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Abstract 

Background  The advent of immunotherapy targeting immune checkpoints has conferred significant clinical advan-
tages to patients with lung adenocarcinoma (LUAD); However, only a limited subset of patients exhibit responsive-
ness to this treatment. Consequently, there is an imperative need to stratify LUAD patients based on their response 
to immunotherapy and enhance the therapeutic efficacy of these treatments.

Methods  The differentially co-expressed genes associated with CD8 + T cells were identified through weighted 
gene co-expression network analysis (WGCNA) and the Search Tool for the Retrieval of Interacting Genes (STRING) 
database. These gene signatures facilitated consensus clustering for TCGA-LUAD and GEO cohorts, categorizing them 
into distinct immune subtypes (C1, C2, C3, and C4). The Tumor Immune Dysfunction and Exclusion (TIDE) model 
and Immunophenoscore (IPS) analysis were employed to assess the immunotherapy response of these subtypes. 
Additionally, the impact of inhibitors targeting five hub genes on the interaction between CD8 + T cells and LUAD 
cells was evaluated using CCK8 and EDU assays. To ascertain the effects of these inhibitors on immune checkpoint 
genes and the cytotoxicity mediated by CD8 + T cells, flow cytometry, qPCR, and ELISA methods were utilized.

Results  Among the identified immune subtypes, subtypes C1 and C3 were characterized by an abundance 
of immune components and enhanced immunogenicity. Notably, both C1 and C3 exhibited higher T cell dysfunc-
tion scores and elevated expression of immune checkpoint genes. Multi-cohort analysis of Lung Adenocarcinoma 
(LUAD) suggested that these subtypes might elicit superior responses to immunotherapy and chemotherapy. In vitro 
experiments involved co-culturing LUAD cells with CD8 + T cells and implementing the inhibition of five pivotal genes 
to assess their function. The inhibition of these genes mitigated the immunosuppression on CD8 + T cells, reduced 
the levels of PD1 and PD-L1, and promoted the secretion of IFN-γ and IL-2.

Conclusions  Collectively, this study delineated LUAD into four distinct subtypes and identified five hub genes corre-
lated with CD8 + T cell activity. It lays the groundwork for refining personalized therapy and immunotherapy strategies 
for patients with LUAD.
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Introduction
Lung cancer, the most prevalent form of cancer, 
presents a significant threat to human health. It is 
broadly classified into two subtypes: Non-Small Cell 
Lung Cancer (NSCLC) and Small Cell Lung Cancer 
(SCLC). NSCLC, encompassing lung adenocarcinoma 
(LUAD) and squamous cell carcinoma (LUSC), repre-
sents approximately 80% of all lung cancer cases [1–3]. 
Despite advancements in various therapeutic meth-
ods, including surgery, LUAD’s five-year survival rate 
remains discouragingly low [4]. The advent of immuno-
therapy, particularly through the use of immune check-
point inhibitors (ICIs) targeting PD-1 and PD-L1, has 
heralded a new era in lung cancer treatment [5]. Nowa-
days, immunotherapy is employed across a spectrum of 
cancer types, lung cancer included [6–8]. However, the 
effectiveness of immune checkpoint blockade therapy 
is limited, benefiting only a select group of lung cancer 
patients [9].

A cornerstone of tumor immunology posits that cyto-
toxic CD8 + T cells can eliminate tumor cells [10, 11]. 
Numerous studies corroborate the significant correla-
tion between the presence of cytotoxic CD8 + T cells and 
enhanced survival rates in lung cancer patients [12]. It has 
also been established that immune subtypes across vari-
ous tumors exhibit tissue specificity, each encompassing 
distinct immune components [13, 14]. Consequently, the 
ability to accurately identify immune subtypes predictive 
of an immunotherapeutic response in LUAD patients and 
to discern the most suitable candidates for immunother-
apy would immensely benefit this patient demographic 
[15–17]. Past research on the immune subtypes of LUAD 
has predominantly characterized these subtypes using a 
generalized immune score, focusing solely on the impact 
of immune infiltration on this score [18–20]. Subsequent 
studies have highlighted the reversal of CD8 + T cell 
exhaustion as a pivotal anti-tumor strategy for ICIs [21]. 
This exhaustion in CD8 + T cells, induced by tumors, is 
frequently associated with alterations in gene expres-
sion [22, 23]. Identifying key genes influencing CD8 + T 
cell exhaustion, therefore, holds significant potential for 
enhancing ICI therapy in patients with LUAD [24].

In this study, we conducted analyses on three inde-
pendent datasets from TCGA and GEO, identifying a set 
of genes co-expressed with CD8 + T cells. These genes 
served as markers for consensus clustering within the 
TCGA and GEO datasets, leading to the delineation of 
four robust immune subtypes. Systematic analysis fur-
ther categorized these subtypes into groups with high 
and low responses to immunotherapy. Through in  vitro 
experiments targeting five pivotal genes associated with 
CD8 + T cells, we elucidated their roles in the interaction 
between tumor cells and CD8 + T cells. This research 

furnishes a scientific basis for enhancing ICI treatments 
in LUAD.

