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Abstract
Background  SARS-CoV-2 is a systemic disease that affects endothelial function and leads to coagulation disorders, 
increasing the risk of mortality. Blood levels of endothelial biomarkers such as Von Willebrand Factor (VWF), 
Thrombomodulin or Blood Dendritic Cell Antigen-3 (BDCA3), and uUokinase (uPA) increase in patients with severe 
disease and can be prognostic indicators for mortality. Therefore, the aim of this study was to determine the effect of 
VWF, BDCA3, and uPA levels on mortality.

Methods  From May 2020 to January 2021, we studied a prospective cohort of hospitalized adult patients with 
polymerase chain reaction (PCR)-confirmed COVID-19 with a SaO2 ≤ 93% and a PaO2/FiO2 ratio < 300. In-hospital 
survival was evaluated from admission to death or to a maximum of 60 days of follow-up with Kaplan-Meier survival 
curves and Cox proportional hazard models as independent predictor measures of endothelial dysfunction.

Results  We recruited a total of 165 subjects (73% men) with a median age of 57.3 ± 12.9 years. The most common 
comorbidities were obesity (39.7%), hypertension (35.4%) and diabetes (30.3%). Endothelial biomarkers were 
increased in non-survivors compared to survivors. According to the multivariate Cox proportional hazard model, 
those with an elevated VWF concentration ≥ 4870 pg/ml had a hazard ratio (HR) of 4.06 (95% CI: 1.32–12.5) compared 
to those with a lower VWF concentration adjusted for age, cerebrovascular events, enoxaparin dose, lactate 
dehydrogenase (LDH) level, and bilirubin level. uPA and BDCA3 also increased mortality in patients with levels ≥ 460 
pg/ml and ≥ 3600 pg/ml, respectively.

Conclusion  The risk of mortality in those with elevated levels of endothelial biomarkers was observable in this study.
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Background
In December 2019 a new disease emerged in Wuhan, 
China. In March 2019, the World Health Organization 
declared the coronavirus disease (COVID-19) outbreak 
caused by severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) a pandemic [1]. Immunosuppres-
sion, diabetes, and malignancy are associated with severe 
COVID-19, while older age (> 65 years), male sex, diabe-
tes, and hypertension are associated with increased mor-
tality [2].

One of the main characteristics of SARS-CoV-2 is its 
ability to spread inside the body and activate endothe-
lial cells (ECs), leading to coagulation disorders such as 
disseminated intravascular coagulation (DIC), micro-
thrombi, microvascular thrombosis, venous thromboem-
bolic disease and stroke [3–6]. All these conditions are 
associated with high mortality [7–9].

The endothelium consists of a monolayer of ECs that 
form the intima, which lies on the inner layer of blood 
vessels and is protected by pericytes [10, 11]. In the pul-
monary system, pulmonary ECs are the basic barriers 
between the blood and interstitium; they represent one-
third of the cells in the lung [11, 12]. The endothelium 
functions as a protective barrier but also regulates ves-
sel tone and participates in platelet activation, leukocyte 
adhesion, fibrinolysis, thrombosis, inflammation, and 
overall homeostasis [13].

The activation of the coagulation pathway, possi-
bly accompanied by DIC, is one of the characteristics 
of severe infection; an increase in fibrin degradation 
fragments (D-dimer) is one of the common findings 
in patients with severe COVID-19 [6]. SARS-CoV-2 
enters the pulmonary circulation via the alveoli. First, 
the inflammatory pathway is activated, accompanied 
by neutrophil infiltration, extracellular neutrophil trap 
(NET) formation and thrombus formation [6, 14]. Once 
the endothelium is activated by interleukin 1β and tumor 
necrosis factor α (TNF-α), the coagulation pathway starts 
by displaying P-selectin, von Willebrand factor (VWF), 
fibrinogen, and platelets. Moreover, ECs release trophic 
cytokines, which increase platelet overproduction and 
release vascular endothelial growth factor (VEGF); VEGF 
interacts with ECs, increasing the expression of tissular 
factor, which is the main activator of the coagulation cas-
cade [15].

