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Abstract
Background Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition 
that imposes a significant healthcare burden worldwide. Accurate staging of COPD severity is crucial for patient 
management and treatment planning.

Methods The retrospective study included 530 hospital patients. A lobe-based radiomics method was proposed 
to classify COPD severity using computed tomography (CT) images. First, we segmented the lung lobes with a 
convolutional neural network model. Secondly, the radiomic features of each lung lobe are extracted from CT images, 
the features of the five lung lobes are merged, and the selection of features is accomplished through the utilization 
of a variance threshold, t-Test, least absolute shrinkage and selection operator (LASSO). Finally, the COPD severity was 
classified by a support vector machine (SVM) classifier.

Results 104 features were selected for staging COPD according to the Global initiative for chronic Obstructive Lung 
Disease (GOLD). The SVM classifier showed remarkable performance with an accuracy of 0.63. Moreover, an additional 
set of 132 features were selected to distinguish between milder (GOLD I + GOLD II) and more severe instances (GOLD 
III + GOLD IV) of COPD. The accuracy for SVM stood at 0.87.

Conclusions The proposed method proved that the novel lobe-based radiomics method can significantly contribute 
to the refinement of COPD severity staging. By combining radiomic features from each lung lobe, it can obtain a more 
comprehensive and rich set of features and better capture the CT radiomic features of the lung than simply observing 
the lung as a whole.

Keywords Chronic obstructive pulmonary disease, Pulmonary lobe, Radiomics, Severity staging, Computed 
tomography
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Background
Chronic obstructive pulmonary disease (COPD) is a 
global public health challenge due to its widespread prev-
alence and its lasting impact on disability and mortality 
[1, 2]. COPD is currently ranked as the fourth most prev-
alent global health concern, marked by persistent airflow 
limitation and a range of debilitating symptoms [3].

Pulmonary function assessments, specifically the mea-
surement of the ratio of forced expiratory volume in 
one second (FEV1) to forced vital capacity (FVC), serve 
as a primary diagnostic and risk assessment tool for 
COPD [4]. However, early COPD patients are easy to be 
ignored because of asymptomatic and mild symptoms 
[5, 6]. Most patients are often diagnosed with moderate 
to severe, which seriously affects the quality of life, and 
the cost of treatment has risen sharply [7]. Consequently, 
early identification and staging are important to reduce 
the risk of exacerbations, fewer concurrent health issues, 
and decreased healthcare expenses [8].

COPD is a multifaceted and remarkably diverse clini-
cal condition with various imaging phenotypes and his-
topathological characteristics including encompassing 
parenchymal degradation, thickening of bronchial walls, 
interstitial lung abnormalities, bronchiectasis, and so on 
[9]. Computed tomography (CT)-based research in the 
field of COPD has yielded remarkable outcomes which 
has proven to be a powerful tool in studying COPD by 
providing detailed, three-dimensional images of the 
lungs [10–12]. CT imaging provides crucial insights into 
lung function, disease severity categorization, and the 
prediction of outcomes for individuals with COPD by 
examining typical CT features like lung tissue, airways, 
pulmonary blood vessels, and the chest wall. It has paved 
the way for more accurate diagnosis, personalized treat-
ment strategies, and the development of innovative ther-
apies, ultimately improving the lives of individuals living 
with COPD.

Radiomics was proposed by Lambin et al. in 2012 [13]. 
It entails the extraction and examination of numerous 
quantitative features, including texture, statistical, his-
togram, and shape features. [14]. Radiomics features in 
lung disease imaging have been considered cutting-edge 
tools for healthcare professionals [15]. Nevertheless, the 
evolution of radiomics features in COPD has been com-
paratively slower compared to other lung conditions like 
lung cancer and pulmonary nodules. As of 2020, Refaee 
et al. noted that there had been limited exploration of 
radiomics features in COPD [16]. Nevertheless, there are 
promising prospects for employing radiomics features in 
COPD diagnosis, treatment, and monitoring, as well as 
directions for future research [16]. Additionally, the sig-
nificance of lung radiomics features in evaluating COPD 
has been substantiated [17].

Previous studies in radiomics for pulmonary condi-
tions, specifically COPD, have primarily focused on ana-
lyzing radiomics features derived from the entire lung 
region. This study, however, overlooks the heterogene-
ity of COPD manifestations across different lung lobes. 
The severity of COPD and the distribution of lesions 
are known to vary considerably within the lung, often 
localized to specific lobes rather than uniformly affect-
ing the entire lung region. Our study addresses this gap 
by proposing a lobe-specific radiomic analysis, allowing 
for a granular investigation into the distinct structural 
and functional characteristics of each lobe. The justifi-
cation for the proposed method lies in the premise that 
individual lung lobes may contribute disparately to the 
pathology of COPD. Lesions within different lobes can 
exhibit unique radiomic signatures, which, when ana-
lyzed independently, provide more precise insights into 
the localized nature of the disease. This lobe-specific 
analysis enables a more accurate understanding of dis-
ease distribution and severity. By integrating radiomic 
features from each lobe, the proposed method seeks to 
offer a more nuanced understanding of COPD, pinpoint-
ing which lobes are most susceptible to the disease and 
the extent of their involvement.