Materials and methods
Data downloading and differentially expressed genes 
(DEGs) screening
Data comprising 497 tumor and 54 normal samples (in 
both count and FPKM formats) were retrieved from 
The Cancer Genome Atlas (TCGA: https://​cance​rgeno​
me.​nih.​gov/). Additionally, datasets GSE68465 and 
GSE31210 were acquired from the Gene Expression 
Omnibus (GEO: https://​www.​ncbi.​nlm.​nih.​gov/​geo/) 
database. The dataset from the IMvigor210 cohort, which 
includes numerous cancer patients who have undergone 
treatment with anti-PD-L1 agents, was obtained from a 
publicly accessible data package at http://​resea​rch-​pub.​
gene.​com/​IMvig​or210​CoreB​iolog​ies/. Differential gene 
expression analysis between normal and tumor tissues 
in the TCGA-LUAD cohort was performed utilizing the 
R package “edgeR”, applying a threshold of |log2 fold-
change| > 1 and p-value < 0.05 (in count format). Both 
the ethical consent and informed consent, for research 
involving human subjects, were granted and duly signed 
by all participating patients, through the Committees for 
Ethical Review at Affiliated Hospital of Guangdong Med-
ical University (Approval PJKT2023-156).

Evaluation of immune cell infiltration
CIBERSORT is a tool designed to estimate the pro-
portions of 22 different immune cell types based on 
gene expression profiles [25]. It, along with the Tumor 
Immune Estimation Resource (TIMER) (https://​cistr​
ome.​shiny​apps.​io/​timer/), was utilized to assess the lev-
els of immune cell infiltration in each LUAD sample [26]. 
Samples that yielded a p-value less than 0.05 were consid-
ered to have accurately measured immune cell infiltration 
fractions as determined by CIBERSORT.

Construction of weighted co‑expressed networks 
and identification of hub genes related to CD8 + T cells
The R package “WGCNA” facilitated the construc-
tion of weighted co-expression networks for differen-
tially expressed genes (DEGs). A soft-threshold power 
of β = 3 was selected to identify the key module genes. 
Subsequently, these genes were queried in the STRING 
database to establish a Protein-Protein Interaction (PPI) 
network, which was then visualized through Cytoscape 
software. Hub genes associated with CD8 + T cells were 
identified by applying the Maximal Clique Centrality 
(MCC) algorithm within Cytoscape.

https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Single‑cell sequencing analysis from public databases
SC2diseases (http://​easyb​ioai.​com/​sc2di​sease/) was a 
database deriving from a large number of human sin-
gle-cell sequencing studies [27]. It facilitated the iden-
tification of differential genes (logFC > 2) amongst 
CD8 + exhausted T cells compared to CD8 + non-
exhausted T cells in NSCLC patients, drawn from sin-
gle-cell sequencing research encompassing 3 squamous 
cell carcinomas and 11 adenocarcinomas. Furthermore, 
an online tool developed from this research (http://​
lung.​cancer-​pku.​cn/) enabled the visualization of spe-
cific gene expression levels in CD8 + T cells within lung 
adenocarcinoma.

Identification of immune subtypes for LUAD
To identify LUAD subtypes distinguished by varying 
immune characteristics, we utilized the R package “Con-
sensusClusterPlus” to categorize LUAD patients into 
subtypes according to genes associated with CD8 + T cell 
modules. We then conducted principal component anal-
ysis (PCA) using R software to evaluate the classification 
accuracy.

Analysis of immune components of LUAD immune 
subtypes
R package “GSVA” was used to perform single-sample 
gene set enrichment analysis (ssGSEA) for samples of 
LUAD based on 29 immune gene sets. The immune 
score, stromal score and tumor purity were calculated by 
using R package “ESTIMATE”.

Prediction of immunotherapy response and IC50 
of chemotherapeutic drugs in LUAD immune subtypes
The “Tumor Immune Dysfunction and Exclusion (TIDE)” 
method calculates T cell dysfunction and T cell exclu-
sion scores to predict immunotherapy outcomes. A lower 
TIDE score signifies improved immunotherapy effective-
ness. Upon determining the TIDE scores, we categorized 
LUAD patients with TIDE values greater than 0 as non-
responders and those with values less than 0 as respond-
ers. The “Immunophenoscore (IPS)” analysis evaluates 
patient immunogenicity based on effector cells, immuno-
suppressive cells, MHC molecules, and immunomodula-
tors. An increase in IPS score correlates with enhanced 
immunogenicity, suggesting a potential for better immu-
notherapy response. We retrieved IPS scores for LUAD 
patients from The Cancer Immunome Atlas (TCIA) 
(https://​tcia.​at/​home). Additionally, the IC50 values for 
cisplatin, gefitinib, and gemcitabine in each sample were 
computed using the “pRRophetic” R package.

Dimension reduction analysis and generation 
of immunotherapy response signatures for anti‑PD‑L1 
treatment effect prediction
The R package “limma” facilitated the identification of 
differentially expressed genes (DEGs) between groups 
with high and low responses to immunotherapy within 
the TCGA cohort, applying a threshold of | log2 fold-
change | > 1 and p < 0.05 (in FPKM format). Subse-
quently, KEGG and GO enrichment analyses of these 
DEGs were performed using Metascape (http://​metas​
cape.​org/​gp/​index.​html). Principal component analysis 
(PCA) utilized the DEGs from both response groups in 
the TCGA cohort as biomarkers within the IMvigor210 
cohort. Principal Component 1 (PC1) was extracted to 
serve as the immunotherapy response score (ITRscore). 
Using the optimum cut-off value, the IMvigor210 cohort 
was stratified into groups with high and low ITRscores 
to conduct an overall survival analysis. This was done to 
evaluate the difference in anti-PD-L1 treatment response 
between these groups. The “survminer” R package deter-
mined the optimal cut-off value.