Blood dendritic cell antigen-3 (BDCA3) is a cell sur-
face-expressed transmembrane glycoprotein also known 
as thrombomodulin. Its presence indicates endotheli-
opathy and platelet activation, which are factors impor-
tant in the physiopathology of COVID-19 coagulopathy. 
Urokinase PA (uPA) is a potent activator of plasminogen 
and thus fibrinolysis, involving inflammatory processes 
and endothelial cell migration. It also seems to play an 

important role in VEGF-induced vascular permeability 
changes [16–18].

Several markers of endothelial dysfunction are 
increased in patients with severe COVID-19, and some 
of these markers are associated with in-hospital mortal-
ity [8, 19]. Nevertheless, there is not enough evidence 
about the roles of VWF, BDCA3, and uPA in mortality. 
Therefore, the main purpose of this study was to deter-
mine the effect of high levels of endothelial biomarkers 
on mortality.

Methods
Ethics
The study was conducted in accordance with the Decla-
ration of Helsinki and its later amendmants. The proto-
col was approved by the ethics committee of the Instituto 
Nacional de Enfermedades Respiratorias “Ismael Cosío 
Villegas” (approval number E06-20). According to the 
general law of Health Article 17, the study is classified as 
not at risk. All patients´ data were taken anonymously 
from their medical records and no identification data was 
presented. Informed Consent Statement: Patient consent 
was waived, as it was not required by the ethics commit-
tee (approval number E06-20) due to the observational 
nature of the study, and the research does not involve 
ethical concerns.

We prospectively studied a cohort of patients admit-
ted to Instituto Nacional de Enfermedades Respirato-
rias “Ismael Cosío Villegas” for COVID-19 from May 1, 
2020 to January 31, 2021. The data came from electronic 
records, and blood tests were obtained as part of routine 
evaluation. ECs were obtained from routine blood sam-
ples taken during hospitalization during the first hour of 
the day. All the recruited hospitalized patients were older 
than 18 years and had a positive RT-PCR result for SARS-
CoV-2 in a nasopharyngeal swab, with clinical signs com-
patible with COVID-19, an oxygen saturation ≤ 93%, and 
a PaO2/FiO2 ratio < 300.

Clinical data were collected from electronic records 
from the emergency room, and laboratory findings were 
obtained during hospitalization. Patients with HIV, 
shock, or multiple organ failure (defined as two or more 
failing systems in the emergency room) at onset were 
excluded. All patients were treated according to the 
protocol of the institute and for research no identifying 
information was presented.

Demographic (age, sex, height, and weight) and clinical 
variables (comorbidities, mechanical ventilation, treat-
ment, and intrahospital stay) were recorded (Table S1). 
General laboratory and endothelial biomarker data were 
collected from the first to the fourth day after hospital 
admission. Blood plasma was centrifuged to separate 
the plasma fraction, which was frozen at -80 °C until the 
biomarkers were measured. All the samples were thawed 
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and immediately analyzed for a total of one freeze-thaw 
cycle before use.

Measurement of endothelial markers
Human E-selectin/CD62E and endothelin-1 levels were 
measured using a human enzyme-linked immunosorbent 
assay (ELISA) kit (Cat. SSLE00 and Cat. SET100 R&D 
Systems, Inc. Minneapolis, MN, USA, respectively). Leu-
kemia inhibitory factor (LIF), renin, serpin A4/kallistatin, 
thrombomodulin/BDCA-3, Urokinase-type plasmino-
gen activator (uPA)/, uromodulin, and VWF were used 
with the Luminex Human Discovery Assay (7-Plex Cat. 
No. LXSAHM-07, R&D Systems, Inc. Minneapolis, MN, 
USA). The measurements were performed following the 
specifications of each kit. The metabolites reported in 
this study are expressed in pg/mL.

Statistics
For the sample size and power calculation, we used the 
G*power statistical power analyses [20]. The data used 
for the calculation came from the study of Falcinelli [15], 
giving us a total sample size of 157 patients.

Variables were evaluated for normality with the Sha-
piro-Wilk test. Comparisons among study groups were 
analyzed with chi-square tests or Fisher’s F tests for cat-
egorical variables and independent Student’s t-tests or 
Mann-Whitney U tests for continuous variables. In-hos-
pital survival was evaluated from admission to death or 
to a maximum of 60 days of follow-up with Kaplan-Meier 
survival curves and Cox proportional hazard models as 
independent predictor measures of endothelial dysfunc-
tion, including VWF, BDCA3, and uPA, dichotomized 
by the median cutoff point of our sample. For this study, 
each EC variable was evaluated in different models. VWF 
was taken as a principal factor of study and is shown in 
Table 2. uPA and BDCA3 are shown in the Kaplan-Meier 
plots.