Machine learning focuses on the development of algo-
rithms and computer models. It learns from data and 
makes predictions without being explicitly programmed 
[18]. Statistical techniques are also involved to enable 
computers to automatically improve their performance 
on a specific task [19], for example, classification and 
staging of COPD [20, 21]. Yang et al. proposed to char-
acterize and classify COPD stages based on multi-layer 
perceptron [22]. Makimoto and colleagues conducted 
a comparative analysis of various feature selection and 
classification methods, ultimately demonstrating that 
the combination of Elastic Net with a Linear-SVM clas-
sifier outperforms others for identifying COPD [23]. 
Puchakayala et al. demonstrated that radiomics features, 
particularly parenchymal texture, and shape features of 
the lung and airway, could accurately diagnose COPD in 
both standard-dose and low-dose CT images [24]. Sup-
port vector machine (SVM) is a supervised machine 
learning algorithm used for classification and regression 
tasks. It is particularly well-suited for classification prob-
lems by finding the optimal hyperplane. SVM is widely 
used in various fields which can be applied in diagnosing 
COPD and classifying its severity [25, 26].

We propose a novel lobe-based radiomic workflow 
and train a machine learning model for COPD sever-
ity staging. More specifically, five pulmonary lobes are 
segmented from lung CT images and radiomics fea-
tures of each lobe are extracted, integrated, and dimen-
sion reduced. Then, an SVM classifier is employed to 
classify different severity of COPD, which has excellent 
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performance. By combining radiomic features from each 
lung lobe, we can obtain a more comprehensive and rich 
set of features. This helps improve the performance of 
predictive models.

The contributions of the paper are as follows:

  • Unlike the current radiomic features extracted from 
the whole lung region, this study introduces a novel 
approach by combining radiomics features from each 
lung lobe.

  • The proposed workflow is effective in distinguishing 
COPD severity, exhibiting strong performance in 
both binary and multi-class classification tasks.

  • By analyzing the contribution of each lung lobe 
separately, the study provides empirical evidence 
that COPD’s impact is localized, which enhances the 
understanding of the disease’s heterogeneity.

Methods
Datasets
The study received approval from the hospital’s ethics 
committee (Reference: ES-2023-045-01), and all par-
ticipants gave informed consent in accordance with the 
Declaration of Helsinki (2000). COPD is diagnosed by 
evaluating the post-bronchodilator ratio of forced expira-
tory volume in one second (FEV1) to forced vital capac-
ity (FVC), which is below 0.7 and further categorized into 
four stages based on the Global Initiative for Chronic 
Obstructive Lung Disease (GOLD) criteria: GOLD I 
(mild, FEV1 ≥ 80% predicted), GOLD II (moderate, FEV1 
between 50% and < 80% predicted), GOLD III (severe, 
FEV1 between 30% and < 50% predicted), and GOLD IV 
(very severe, FEV1 < 30% predicted) [27].

Dataset 1, as a training dataset, collected 530 patients 
from the First Affiliated Hospital of Guangzhou Medical 
University. The number of patients in each stage is 114 
in GOLD I, 204 in GOLD II, 154 in GOLD III, and 58 in 
GOLD IV. The excluded criteria are acute exacerbation 
of COPD or respiratory infection 4 weeks ago, concomi-
tant pulmonary disease, pulmonary resection, and active 
malignancy within the past 5 years. Furthermore, Table 1 
presents the clinical characteristics and parameter con-
figurations for CT image acquisition.

Dataset 2 is from the Central Hospital Affiliated to 
Shenyang Medical College (CH-SMC) and the Second 

Hospital of Dalian Medical University (SH-DLMU) as 
an external validation dataset. Dataset 2 consists of 290 
patients: 25 GOLD I, 69 GOLD II, 116 GOLD III, 70 
GOLD IV. A summary of the stages of COPD patients in 
Dataset 2 is shown in Table 2.

Overview of the study procedure
The pipeline of the proposed lobe-based method for this 
study is depicted in Fig. 1. First, five lobes are segmented 
from the lung CT images by the trained Seg-Lobe model, 
including the right upper (RU), right middle (RM), and 
right lower (RL) lobe in the right lung, left upper (LU) 
and the left lower (LL) lobe in the left lung. Second, 
radiomics features are extracted from regions of inter-
est (ROI) in the lung (the region of five segmented lobes), 
respectively. And the radiomics features from each lobe 
are combined. Third, the integrated features are selected 
using the LASSO algorithm. Finally, an SVM classifier is 
built to classify the severity staging of COPD.