Somatic mutation analysis and gene set variation analysis 
(GSVA) of high and low immunotherapy response groups
The MAF files containing somatic mutation data for 
LUAD were downloaded from TCGA and visualized with 
the R package “maftools”. Enrichment scores for KEGG 
pathways and GO biological processes were calculated 
using the R package “GSVA”. Gene sets corresponding 
to KEGG pathways and GO biological processes were 
obtained from the Gene Set Enrichment Analysis (GSEA) 
database (https://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp).

Cell lines and cell culture
The human lung adenocarcinoma cell line A549 was 
obtained from the Cell Bank of the Type Culture Col-
lection of the Chinese Academy of Sciences (Shang-
hai, China). These cells were maintained in DMEM 
(HyClone, USA) supplemented with 10% heat-inactivated 
fetal bovine serum (FBS). CD8 + T cells were purified uti-
lizing the CD8 + T Cell Isolation Kit from (Miltenyi Bio-
tech, Germany). For in  vitro assays, A549 and CD8 + T 
cells were treated with various inhibitors: CXCL9 inhibi-
tor (Seselin, 10µM), FOXP3 inhibitor (Epirubicin, 5µM), 
CD9 inhibitor (Loncastuximab, 15µM), CTLA4 inhibitor 
(Zalifrelimab, 10µM), or IFN-γ inhibitor (IFN-γ Antago-
nist 1, 35µM) for 24 h. Cultures were incubated at 37 °C 
in a 5% CO2 atmosphere.

CCK‑8 assay
A549 cells and CD8 + T cells were co-cultured in 96-well 
plates at a density of 1,500 cells per well and subjected 

http://easybioai.com/sc2disease/
http://lung.cancer-pku.cn/
http://lung.cancer-pku.cn/
https://tcia.at/home
http://metascape.org/gp/index.html
http://metascape.org/gp/index.html
https://www.gsea-msigdb.org/gsea/index.jsp
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to treatment with the inhibitors which were mentioned 
in cell culture. Twenty-four hours post-treatment, the 
cells were incubated in fresh medium supplemented with 
CCK-8 assay reagent at a concentration of 0.5  mg/mL 
(Sigma, USA). Absorbance was measured at 450 nm one 
hour after incubation.

EdU assay
A549 cells and CD8 + T cells were co-cultured and sub-
jected to treatment with the inhibitors which were men-
tioned in cell culture. Twenty-four hours post-treatment, 
A549 cells were exposed to 10 µM of EdU (Sigma, USA) 
and incubated for 2  h. Subsequently, the cells were 
washed thrice with PBS and blocked for 15  min. Fol-
lowing the blocking step, the cells were stained with a 
fluorescent dye mixture for 2 h, according to the manu-
facturer’s instructions. Finally, the cells were washed 
three times with PBS and then examined under a fluores-
cence microscope.

Flow cytometry
A549 cells and CD8 + T cells were co-cultured and 
treated with specified inhibitors which were mentioned 
in cell culture. Twenty-four hours post-treatment, the 
cells were suspended at a concentration of 1 × 10^6 cells/
ml in flow staining buffer, which consisted of PBS, 0.5% 
bovine serum albumin, 2 mM EDTA, and 0.1% sodium 
azide. Subsequently, they were incubated with either 
anti-PD-L1 (Abcam, UK) or anti-PD1 (Abcam) antibod-
ies for one hour at 4  °C in darkness. The stained cells 
were then analyzed using a flow cytometer.

Real‑time PCR
Total RNA was extracted from the specified tissues or 
cells using Trizol reagent (Invitrogen, USA) and then 
converted to cDNA in the presence of PrimeScript RT 
Master Mix (Takara, Japan). Quantitative PCR (qPCR) 
was performed with SYBR premix Ex TaqII reagent 
(Takara), using β-Actin as the internal control. The qPCR 
assays utilized primers for IFN-γ: 5′-TCG​GTA​ACT​GAC​
TTG​AAT​GTCCA-3′ (forward) and 5′-TCG​CTT​CCC​
TGT​TTT​AGC​TGC-3′ (reverse); and for IL-2: 5′-AAC​
TCC​TGT CTT​GCA​TTG​CAC​-3′ (forward) and 5′-GCT​
CCA​GTT​GTA​GCT​GTG​TTT-3′ (reverse).

Elisa assays
A549 cells and CD8 + T cells were cocultured and sub-
jected to treatment with the inhibitors which were men-
tioned in cell culture for 24  h. The levels of IFN-γ and 
IL-2 were quantified using the respective IFN-gamma 
and IL-2 ELISA kits (Abcam, UK), following the manu-
facturer’s protocol.