We ran three models: one crude and two adjusted. 
Variables with p < 0.10 were selected for adjustment of 
each model. Model 1 was adjusted for cardiovascular dis-
eases (CVD) incidence, doses of enoxaparin, lactate dehy-
drogenase, direct and indirect bilirubin, and age. Model 
2 was adjusted for CVD incidence, dose of enoxaparin, 
lactate dehydrogenase, total bilirubin, procalcitonin, and 
age. The likelihood ratio test was used to compare both 
models. The best model was selected. The statistical anal-
ysis was performed using STATA version 14 (Stata Corp., 
College Station, TX, USA).

Results
A total of 165 patients (73% men) were admitted to 
the study, with a median age of 57.3 ± 12.9 years. The 
most common comorbidities were obesity (39.7%), 

diabetes (30.3%), and systemic arterial hypertension 
(SAH) (35.4%) (Table 1).

At the time of hospitalization, the patients had a mean 
of 9.9 ± 5.7 days of symptoms, and the mean duration of 
hospital stay was 30.5 ± 18.2 days (Table S1). The sample 
was divided into two groups according to mortality. A 
total of 135 (81.8%) subjects survived at 60 days of fol-
low-up, and the remaining 30 (18.2%) subjects died dur-
ing hospitalization, with 6.2 deaths per 1000 person-days 
(95% CI: 4.35–9.02).

When we evaluated the mortality rate according to 
VWF, those subjects with VWF under 4869 pg/ml had 
a mortality rate of 4.55 per 1000 person-days (95% CI: 
2.58–8.01), and those with elevated VWF levels (≥ 4870 
pg/ml) had a mortality rate of 8.5 per 1000 person-days 
(95% CI: 5.31–13.76). The biomarkers for endothelial 
function were tested, and the levels of each were greater 
in those subjects who died (Table  1). For the survival 
evaluation of patients according to each endothelial 
marker, a Kaplan-Meier curve was generated, and the 
hazard ratio is presented in Fig. 1A–C.

A multivariate proportional Cox model was used 
to evaluate the risk of death according to high levels of 
VWF (≥ 4870 pg/ml), BDCA3 (≥ 3600 pg/ml), and uPA 
(< 460 pg/ml). All variables with p < 0.10 in the bivari-
ate analysis were considered for each model. Patients 
with elevated VWF levels had a hazard ratio (HR) of 4.06 
(95% CI: 1.32–12.5, p = 0.014) compared to those with 
lower VWF levels. Additionally, patients with BDCA3 
levels ≥ 3600 pg/ml had an unadjusted HR of 2.24 (95% 
CI: 1.03–4.88, p = 0.041) compared to those with lower 
BDCA3 levels. When adjusting for confounded variables, 
the HR increased to 3.5 (95% CI: 1.13–11.4, p = 0.029), as 
shown in Table 2.

Discussion
We found that the risk of death increased fourfold in sub-
jects with higher VWF concentrations (≥ 4870 pg/ml) 
compared to those with lower VWF concentrations (HR 
4.06, 95% CI: 1.32–12.5, p = 0.014). The principal entry 
site of SARS-CoV-2 is through the angiotensin-convert-
ing receptor II site in the respiratory tract, but the virus 
moves rapidly to the vascular system with alterations in 
the coagulation system [9, 21, 22].