Preprocessing
The segmentation of lung lobes is performed by using the 
Seg-Lobe model, which is based on 3D U-Net [28] and 
implemented as the automatic pipeline to train, validate, 
and test the network using the input CT images [29, 30]. 
The details are provided in our previous work [27]. The 
Seg-Lobe architecture, illustrated in Fig. 2, comprises five 
encoder-decoder pairs. Each encoder or decoder is con-
structed with two blocks, each consisting of a sequence 
of operations: convolution, instance normalization (IN) 
[31], and Leaky Rectified Linear Unit (Leaky ReLU). 
Although Batch Normalization (BN) [32] is commonly 
used to enhance training speed and stability, its effective-
ness diminishes when applied to small batch sizes.

In Seg-Lobe model architecture, strided convolution 
is performed instead of an ordinary pooling operation 
in downsampling, which serves to enhance the accuracy 
of the convolutional neural network while concurrently 
reducing the model’s size [33, 34]. For upsampling, trans-
posed convolution is employed. Furthermore, a skip con-
nection [35] is implemented between the encoder and 
decoder to establish a connection between feature maps. 
This connection allows the decoder to access the infor-
mation concealed within the encoder, facilitating more 
effective information flow.

Table 1 Baseline characteristics of dataset 1
Characteristics Value
Age, yr, mean ± SD 65.5 ± 7.9
Sex, % female (n) 69.06 (530)
kVp, kV 117.41 ± 4.39
Slice thickness, mm, mean ± SD 0.99 ± 0.05
X-ray tube current, mA, mean ± SD 49.38 ± 21.78

Table 2 Summary of stages of COPD patients in the dataset 2
Hospital GOLD I GOLD II GOLD III GOLD IV Total
CH-SMC 2 36 89 64 191
SH-DLMU 23 43 27 6 99
Total 25 79 116 70 290
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Feature extraction
Pyradiomics [36] is employed for feature extraction from 
the region of interest in CT images. It is a crucial and 
advanced Python package in the field of medical image 
analysis. The extracted features can be divided into seven 
groups: (a) first order features, (b) shape features, (c) 
gray level co-occurrence matrix (GLCM), (d) gray level 
size zone matrix (GLSZM), (e) gray level run length 
matrix (GLRLM), (f ) neighboring gray Tone difference 
matrix (NGTDM), and (g) gray level dependence matrix 
(GLDM). For comprehensive definitions and detailed 
explanations of these texture features, the Pyradiomics 
official documents should be consulted [37].

Feature selection
Feature selection helps improve the performance of pre-
dictive models by identifying and retaining the most 
relevant and informative features, mitigates the risk of 
overfitting and reduces dimensionality by eliminating 
irrelevant or redundant variables. This study employs 
three methods for the gradual selection of optimal 
features.

In the feature selection of the four categories of COPD 
severity, the variance threshold is first used to iden-
tify and retain features that exhibit significant variation 
across the dataset. Features with low variance, imply-
ing minimal variation across data points, are often 

Fig. 2 The architecture of the Seg-Lobe

 

Fig. 1 The lobe-based radiomics workflow for COPD stage classification
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considered less informative. In this experiment, we set 
the threshold to 1 and features failing to meet this thresh-
old are subsequently discarded. In the feature selection 
of the two categories of COPD severity, COPD groups 
are classified according to GOLD stage in groups of mild 
severity (GOLD I + GOLD II, FEV1 < 50%) and great 
severity (GOLD III + GOLD IV, FEV1 ≥ 50%). The T-test 
is used to evaluate whether there is a significant differ-
ence between the two categories. Features exhibiting a 
significant difference (p < 0.05) are retained as they are 
considered discriminatory.

Finally, the least absolute shrinkage and selection 
operator (LASSO) method was utilized for the iden-
tification of the ultimate discriminative features [38]. 
LASSO incorporates a regularization term into the linear 
regression objective function. This method can reduce 
the coefficients of variables with minimal impact on the 
regression to zero during the fitting process, thereby 
achieving variable screening and complexity adjustment 
[39, 40]. LASSO involves a tuning parameter responsible 
for controlling the penalty applied to the linear model. 
This parameter is designed to maintain a minimal pen-
alty while deriving a model with a reduced set of features. 
In this context, the penalty is expressed through the 
mean square error (MSE). The optimization objective of 
LASSO is as follows:

 
y =

(
1

2∗nsamples

)
∗ ||γ −Xω||2 + α ∗ ||ω||  (1)

In the equation, X represents the matrix of radiomics fea-
tures, γ  is the sample vector marker, n denotes the sam-
ple number, ω  is the coefficient vector of the regression 
model, and α ∗ ||ω||  represents the LASSO penalty term.