Statistical analysis
Statistical analyses were performed using R version 4.0.3. 
Differential gene expression analysis was conducted 
using the “edgeR” and “limma” R packages. The Wilcoxon 
test and Kruskal-Wallis test were applied for comparisons 
between two groups and across four groups, respectively. 
Kaplan-Meier method facilitated the overall survival 
analyses, with the log-rank test being utilized for group 
comparisons. A p-value of < 0.05 was considered statis-
tically significant. Data were analyzed using GraphPad 
Prism version 9.0. Student’s t-test in GraphPad Prism was 
employed to assess differences between groups, with data 
presented as the mean ± SD from a minimum of three 
independent experiments. Statistical significance was 
assigned at *p < 0.05, **p < 0.01, or ***p < 0.001.

Results
The royalblue module was significantly associated 
with CD8 T + and other multiple immune cells
In the TCGA cohort study, 5072 differentially expressed 
genes (DEGs) were identified with | log2(fold change) 
|> 1 and a significance level of p < 0.05. Using an optimal 
soft threshold of β = 3, as shown in Figs.  1a and 25 co-
expression modules were ultimately identified. The pro-
portions of 22 immune cell types were quantified using 
CIBERSORT, and 447 tumor samples were selected based 
on meeting our criteria (P < 0.05). Through WGCNA, 
we explored the correlation between these modules 
and seven T cell subtypes. Notably, the royalblue mod-
ule exhibited a significant correlation with CD8 + T cells 
(Fig. 1b). In the royalblue module, 45 co-expressed genes 
were identified, which will serve as clustering signatures 
in subsequent analyses (Supplementary Table  1). Gene 
Significance was determined by the absolute value of the 
correlation coefficient between gene expression levels 
and the proportion of T cells. The PPI network for the 
genes within the royalblue module was constructed using 
STRING and visualized through Cytoscape software. The 
hub genes—CXCL9, FOXP3, CD19, CTLA4, and IFNG—
were identified by employing the Maximal Clique Cen-
trality (MCC) algorithm within Cytoscape (Fig. 1c). The 
infiltration levels of B cells, CD8 + T cells, CD4 + T cells, 
neutrophils, macrophages, and myeloid dendritic cells 
were assessed using TIMER. The hub genes (CXCL9, 
FOXP3, CD19, CTLA4, and IFNG) exhibited a positive 
correlation with these six types of immune cells in both 
TCGA and GEO cohorts (Fig. 1d). Additionally, 90 differ-
entially expressed genes, upregulated in CD8 + exhausted 
T cells, were identified by comparing CD8 + exhausted T 
cells with CD8 + non-exhausted T cells via SC2diseases 
(Supplementary Table  2). Among the identified genes, 
CTLA4, CXCL13, IFNG, LAG3, SIRPG, TIGIT and 
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CD27 coincide with those in the royal blue module. The 
expression profiles of these seven genes across CD8 + T 
cell subtypes are depicted in Supplementary Fig.  1. In 
summary, these findings indicate that the hub genes 

(CXCL9, FOXP3, CD19, CTLA4, and IFNG) along with 
their co-expressed counterparts, are significantly associ-
ated with CD8 + T cells.

Fig. 1  Screening of CD8 + T cell-related weighted co-expressed gene sets in TCGA-LUAD cohort. (a) Soft threshold power analysis was used 
to obtain the scale free fitting index of network topology. (b) The correlation between co-expression modules constructed by WGCNA and T 
cells. The royalblue module had the highest correlation with CD8 + T cells. (c) PPI network of royalblue module genes, the top5 hub genes were 
in the center. (d) The correlation between bub genes and B cell, CD4 + T cell, CD8 + T cell, Neutrophil, Macrophage and Myeloid dendritic cell 
in TCGA, GSE68465 and GSE31210 cohorts
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Immune subtyping of LUAD based on genes of royalblue 
module related to CD8 + T cells
Utilizing the genes from the royal blue module, the 
analyses classified patients from the TCGA-LUAD, 
GSE68465, and GSE31210 cohorts into four distinct sub-
types (TCGA-LUAD: C1: 106, C2: 131, C3: 100, C4: 140; 
GSE68465: C1: 70, C2: 90, C3: 160, C4: 122; GSE31210: 
C1: 61, C2: 62, C3: 38, C4: 65) (Fig. 2a-c). PCA revealed 
clear differentiation among these four immune subtypes 
of LUAD across the cohorts (Fig. 2d).

The immune landscapes of immune subtypes of LUAD
The composition of immune cells within the immune 
subtypes, as depicted in Fig.  3a and Supplementary 
Fig.  2a, shows that CD8 + T cells and M1 macrophages 
are significantly more abundant in subtypes C1 and C3 
compared to C2 and C4. In the TCGA-LUAD cohort, 
29 immune gene sets were notably enriched in C1 and 
C3 (Fig.  3b). A comparison of stromal scores, immune 
scores, and tumor purity across the four subtypes 
revealed that both the stromal and immune scores were 
markedly higher in C1 and C3 than in C2 and C4 (Fig. 3c 
and d). Conversely, tumor purity was found to be higher 
in C2 and C4 (Fig. 3e). The findings indicated that sub-
types C1 and C3 exhibited more robust immune com-
ponent profiles than those observed in subtypes C2 and 
C4. To confirm the stability of these immune subtypes, 
identical analyses were conducted on the GSE68465 and 
GSE31210 cohorts. The outcomes of these additional 
analyses paralleled the trend noted in the TCGA-LUAD 
cohort, (Supplementary Fig. 2b-2d). Consequently, these 
findings underscore the reliability and stability of the 
classification method, confirming the existence of these 
immune subtypes in LUAD.