VWF is a plasma glycoprotein that captures platelets 
that circulate to the site of vascular injury, and subse-
quently mediates platelet activation and aggregation. It 
is an important mediator of hemostasis [23, 24]. Neutro-
phil extracellular traps (NETs) are the main strategy used 
by neutrophils to kill and clear invading microorgan-
isms, thus protecting the host from infection. However, 
uncontrolled NET formation may activate inflamma-
tory cells and cause tissue damage. VWF and NETs play 
key roles in the formation of thrombi in the venous and 
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arterial systems as well as the formation of cancer-asso-
ciated thrombosis [7, 25–27]. Moreover, the activation 
of ECs via vascular hemostasis due to the expression of 
CD19, nitric oxide (NO) and prostacyclin, which have 
anti-inflammatory and antithrombotic effects, upregu-
lates VWF expression. Similarly, the expression of adhe-
sion molecules such as intracellular adhesion molecule 
(ICAM), vascular adhesion molecule (VCAM), P selectin, 

E selectin, and BDCA3 promotes the adhesion of leuko-
cytes and platelets. All these processes result in excess 
thrombin generation, consequently leading to fibrin clots 
and increasing thrombotic events [11, 28].

Moreover, complement activation leads to poten-
tiation of this mechanism by increasing monocyte and 
endothelial tissue factor levels, increasing platelet acti-
vation and amplifying endothelial inflammation. This 

Table 1  Baseline characteristics
Variable All

(n = 165)
Survivors
(n = 135)

Nonsurvivors
(n = 30)

p

Age (years) 57.3 ± 12.9 56.3 ± 1.10 61.4 ± 2.40 0.051
Weight (kg) 80.7 ± 17.9 81.2 ± 17.4 78.1 ± 20.1 0.429
Height (m) 1.63 ± 0.09 1.63 ± 0.09 1.63 ± 0.09 0.970
BMI (kg/m2) 30.2 ± 6.20 30.5 ± 6.3 29.0 ± 5.6 0.282
Sex (%)
Male

121 (73.3) 98 (73.1) 23 (74.2) 0.904

Smoking (%) 43 (31.4) 34 (30.9) 9 (33.3) 0.808
Medical history
Obesity (%) 56 (39.7) 47 (41.6) 9 (32.1) 0.360
Classification (%)
I 31 (55.4) 27 (57.5) 4 (44.4)
II 15 (26.8) 12 (25.5) 3 (33.3) 0.690
III 10(17.9) 8(17) 2 (22.2)
DM (%) 43 (30.3) 31 (27.4) 12 (41.4) 0.145
SAH (%) 51 (35.4) 42 (36.5) 9 (31.0) 0.581
COPD (%) 3 (2.1) 2 (1.8) 1 (3.5) 0.496
Nephropathy (%) 4 (2.8) 2 (1.7) 2 (6.9) 0.185
CVD (%) 1 (0.7) 0 1 (3.5) 0.203
PH (%) 3 (2.1) 2 (1.7) 1 (3.5) 0.496
Laboratory findings
Glucose (mg/dl) 144 (108–196) 137 (104–180) 171.5 (132–212) 0.032
Total Proteins (gr/dl) 6.9 ± 7.2 7.0 ± 8.1 6.2 ± 0.7 0.271
Albumin (gr/dl) 3.2 ± 0.57 3.2 ± 0.61 3.1 ± 0.44 0.555
Leucocytes (mg/dl) 12.34 ± 5.11 12.23 ± 5.08 12.81 ± 5.27 0.590
Neutrophils (mg/dl) 13.44 ± 14.3 13.29 ± 14.11 14.10 ± 15.84 0.567
Lymphocytes (mg/dl) 0.8 (0.5–1.2) 0.8 (0.5–1.2) 0.65 (0.4-1.1) 0.127
Neutrophil/lymphocyte ratio 9.08 (5.19–18.09) 8.4 (4.53–15.28) 15.88 (10-30.33) < 0.001
Total Bilirubin (mg/dl) 0.72 ± 0.47 0.69 ± 0.42 0.83 ± 0.65 0.285
Direct Bilirubin (mg/dl) 0.24 ± 0.24 0.22 ± 0.17 0.31 ± 0.42 0.254
Indirect Bilirubin (mg/dl) 0.44 ± 0.22 0.43 ± 0.21 0.50 ± 0.28 0.175
D-dimer (µ/ml) 1.14 (0.56–2.43) 1.16 (0.56–2.48) 0.86(0.6–2.38) 0.839
Pro calcitonin (ng/ml) 0.35(0.15–0.91) 0.32 (0.14–0.89) 0.52(0.26–1.06) 0.066
Fibrinogen (mg/dl) 723.5 (611–874) 714(611–871) 736(639–903) 0.838
C-Reactive Protein (CRP) (mg/dl) 20.4 ± 10.5 19.8 ± 10.8 22.8 ± 9.2 0.169
Troponin (pg/ml) 11.9 (4-74.8) 11.1 (3.7–42.7) 26.6 (4.6-253.8) 0.050
Brain natriuretic peptide (BNP) (pg/ml) 58.5 (27.1-132.5) 55.7 (25.2–118) 70.8 (37.3-384.3) 0.172
Endothelial function biomarkers (pg/ml)
VWF 4899.9 ± 1844.9 4884.2 ± 1905.4 4965.3 ± 1596.1 0.832
BDCA3 3600.1 (2160.5-7239.7) 3300.6 (1913.5-5857.3) 6800.7(3146.3-13467.4) 0.001
Renin 1278.7 (815.5-2293.6) 1278.7 (682.4-2231.9) 1385.7(939.10-3298.7) 0.170
uPA 459.7 (272.1-674.5) 410.8 (260.3-662.8) 593.3 (405.4-756.4) 0.025
COPD: Chronic Obstructive Pulmonary Disease; CVD: Cerebrovascular Disease; DM: Diabetes Mellitus; DVT: Deep Vein Thrombosis; OSA: Obstructive Sleep Apnea; 
PH: Pulmonary hypertension; SAH: Systemic Arterial Hypertension. Chi square or F fisher test was done for qualitative and independent variables; Student’s t or 
Mann‒Whitney U for quantitative variables
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Table 2  Multivariable proportional Cox model
Variable Crude model Adjusted model 1

