for a more detailed under-
standing of the diverse functions of immune cell traits 
in cancer, particularly in lung squamous cell carcinoma. 
Our research adds to the growing body of evidence that 
the role of immune cells in cancer is not straightforward 
and warrants further investigation.

Cancer cells exhibit less invasiveness in never-smok-
ing LUAD, while the immune environment shows more 
immunosuppressive effects, indicating vulnerability in 
the treatment of LUAD [68]. Studies have found that 
smoking-induced dysfunction of alveolar cells con-
tributes more to the aggressiveness of LUAD in smok-
ers, while the immunosuppressive microenvironment 
has a greater impact on the aggressiveness of LUAD in 
never-smokers [69]. Never-smoking LUAD patients have 
unique subtypes of cancer cells expressing high levels of 
MHC-II molecules involved in antigen presentation and 
activation of anti-tumor immunity [70]. However, we 
did not find a relationship between immune cell charac-
teristics and LUAD in our study, possibly because of the 
close association between LUAD and smoking, which we 
did not differentiate between smokers and non-smokers. 
Additionally, pulmonary involvement is a common extra-
articular manifestation of RA [71]. Immune dysregula-
tion is considered a key factor in RA patients developing 
LUAD. Bioinformatics studies have shown that CD8A, 
GZMA, and PRF1 are associated with CD8 T cells in RA 
and positively correlated with 33 types of tumors [72]. Shi 
et al. also found common physiological and pathological 
processes and molecular spectra between RA and LUAD 
[73]. Therefore, we finally excluded confounding factor-
related SNPs, and the obtained SNPs were only related to 
immune cells, thereby influencing lung cancer.

This study also has some limitations. Firstly, MR analy-
sis cannot replace clinical trials in the objective field, as 
it is only a method of analyzing causality between expo-
sure and outcome. Therefore, further research is needed 
to confirm the potential association between immune 
cells and lung cancer risk. Secondly, this study is based 
on publicly available GWAS data, and our MR analysis 
was conducted only in European populations. Given the 
genetic specificity among different races, it may not be 
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applicable to other populations. Future studies should 
conduct subgroup analysis including different popula-
tions to draw more comprehensive conclusions. Thirdly, 
our observations on CCR2 + monocytes differ from cur-
rent literature viewpoints. Such discrepancies may arise 
due to variations in sample sources, experimental con-
ditions, or statistical methods. Biological complexity in 
dynamic systems of the tumor microenvironment may 
also be a relevant factor. Thus, investigating the pre-
cise role of circulating CCR2 + monocytes in LUSC risk 
becomes necessary, considering the current controversy. 
Finally, our study primarily examines specific immune 
cell traits, but we cannot disregard the impacts of other 
cell types or factors that may impact the risk of LUSC. 
For instance, certain tumor-infiltrating myeloid cell sub-
sets, m6A regulation, genomic alterations, and specific 
somatic mutations can play pivotal roles in regulating 
the interactions between various immune cells and influ-
ence tumor development [74–77]. Therefore, while laying 
the foundation in our study, it is also necessary to gain 
a more comprehensive understanding of these factors 
and their interactions. We will strive to improve in future 
research endeavors.

In summary, we performed a two-sample Mendelian 
randomization study to investigate the causal connec-
tions between different immune phenotypes and LUSC 
or LUAD. Our analysis demonstrated that the causal rela-
tionship is more pronounced in LUSC and three immune 
cell types correlated with LUSC susceptibility, while 
the association with LUAD is statistically insignificant. 
Although these findings are derived only from European 
populations, they still enhance our comprehension of 
the complex interplay between the immune system and 
lung cancers. This study yields new perspectives into 
managing cancer risk, potentially providing more precise 
therapeutic alternatives for individuals with lung cancer 
and furnishing valuable information for future scientific 
research.
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