Prediction of immunotherapy response and chemotherapy 
sensitivity in immune subtypes of LUAD
In this study, we evaluated various biomarkers including 
TIDE scores, T cell exclusion scores, T cell dysfunction 
scores, immune checkpoint gene expression levels, and 
IPS to predict the response to immunotherapy across 
four immune subtypes. The TIDE algorithm was uti-
lized to compute the TIDE, T cell exclusion, and T cell 
dysfunction scores for these subtypes. Within the TCGA 
cohort, subtypes C1 and C3 exhibited higher T cell dys-
function scores and lower TIDE scores, while subtypes 
C2 and C4 demonstrated lower T cell dysfunction scores 
and higher TIDE scores (Fig. 3f ). The proportion of true 
immunotherapy responders decreased in the order of C3 
(93%) > C1 (90%) > C4 (49%) > C2 (31%) (Fig. 3g). Regard-
ing immune checkpoints, the expression levels of key 
genes (PD-L1, PD-1, CTLA4, and LAG3) were elevated 
in subtypes C1 and C3 compared to C2 and C4 across the 

TCGA-LUAD, GSE68465, and GSE31210 cohorts (Fig. 3h 
and Supplementary Fig. 3a-b). In the TCGA cohort, true 
responders to immunotherapy had higher scores in IPS_
anti-PD-1, IPS_anti-CTLA4, and IPS_combination of 
anti-CTLA4 and anti-PD-1 (Fig.  4a-c). In analyzing the 
immune subtypes, it was notably discovered that, despite 
both subtypes C1 and C3 having substantial proportions 
of true immunotherapy responders (90% in C1 and 93% 
in C3), their responses to specific treatments differed. 
Subtype C1 exhibited a diminished response to anti-
CTLA4 therapy but showed enhanced responsiveness 
to both anti-PD-1 treatment and the combined regimen 
of anti-PD-1 and anti-CTLA4. Conversely, subtype C3 
demonstrated high efficacy in response to anti-CTLA4, 
anti-PD-1, and the combination therapy of anti-PD-1 and 
anti-CTLA4 (Fig. 4d-f ). As a result of these findings, sub-
types C1 and C3 were categorized as having a high likeli-
hood of responding to immunotherapy, whereas subtypes 
C2 and C4 were classified under a low response category. 
An additional intriguing observation was the disparity in 
the distribution of patients with clinical stages III&IV and 
T3&4 tumors within these groups. Specifically, within the 
high response group, subtype C1 contained a greater per-
centage of patients in these advanced stages compared to 
C3. Similarly, within the low response group, subtype C2 
exhibited a higher incidence of patients in stages III&IV 
and T3&4 (Fig. 4g and h). Subsequently, the IC50 of cis-
platin, gefitinib, and gemcitabine were evaluated across 
the high and low immunotherapy response groups. To 
delve deeper into the variances in chemotherapy sensi-
tivity among these groups, the IC50 values for cisplatin, 
gefitinib, and gemcitabine were assessed within both high 
and low immunotherapy response cohorts across the 
TCGA, GSE68465, and GSE31210 datasets. Our findings 
revealed that the group exhibiting higher immunother-
apy responsiveness demonstrated increased sensitivity 
to cisplatin, gefitinib, and gemcitabine (Fig.  4i-k). Con-
sequently, these observations support the classification 
of C1 and C3 as indicative of a high immune response, 
and C2 and C4, of a low immune response, with the for-
mer group showcasing a heightened susceptibility to 
chemotherapy.

The landscapes of mutation and GSVA enrichment 
among high and low immunotherapy response groups
To deepen our understanding of the disparities between 
high and low immunotherapy response groups, fur-
ther analyses were conducted focusing on pathways and 
biological processes across the TCGA, GSE31210, and 
GSE68465 cohorts. The group exhibiting a high response 
to immunotherapy demonstrated activation across 
numerous immune-related pathways, including primary 
immunodeficiency, cytotoxicity mediated by natural 
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Fig. 2  Consensus clustering of three independent cohorts. (a) Consensus clustering matrix of three independent cohorts (TCGA, GSE68465 
and GSE31210) when k = 4. (b) Cumulative distribution function (CDF) of consensus clustering of three independent cohorts (TCGA, GSE68465 
and GSE31210) for k = 2–9. (c) Relative change of area under CDF curve of three cohorts (TCGA, GSE68465 and GSE31210) for k = 2–9. (d) Principal 
component analysis (PCA) of three cohorts (TCGA, GSE68465 and GSE31210) based on CD8+ T cell-related co-expressed genes



Page 8 of 16Li et al. BMC Pulmonary Medicine          (2024) 24:324 

killer cells, T cell receptor signaling, allograft rejection, 
antigen processing and presentation, and B cell receptor 
signaling, among others (Fig.  5a). Similarly, this group 
showed pronounced activity in various immune-related 

biological processes, such as differentiation of regulatory 
T cells, activation of the immune response, induction 
of T cell tolerance, activation of B cells, and regulation 
of the innate immune response (Fig.  5b). In the TCGA 