Machine-learning classification model
In this study, SVM is used to establish four-category and 
two-category classification models. SVM, a non-prob-
abilistic supervised learning method, excels at forming 
multi-dimensional hyperplanes that efficiently separate 
the covariate space into distinct groups for classification. 
To evaluate the reliability of our proposed approach, we 
implemented a 5-fold cross-validation procedure on the 
complete dataset. More precisely, we randomly divided 
the data into five groups, using each set of four groups for 
training and the remaining one for testing.

Statistical analysis and experimental setup
The classification performance is evaluated by the accu-
racy (ACC), precision, recall, F1-score, receiver operat-
ing characteristic (ROC) curve, and area under the curve 
(AUC).

 
Accuracy =

∑4
i=1TPi∑4

i=1TP i+FPi+FNi+TNi
 (2)

 Precision = TPi
TPi+FPi

, i = 1, 2, 3, 4. (3)

 Recall = TPi
TPi+FNi

, i = 1, 2, 3, 4. (4)

 F1− score = 2 ∗ Precision*Recall
Precision+Recall, i = 1, 2, 3, 4. (5)

As described in our previous study [41], let 
T = (T1, T2, T3, T4, ), i.e. represent the target labels in 
the test set. The predicted classes in the test set, denoted 
as P = (P1, P2, P3, P4, ), are determined. True positive 
(TP) is defined as the count of predicted labels match-
ing the target labels, i.e. TPi = |Pi ∩ Ti| , i = 1, 2, 3, 4
. False positive (FP) represents the count of predicted 
labels that do not match the actual target labels, i.e. 
FPi = |Pi\Ti| , i = 1, 2, 3, 4. False negative (FN) is the 
count of predictions that belong to the ground-truth label 
but are falsely predicted, i.e. FNi = |Ti\Pi| , i = 1, 2, 3, 4. 
True negative (TN) is the count of predictions that nei-
ther belong to the ground-truth label nor are classified, 
i.e. TNi =

∑
d?C,d�=c |Td| .For the classification of two cat-

egories of COPD severity, the evaluation index is calcu-
lated similarly to the above process, with the adjustment 
i = 1, 2.

The ROC curve illustrates the association between 
false positive rate (FPR) on the x-axis and true positive 
rate (TPR) on the y-axis [42]. The area under the curve 
(AUC) is computed from the ROC curve and serves as a 
metric reflecting the performance of a classifier. A higher 
AUC value, nearing 1.0, indicates a more effective classi-
fier [43].

In this study, the machine learning models, such as 
SVM, KNN, and Decision Tree, were primarily imple-
mented using the scikit-learn library. For the implemen-
tation of more advanced ensemble methods, specifically 
gradient boosting techniques, we employed the XGB-
Classifier from the XGBoost package and the CatBoost-
Classifier from the CatBoost package. Both of these 
classifiers were utilized with their default parameter set-
tings. The use of default parameters also facilitates more 
straightforward comparisons between the different mod-
els and highlights the out-of-the-box capabilities of each 
algorithm.

Results
Radiomic feature selection in four and two categories of 
severity staging of COPD
In the lobe-combined experiment, 8840 radiomic fea-
tures were extracted from a total of five lung lobes. Fea-
ture dimensionality reduction was carried out for two 
and four categories in the severity staging of COPD.
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In the four categories of COPD severity, 1370 fea-
tures were selected by a variance threshold method. 
In Fig.  3(a), the MSE in LASSO is depicted concerning 
Lambda, while Fig.  3(b) illustrates the change in each 
feature coefficient corresponding to Lambda. As shown 
by the dotted line in Fig.  3(a), MSE attains its mini-
mum value, resulting in the reduction of features to 104 
through the LASSO algorithm.

From the initial pool of 8840 features, 4764 features 
were chosen using the t-test method in the two catego-
ries. In Fig.  3(c), the MSE is depicted throughout the 
Lambda parameter optimization in the LASSO algo-
rithm. Figure  3(d) illustrates that the LASSO algorithm 
selected 132 optimal features when the MSE reached its 
minimum, as denoted by the dotted line. Figure 4(a) pres-
ents the coefficients of the selected features in the LASSO 
model for the four categories, while Fig. 4(b) shows the 
coefficients of the selected features in the LASSO model 
for the two categories of COPD severity staging.

Performance comparisons in four and two categories of 
severity staging of COPD with different feature selection 
methods
Table  3 presents the outcomes of various radiomics 
experiments applied to stage the severity of COPD. The 
SVM classifier is trained for both four and two categories 
of COPD severity staging, utilizing selected radiomics 
features from three distinct ROIs: the entire lung region, 
each lobe individually, and a combination of all five lobes.