Fig. 3  Immune landscape analysis and immunotherapy response analysis of LUAD immune subtypes (a) The four immune subtypes of the TCGA 
cohort showed an almost consistent immune cell infiltration landscape. (b) Heatmap of 29 immune gene sets for four immune subtypes in TCGA 
cohort. (c) Immune score of four immune subtypes in TCGA cohort. (d) Stromal score of four immune subtypes in TCGA cohort. (e) Tumor 
purity of four immune subtypes in TCGA cohort. (f) Heatmap of TIDE score, exclusion score and dysfunction score of four immune subtypes. (g) 
Percentages of true responder of immunotherapy in four immune subtypes (C1: 90%, C2: 31%, C3: 93%, C4: 49%). (h) Expression levels of PD-1, 
PD-L1, CTLA4 and LAG3 in four immune subtypes of TCGA cohort
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cohort, genes exhibiting a mutation frequency exceeding 
20% were identified in both high and low immunotherapy 
response groups (Fig. 5c and d). The high response group 

contained 19 genes with mutation frequencies above 
20%, whereas the low response group comprised only 
11. Generally, the same genes exhibited higher mutation 

Fig. 4  Immunotherapy response and chemotherapy sensitivity analysis of LUAD immune subtypes (a-b) The IPS anti-PD-1 (a) and anti-CTLA4 
(b) scores of immunotherapeutic true responders were significantly higher than false responders. (c) The combination therapy of anti-PD-1 
and anti-CTLA4 had a higher response in immunotherapeutic true responders. (d) C1 and C3 had higher response to anti-PD-1 treatment. (e) Only 
C3 had a high response to anti-CTLA4 treatment. (f) C1 and C3 had high response to combination therapy of anti-PD-1 and anti-CTLA4. (g-h) C1 
and C2 had a higher proportion of patients with high tumor stages III&IV (g) and T3&4 (h) than C3 and C4. (i-k) The comparison of IC50 of cisplatin, 
gefitinib and gemcitabine in high and low immunotherapy response groups in TCGA (i), GSE68465 (j) and GSE31210 (k) cohorts
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Fig. 5  Analysis of immune-related pathways and biological processes in high and low immune response groups and evaluation of anti-PD-L1 
therapy. (a) Multiple immune-related pathways were activated in the high immunotherapy response group. (b) Various immune-related biological 
processes were more active in high immunotherapy response group. (c) Waterfall plot of mutated genes with mutation frequency greater than 20% 
of high immunotherapy response group. (d) Waterfall plot of mutated genes with mutation frequency greater than 20% of low immunotherapy 
response group. (e) The high immunotherapy response group had higher TMB. (f) Heatmap of DEGs of high and low immunotherapy response 
groups. (g) Function annotation of DEGs. (h) PCA analysis of DEGs. PC1 was extracted to serve as ITRscore. (i) Kaplan-Meier plot of IMvigor210 
cohort. The IMvigor210 cohort was divided into high and low ITRscore group according to the best cut-off value of ITRscore.
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frequencies in the high response group. Furthermore, 
the tumor mutational burden was elevated in the high 
response group (Fig. 5e). These findings suggest that the 
group with a high response to immunotherapy demon-
strated greater immunogenicity.

The ITRscore predicts immunotherapeutic benefits 
of anti‑PD‑L1
To investigate the molecular features distinguishing 
high from low immunotherapy response groups, a dif-
ferential gene analysis was performed within the TCGA 
cohort comparing these groups. Applying a threshold 
of absolute log2 fold-change > 1 and p < 0.05, 95 DEGs 
were identified, comprising 94 upregulated and 1 down-
regulated gene (Fig. 5f ). These genes were implicated in 
diverse immune-related functions including lympho-
cyte activation, adaptive immune response, and positive 
regulation of immune responses, among others (Fig. 5g). 
Utilizing these DEGs, the PCA algorithm was employed 
to calculate the ITRscore, stratifying patients who under-
went anti-PD-L1 therapy in the IMvigor210 cohort 
into high ITRscore (n = 88) and low ITRscore (n = 260) 
groups (Fig.  5h). Notably, patients in the high ITRscore 
group experienced significantly longer overall survival 
compared to those in the low ITRscore group within 
the IMvigor210 cohort (Fig.  5i), indicating that patients 
sharing the molecular signature of the high immuno-
therapy response group benefited more from anti-PD-L1 
treatment.

Inhibition of these five hub genes can increase CD8+T cell 
activity and inhibit tumor growth
Our analysis has revealed a close association between 
the genes CXCL9, FOXP3, CD9, CTLA4, IFNG, and 
CD8 + T cells. To investigate the functions of these genes, 
we initially treated lung adenocarcinoma A549 cells with 
specific inhibitors: CXCL9i (Seselin), FOXP3i (Epiru-
bicin), CD9i (Loncastuximab), CTLA4i (Zalifrelimab), 
and IFNGi (IFN-γ Antagonist 1). Unexpectedly, these 
inhibitors did not significantly affect the viability of the 
A549 cells in isolation (Fig. 6a). Conversely, in co-culture 
with CD8 + T cells, a marked reduction in A549 cell via-
bility was observed upon treatment with any of the five 
inhibitors (Supplementary Fig.  4a and Fig.  6b). Further-
more, the viability of tumor-suppressive CD8 + T cells 
improved following exposure to these inhibitors (Fig. 6c). 
Subsequent co-culture experiments exposing A549 cells 
and CD8 + T cells to the inhibitors confirmed that all 
five could indeed reduce A549 cell proliferation, as dem-
onstrated by EdU proliferation assays (Fig.  6d and Sup-
plementary Fig. 4b). These findings imply that inhibiting 
these pivotal genes enhances CD8 + T cell viability and 
their suppressive effects on lung adenocarcinoma cells.

Inhibition of these five hub genes can remove tumor 
immunosuppression of CD8+ T cells
To further explore the impact of five pivotal genes on 
CD8 + T cells, we co-cultured A549 cells with CD8 + T 
cells and treated them with inhibitors targeting these 
genes. We assessed the expression of PD-L1 on A549 cells 
and PD1 on CD8 + T cells using flow cytometry. The find-
ings revealed a reduction in PD-L1 levels on A549 cells 
and a decline in PD1 expression on CD8 + T cells (Fig. 7a 
and b). Moreover, we quantified the mRNA levels of IL-2 
and IFN-γ, cytokines known to influence CD8 + T cell 
cytotoxicity, through qPCR. The results indicated that 
inhibitors of the five targeted genes elevated the mRNA 
levels of IL-2 and IFN-γ (Fig. 7c and d). Furthermore, the 
secretion of IL-2 by CD8 + T cells was increased in the 
presence of these inhibitors (Fig.  7e). Conversely, while 
inhibitors of CXCL9, FOXP3, CD9, and CTLA4 boosted 
the secretion of IFN-γ by CD8 + T cells, inhibition of 
IFNG led to a reduction in IFN-γ secretion (Fig. 7f ). This 
outcome is attributable to the role of IFNG in encoding 
the IFN-γ protein, thereby explaining why blocking IFNG 
diminishes IFN-γ protein levels. Collectively, our results 
demonstrate that inhibiting these five central genes may 
alleviate the immunosuppressive effects of lung adeno-
carcinoma cells on CD8 + T cells and enhance their cyto-
toxic capabilities.

Discussion
Immunotherapy has made significant strides in treating 
certain LUAD patients. Nevertheless, the tumor micro-
environment’s heterogeneity limits its efficacy to only 
a subset of these patients [28]. Thus, within the frame-
work of precision medicine, identifying LUAD patients 
who would benefit from immunotherapy is crucial, as is 
the formulation of tailored mono-therapy and combina-
tion treatment strategies [12, 29]. Our study identified 
45 DEGs co-expressed in both normal and LUAD tis-
sues, which are associated with the presence of tumor-
infiltrating CD8 + T cells. Within this group, five hub 
genes (CXCL9, FOXP3, CD19, CTLA4, and IFNG) were 
identified as playing a pivotal role in regulation. Subse-
quent analyses showed seven of these co-expressed genes 
to be highly expressed in exhausted CD8 + T cells within 
lung adenocarcinoma. Utilizing these genes, we classi-
fied the TCGA-LUAD cohort into four immune subtypes 
and analyzed the heterogeneity within these subtypes. 
We then validated the existence of these immune sub-
types by examining the GSE68465 and GSE31210 
cohorts. Through a comprehensive analysis of LUAD 
immune subtypes, we characterized C1 and C3 as indica-
tive of a high response to immunotherapy, and C2 and 
C4 as indicative of a low response. Regarding chemo-
therapy sensitivity, the subtypes associated with a high 
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immunotherapy response exhibited significantly reduced 
IC50 values for cisplatin, gefitinib, and gemcitabine, sug-
gesting enhanced susceptibility. Overall, our findings 
suggest that the C1 and C3 immune subtypes of LUAD 
may confer superior clinical outcomes through immuno-
therapy, chemotherapy, or their combination.

Numerous studies have substantiated the pivotal role of 
immune-related genes in determining the clinical prog-
nosis of cancer patients and their response to chemo-
therapy and immunotherapy [30, 31]. In our research, 
we primarily concentrated on genes co-expressed with 
CD8 + T cells, employing the MCC algorithm provided 

Fig. 6  Inhibition of these five hub genes on the function of LUAD cells and CD8+T cells. (a) A549 cells were exposed to CXCL9i (Seselin), FOXP3i 
(Epirubicin), CD9i (loncastuximab), CTLA4i (Zalifrelimab), or IFNGi (IFN-γ Antagonist 1) for 24 h, and then CCK8 assay was used to detect the changes 
in cell activity of A549. (b) A549 cells were co-cultured with CD8+ T cells and exposed to inhibitors of these five hub genes for 24 h, respectively. 
After that, the cell viability of A549 cells was examined by CCK8 assay. (c) Cells were treated as in (b). After treatment, the cell viability of CD8+ T 
cells was examined by CCK8 assay. (d) A549 cells were co-cultured with CD8+ T cells and exposed to inhibitors of these five hub genes for 24 h, 
respectively. After that, the proliferation ability of A549 cells was examined by EdU assay
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by Cytoscape to identify the five central hub genes within 
this co-expressed set. CTLA4 was found to inhibit T cell 
activation and proliferation, thereby diminishing tumor 
immunity [32]. Additionally, FOXP3-expressing Treg 

cells were observed to suppress both the proliferation 
and functionality of adjacent T cells [33]. An increase in 
the expression of the chemokine ligand CXCL9 has been 
associated with enhanced infiltration of CD8 + T cells 