We present the performance evaluation of lobe-based 
radiomics methods compared to other-region radiomics 
methods for staging COPD severity in Dataset 1. The task 
is categorized into four categories representing GOLD 
I vs. GOLD II vs. GOLD III vs. GOLD IV, and two cat-
egories representing GOLD I + GOLD II vs. GOLD 
III + GOLD IV. For the four-category classification task, 
the whole lung method achieves an accuracy of 0.49, with 
precision, recall, and F1-score all around 0.45. Among 
the lobe-based methods, RM (Right Middle) exhibits the 
highest performance metrics, with accuracy, precision, 
recall, and F1-score ranging from 0.55 to 0.67. Notably, 
our proposed method outperforms both the whole lung 
and lobe-based methods, achieving an accuracy of 0.63 
and precision, recall, and F1-score all above 0.60, albeit 
with a slightly lower AUC of 0.49.

In the two-category classification task, the performance 
of all methods notably improves, with the proposed 
method consistently outperforming others. Specifically, 
the proposed method achieves an accuracy of 0.87, with 
precision, recall, and F1-score all at 0.87, and an AUC of 
0.93, indicating its robustness and effectiveness in dis-
tinguishing between less severe and more severe COPD 
stages.

Overall, the results demonstrate the superiority of 
our proposed lobe-based radiomics method over other-
region radiomics methods in accurately staging COPD 
severity, particularly evident in the two-category classi-
fication task, where it achieves the highest performance 

Fig. 3 Changes in Mean Squared Error (MSE) and the coefficients of individual features concerning Lambda in the LASSO. (a) The MSE for the four catego-
ries. (b) The coefficient of each feature for the four categories. (c) The MSE for the two categories. (d) The coefficient of each feature for the two categories
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metrics across all evaluated criteria. The evaluation of 
two COPD severity classifications, based on selected 
radiomic features from all five lung lobes and analyzed 
using SVM, is depicted in Fig. 5(b) through ROC curve 
analysis.

The above experiments demonstrate that regard-
less of whether COPD severity is classified into four or 

two categories, the results of the radiomics model using 
combined features of five lung lobes are superior to that 
of using radiomic features directly from the whole lung 
region and each lung lobe. Overall, the results dem-
onstrate the superiority of our proposed lobe-based 
radiomics method over other-region radiomics methods 
in accurately staging COPD severity, particularly evident 

Table 3 Performance of lobe-based radiomics method compared with other-region radiomics method for COPD severity staging 
in dataset 1. Four categories represent GOLD I vs. GOLD II vs. GOLD III vs. GOLD IV and two categories represent GOLD I + GOLD II vs. 
GOLD III + vs. GOLD IV on Dataset1
Task Radiomics method Accuracy Precision Recall F1-score AUC
Four categories Whole lung 0.49 0.45 0.49 0.45 0.46

Lobe RU 0.52 0.57 0.52 0.50 0.46
RM 0.55 0.67 0.55 0.53 0.45
RL 0.50 0.49 0.50 0.48 0.46
LU 0.48 0.48 0.48 0.45 0.47
LL 0.49 0.46 0.49 0.44 0.46

Proposed method 0.63 0.71 0.63 0.62 0.49
Two categories Whole lung 0.80 0.80 0.80 0.80 0.86

Lobe RU 0.78 0.78 0.78 0.77 0.84
RM 0.78 0.78 0.78 0.78 0.86
RL 0.82 0.82 0.82 0.81 0.87
LU 0.78 0.78 0.78 0.77 0.84
LL 0.81 0.81 0.81 0.81 0.86

Proposed method 0.87 0.87 0.87 0.87 0.93

Fig. 4 Optimal coefficients of features within LASSO for the staging of COPD severity. (a) The four categories. (b) The two categories
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in the two-category classification task, where it achieves 
the highest performance metrics across all evaluated 
criteria.

In Table  4, we present the performance compari-
son between the LASSO and PCA methods for COPD 
severity staging on Dataset 1, categorized into four cat-
egories (representing GOLD I vs. GOLD II vs. GOLD III 
vs. GOLD IV) and two categories (representing GOLD 
I + GOLD II vs. GOLD III + GOLD IV).

For the four-category classification task, the PCA 
method achieves an accuracy of 0.45, with precision, 
recall, and F1-score all around 0.41. In contrast, the 
LASSO method outperforms PCA significantly, with an 
accuracy of 0.63 and precision, recall, and F1-score all 
above 0.60.

In the two-category classification task, both PCA and 
LASSO methods demonstrate improved performance 
compared to the four-category classification. However, 
the LASSO method continues to exhibit superior per-
formance, achieving an accuracy of 0.87 and precision, 
recall, and F1-score all at 0.87, whereas PCA achieves an 
accuracy of 0.65 with slightly lower precision, recall, and 
F1-score.

Overall, the results suggest that the LASSO method 
outperforms PCA in accurately staging COPD severity, 
particularly evident in the higher accuracy, precision, 
recall, and F1-score achieved across both classification 
tasks. This underscores the effectiveness of LASSO as 

a feature selection method for radiomics-based COPD 
severity staging on Dataset 1.