Fig. 7  Inhibition of these five hub genes can remove tumor immunosuppression of CD8+T cells. (a-b) A549 cells were co-cultured with CD8+ T cells 
and exposed to inhibitors of these five hub genes for 24 h, respectively. After treatment, PD-L1 expression levels on A549 cells (a) or PD1 expression 
levels on CD8+ T cells (b) were measured by flow cytometry. (c-d) Cells were treated as in (b). After treatment, mRNA levels of IL-2 (c) and IFN-γ (d) 
in CD8+ T cells were detected by qPCR assay. (e-f) Cells were treated as in (b). After treatment, the levels of cytokines IL-2 (e) and IFN-γ (f) secreted 
by CD8+ T cells were detected by Elisa assay
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in solid tumors [34]. IFNG has been noted for its role 
in bolstering immune function, albeit it also induces T 
cell exhaustion via PD-L1, thus constraining both adap-
tive and innate immunity [35]. Lastly, CD19 serves as an 
antigen present on the surface of B lymphocytes [36]. 
In the TCGA and GEO cohorts, we observed a positive 
correlation between the expression levels of five pivotal 
hub genes and the infiltration of various immune cells, 
such as B cells, CD8 + T cells, CD4 + T cells, neutrophils, 
macrophages, and myeloid dendritic cells. By implement-
ing WGCNA to identify co-expressed genes associated 
with CD8 + T cells, we effectively discriminated between 
LUAD immune subtypes exhibiting distinct immune 
characteristics. Utilizing these WGCNA-derived sig-
natures for clustering facilitated the classification of 
LUAD patients into three distinct groups across three 
independent cohorts, yielding stable and concordant 
outcomes. Notably, subtypes C1 and C3 demonstrated 
a richer immune composition and exhibited a higher 
degree of CD8 + T cell exhaustion, alongside a superior 
proportion of authentic immunotherapy responders 
(C3: 93%, C1: 90%, compared to C4: 49%, and C2: 31%). 
Besides, C1 showing an enhanced response to anti-PD-1 
therapy and its combination with anti-CTLA4 therapy. 
Similarly, C3 demonstrated significant responsiveness 
to both anti-CTLA4 and anti-PD-1 treatments, includ-
ing their combined use. Additionally, both C1 and C3 
exhibited increased sensitivity to cisplatin, gefitinib, and 
gemcitabine, suggesting that a combination of immuno-
therapy and chemotherapy could yield substantial clini-
cal benefits for patients classified within these subtypes. 
Consequently, C1 and C3 were categorized as having a 
high immunotherapy response, in contrast to C2 and C4, 
which were classified as having a low response. Enrich-
ment analysis revealed that the high-response groups 
were characterized by the activation of multiple immune-
related pathways. Furthermore, differential gene analy-
sis showed that genes upregulated in the high-response 
group were predominantly associated with immune-
related functions. Notably, the frequency of gene muta-
tions and tumor mutation burdens were significantly 
higher in the high-response group compared to the low-
response group, indicating increased immunogenicity, 
which likely contributes to their heightened sensitivity to 
immunotherapy.

To investigate the roles of five hub genes, in vitro assays 
were performed where inhibitors specific to these genes 
were introduced to A549 cells in monoculture. Contrary 
to expectations, the addition of these inhibitors failed to 
significantly suppress the proliferation of the tumor cells, 
suggesting that these hub genes may not directly influ-
ence tumor cell regulation. Conversely, in co-culture 

experiments with CD8 + T cells and A549 cells, admin-
istration of the same five gene inhibitors not only sup-
pressed A549 cell growth but also enhanced the viability 
of CD8 + T cells. Furthermore, inhibition of these hub 
genes attenuated the immunosuppressive effects exerted 
by the tumor cells on CD8 + T cells and decreased PD1 
expression on the latter. This was accompanied by an 
increase in CD8 + T cell cytotoxicity and elevated levels 
of the cytokines IFN-γ and IL-2. These findings support 
the hypothesis that the five hub genes facilitate tumor 
immune evasion by modulating interactions between 
tumor cells and CD8 + T cells. Through analyzing previ-
ous research, we hypothesized that CD19 influences the 
recognition of tumor antigens by CD8 + T cells. Further-
more, the levels of CTLA4 and FOXP3 directly impact 
the proliferation and activation of these cells [37], while 
CXCL9 affects their infiltration, and IFNG contributes 
to their depletion [38, 39]. Collectively, these five piv-
otal genes modulate the efficacy of CD8 + T cells against 
LUAD through various mechanisms and levels.

Conclusions
Consequently, our study identified five hub genes 
closely associated with CD8 + T cell function, cat-
egorized LUAD into four subtypes and two immune 
response groups, thus laying a theoretical foundation 
for the personalized treatment of LUAD patients and 
the advancement of ICIs therapy.
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