Performance comparisons in four and two categories of 
severity staging of COPD with different machine learning 
methods
In Table  5, we present a comprehensive evaluation of 
various machine learning classifiers for COPD sever-
ity staging on Dataset 1 (Training dataset). The task 
encompasses both four-category (GOLD I vs. GOLD II 
vs. GOLD III vs. GOLD IV) and two-category (GOLD 
I + GOLD II vs. GOLD III + GOLD IV) classification 
scenarios. For the four-category classification, classifi-
ers including KNN, Decision Tree, AdaBoost, Gradient 
Boosting, XGBoost, Random Forest, CatBoost, and our 
proposed lobe-based radiomics method are examined. 
In the task of four-category classification, the proposed 
approach demonstrates superior performance compared 
to other classifiers, attaining an accuracy of 0.63, preci-
sion of 0.71, recall of 0.63, and F1 score of 0.62. The train-
ing time of the five classifiers is also provided in Table 5.

In the two-category classification task, the proposed 
method again shows superior performance, achieving 
perfect scores of 0.87 across all metrics. The runner-up, 
Gradient Boosting and CatBoost, scores 0.84 across all 
metrics.

Although the accuracy of our proposed method 
is slightly lower than XGBoost and CatBoost in the 

Table 4 Performance of LASSO compared with PCA method for COPD severity staging on Dataset1
Task Feature selection Accuracy Precision Recall F1-score
Four categories PCA 0.45 0.41 0.45 0.41

LASSO 0.63 0.71 0.63 0.62
Two categories PCA 0.65 0.64 0.65 0.63

LASSO 0.87 0.87 0.87 0.87

Fig. 5 The ROC curves using SVM for COPD severity staging based on a combination of five lobes radiomic features. (a) Four categories; (b) Two categories
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four-way classification task of COPD severity, it is still 
competitive, but it has a clear advantage in the two-way 
classification of COPD severity. These results demon-
strate the effectiveness of the proposed method in staging 
COPD severity, providing strong evidence for its poten-
tial use in clinical settings.

Performance of testing on dataset 2
We extended the application of our methodology to an 
external dataset, Dataset 2 was tested on the previously 
trained model. Utilizing an SVM classifier, we catego-
rized the features—post feature selection—into two cat-
egories of COPD severity.

As shown in Table  6, for the four-category classifica-
tion task, the proposed method achieves an accuracy of 
0.50, precision of 0.47, recall of 0.50, F1-score of 0.45, and 
AUC of 0.48. In the two-category classification task, the 
proposed method demonstrates improved performance, 
achieving an accuracy of 0.81, precision of 0.81, recall 
of 0.81, F1-score of 0.81, and AUC of 0.88. These results 
suggest that the proposed method performs well in dis-
tinguishing between less severe (GOLD I and II) and 
more severe (GOLD III and IV) COPD stages.

It is important to note that the training was con-
ducted on Dataset 1, consisting of low-dose lung CT 
scans, whereas Dataset 2, employed for external valida-
tion, contained standard-dose CT images. This difference 

in dosing may account for the marginally lower perfor-
mance observed on Dataset 2.

Depicting the importance of each lobe radiomics feature in 
COPD staging
We analyze the importance of the radiomics feature in 
each lobe for COPD staging. Figure  6 shows the con-
tribution of radiomics features of each lung lobe in the 
feature selection of four classifications of COPD sever-
ity. Seven types of features are collected, including first 
order features, shape features, GLCM, GLSZM, GLRLM, 
NGTDM, and GLDM.

In the four-category classification task. First Order 
Features are most prevalent in the RL lobe with 5 occur-
rences, totaling 17 across all lobes. Shape Features are 
relatively rare, with just 2 occurrences across all lobes and 
only appearing in the RM and LU lobes. GLCM features 
are most common in the LL lobe with 7 occurrences, 
with a total of 23 across all lobes. GLSZM features are 
evenly distributed across the RM, RL, and LU lobes with 
7 occurrences each, totaling 30 across all lobes. GLRLM 
and GLDM features are most prevalent in the RU lobe, 
with 4 and 8 occurrences respectively.

In the two-category classification task. First Order Fea-
tures are most prevalent in the RU and LL lobes with 7 
occurrences each, totaling 27 across all lobes. Shape 
Features are relatively rare, with just 4 occurrences 
across all lobes and appearing mostly in the RM lobe. 
GLCM features are most common in the LL lobe with 9 
occurrences, with a total of 37 across all lobes. GLSZM 
features are most common in the RM lobe with 9 occur-
rences, totaling 29 across all lobes. GLDM features are 
most prevalent in the RL lobe with 6 occurrences.

Table 5 Performance of proposed lobe-based radiomics method compared with other machine learning methods for COPD severity 
staging on Dataset1
Task Classifier Accuracy Precision Recall F1-score AUC Training time (s)
Four categories KNN 0.50 0.53 0.50 0.49 0.47 --

Decision Tree 0.52 0.57 0.52 0.50 0.48 0.0349
AdaBoost 0.51 0.51 0.51 0.50 0.44 0.2813
Gradient Boosting 0.57 0.57 0.57 0.56 0.45 4.6552
XGBoost 0.64 0.66 0.64 0.60 0.45 0.5206
Random Forest 0.60 0.68 0.60 0.59 0.44 0.3022
CatBoost 0.64 0.68 0.64 0.63 0.48 150.8
Proposed method 0.63 0.71 0.63 0.62 0.49 0.0621

Two categories KNN 0.80 0.80 0.80 0.79 0.87 --
Decision Tree 0.73 0.73 0.73 0.73 0.72 0.0312
AdaBoost 0.79 0.79 0.79 0.79 0.85 0.3504
Gradient Boosting 0.84 0.84 0.84 0.84 0.89 1.5213
XGBoost 0.82 0.82 0.81 0.82 0.89 0.1366
Random Forest 0.83 0.83 0.82 0.83 0.89 0.3191
CatBoost 0.84 0.84 0.84 0.84 0.88 64.7
Proposed method 0.87 0.87 0.87 0.87 0.93 0.0440

Table 6 The performance of the proposed method for COPD 
severity staging on dataset 2
Task Accuracy Precision Recall F1-score AUC
Four categories 0.50 0.47 0.50 0.45 0.48
Two categories 0.81 0.81 0.81 0.81 0.88
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In our study, three critical features are important in 
our model’s decision-making process. (1) First Order 
Features: These features, capturing basic statistical prop-
erties of the image intensities within the ROI, were pre-
dominantly influential in the RL and RU lobes. Their high 
frequency of occurrence and significance suggest their 
utility in capturing intensity variations that are crucial for 
COPD severity distinction. (2) GLCM Features: Particu-
larly dominant in the LL lobe, these texture features are 
critical as they capture the spatial relationships between 
pixel intensities, which are pertinent to understanding 
tissue heterogeneity in COPD. (3) GLSZM and GLRLM 
Features: Their uniform presence across several lobes 
highlights their role in assessing larger area variations 
and the length of uniform runs in pixel values, respec-
tively, providing key insights into the structural changes 
within the lung tissues.

In both tasks, the total number of features across all 
lobes and categories is 104 for the four categories and 
132 for the two categories. This data provides valuable 
insights into the distribution and prevalence of radiomics 
features across different lung lobes, which could be 

instrumental in the development and refinement of 
machine learning models for lung disease diagnosis and 
severity staging.

Discussion
In this study, we proposed a novel lobe-based radiomics 
model for the precise staging of COPD severity using 
CT images. Our study found that when assessing COPD 
severity, combining radiomic features from each lung 
lobe offered a superior overview compared to using fea-
tures from the entire lung. This method provided a more 
detailed and localized perspective of COPD severity, 
highlighting regional variations in disease progression.

Our approach offers many advantages. The localized 
analysis not only provided a comprehensive understand-
ing of the regional variations in COPD severity but also 
allowed for a more personalized assessment of disease 
progression. Additionally, our method facilitated finer 
biological insights into the differential impact of COPD 
across the lung lobes. These insights could potentially 
inform targeted therapeutic strategies in the future. 
Finally, our predictive models, which combined radiomic 

Fig. 6 The feature species and the contribution of each lung lobe in feature selection of COPD severity. (a) Four categories; (b) Two categories
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features from each lobe, showed superior performance 
compared to traditional models using features from the 
entire lung.

The previous studies have focused on using radiomic 
features derived from the entire lung, as shown in 
Table 7. Li et al. proposed a method of binary classifica-
tion of COPD severity with LR and SVM classifiers based 
on 2D ROI manually marked by doctors to generate 3D 
VOI to extract image radiomics features. The accuracy 
was 76.3% [37]. Makimoto et al. [23] and Puchakayala et 
al. [24] first extracted the features from the whole lung 
region. Then, binary classification of COPD severity was 
performed using Linear-SVM and CatBoost. Finally, an 
AUC was achieved with 78% and 90%, respectively. In the 
study by Yang and colleagues, the severity of COPD was 
stratified into four categories. This classification utilized 
features extracted from the entire lung region [44]. Gon-
zalez et al. joined four specific CT slices into an image 
to classify COPD severity using the CNN method, with 
an accuracy of 51.1% [45]. Sun et al. used three-channel 
information, including raw CT volumes, segmented lung 
parenchyma, and emphysema features, as input for 3D 
ResNet with an accuracy of 76.4% [46].

While these studies have significantly contributed to 
the field, our approach to analyzing each lung lobe has 
shown additional benefits. In the experiment, we classify 
the severity of COPD by extracting the radiomic features 
of five lung lobes after lung CT segmentation and pro-
pose that it is of great significance to classify the severity 
of COPD based on the combined radiological features of 
five lung lobes. We also classify COPD severity quadri-
partite and bipartite based on the radiomic features of 
whole lung area and single lung lobe of Dataset 1. It is 
demonstrated that radiomic features extracted from the 
lung lobe are more specific than those from the whole 
lung region. The combined radiomic features of all five 
lung lobes are more complete than the radiomic fea-
tures of the individual lung lobes, which are more suit-
able for COPD severity classification. We try to classify 
the COPD severity of each lung lobe as a separate whole 
after extracting features from each lung lobe through 
the trained model. After the segmentation of lung lobes 
and the extraction of the radiomic features of each lobe, 
we no longer group the features of each lobe, but carry 
out feature selection on the features of the five lobes 

respectively, and then carry out the four-way classifica-
tion and two-way classification of COPD severity. In 
addition, we also segment the whole lung area and then 
extract the radiomic features, and compare the classifica-
tion results with the combined radiomic features based 
on 5 lung lobes.

The result shows that radiomic features based on the 
combination of lung lobes can better represent the details 
of the lungs, and can be better applied in the classifica-
tion of COPD severity. The segmentation of the lung into 
5 lobes can better capture the CT radiomic features of the 
lung than simply observing the lung as a whole and also 
have a better performance in the classification of COPD 
severity. Because the location of COPD is not fixed, a 
single lung lobe is not enough to be used as a standard 
for classification, and the five lung lobes should be evalu-
ated as a whole. In addition, this study demonstrates the 
significance of the pulmonary lobe in the classification of 
COPD severity.

Despite these promising findings, our study has certain 
limitations that warrant mention. First, our sample size is 
relatively small, limiting the generalizability of our find-
ings. Our study focuses on a single cohort, which may 
not fully represent the broader COPD patient popula-
tion. While our model shows improved predictive per-
formance, there’s a need for external validation in larger, 
diverse cohorts to confirm its clinical utility. Secondly, we 
utilized spirometry as the reference standard for iden-
tifying and staging COPD. However, the performance 
of this method is suboptimal when categorizing COPD 
into four severity levels because these categories rely on 
setting thresholds for spirometry measurements, which 
operate on a continuous scale. This means that even a 
slight change in an individual’s pulmonary function may 
lead to a different COPD classification. By incorporating 
additional clinical information such as the 6-minute walk 
distance, body mass index, exacerbation history, and total 
scores from the St George’s Respiratory Questionnaire, 
it becomes feasible to enhance the accuracy of GOLD 
staging.

Given these limitations, future research should aim to 
validate our findings in larger, more diverse populations. 
There is also a need to explore the utility of our proposed 
method in longitudinal studies to assess its predictive 
performance over time. Furthermore, while our study 

Table 7 Previous studies using radiomic features or deep learning for COPD severity staging
Reference ROI for feature extraction Method Class ACC (%) AUC (%)
Li et al. [37] Randomly select 2D ROI and 3D VOI LR; SVM 2 76.3% 79.7%
Makimoto et al. [23] Whole lung Linear -SVM 2 - 78.0%
Yang et al. [44] Whole lung MLP 4 80.0% 94.0%
Puchakayala et al. [24] Whole lung CatBoost 2 - 90.0%
Gonzalez et al. [45] - CNN 4 51.1% -
Sun et al. [46] - MIL 4 76.4% 91.2%
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focused on radiomic features, integrating clinical and 
genetic data could potentially enhance predictive accu-
racy. In addition, Multimodal Measures are currently 
being applied to the diagnosis of a variety of diseases 
[47]. In the future, we will study the severity classification 
of COPD by multimodality combining imaging omics 
features with other factors. Lastly, exploring the use of 
advanced machine learning and deep learning algorithms 
could provide additional improvements.

Conclusions
The study demonstrates that combining radiomic fea-
tures from five lobes offers a promising approach for 
staging COPD severity. The lobe-based radiomics fea-
tures, which are extracted from five lobes in CT images, 
can provide more localized formation beyond what can 
be captured by considering the lung as a whole. The 
proposed method also provides a more granular under-
standing of disease distribution and severity, potentially 
improving patient management strategies. Moreover, we 
aim to refine the radiomics model further, enabling pre-
cise COPD staging and providing enhanced personalized 
support for individual patients in the future.

While the results are encouraging, we acknowledge 
certain limitations that must be addressed in future work. 
Firstly, the study’s sample size was restricted, which may 
limit the generalizability of our findings. Larger, multi-
center studies will be essential to validate our approach 
and ensure its applicability across diverse populations. 
Additionally, our study focused on only radiomic fea-
tures, clinical and genetic data have the potential for the 
prediction of disease progression over time.
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