p = 0.002
Adjusted model 2
P = 0.005

HR (CI95%) p HR (CI95%) p HR (CI95%) p
VWF (pg/ml)* 2.02 (0.95–4.30) 0.067 4.06 (1.32–12.5) 0.014 2.58 (0.93–7.1) 0.068
BMI (kg/m2) 0.96 (0.90–1.02) 0.216 - - - -
Diabetes 1.33 (0.63–2.81) 0.443 - - - -
CVD 14.2 (1.7–113.8) 0.012 10.14(2.6-355.1) 0.007 12.48(0.97–160) 0.052
Nephropathy 2.74 (0.64–11.70) 0.173 - - - -
Enoxaparin doses 0.97 (0.95–0.99) 0.048 0.96 (0.93–0.99) 0.017 0.97(0.97-1.00) 0.056
Previous anticoagulation 14.10 (1.76-112.84) 0.013 - - - -
DHL 1.00 (0.99-1.00) 0.065 1.00 (1.00–1.00) 0.025 1.00 (0.99-1.00) 0.137
CPR 1.05 (1.00-1.09) 0.018 - - - -
Procalcitonin 1.02 (0.99–1.04) 0.079 - - 1.05(0.96–1.14) 0.235
Total Bilirubin 1.36 (1.15–1.62) < 0.001 - - 1.28(0.95–1.74) 0.101
IB (mg/dl) 1.22 (0.93–1.60) 0.138 0.48 (0.02–9.82) 0.639 - -
DB (mg/dl) 1.61 (1.25–2.09) < 0.001 2.42 (0.57–10.2) 0.175 - -
DHL 1.00 (0.99-1.00) 0.065 - - - -
Age 1.02 (0.99–1.05) 0.186 0.99 (0.95–1.03) 0.737 0.98(0.93–1.04) 0.611
DB: Direct Bilirubin; IB: indirect Bilirubin; CVD: Cerebrovascular Disease; CPR: C-reactive Protein; DHL: lactate dehydrogenase; *VWFa2 > 4870 pg/ml

Fig. 1  Kaplan Meier survival curves for endothelial biomarkers. (1 -A) von Willebrand factor analysis. (1-B) BDCA3 or thrombomodulin analysis. (1-C) uPA 
or Urokinase analysis. Adjusted model was done for each endothelial factor
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response to SARS-CoV-2 leads to hypercoagulability and 
immunothrombosis.

In 152 patients with COVID-19, Marco et al. [29] 
reported elevated VWF levels. Furthermore, patients in 
the intensive care unit (ICU) had higher levels of VWF 
than non-ICU patients. They also evaluated endothelial 
injury in survivors (n = 143) and non-survivors (n = 9). 
Non-survivors had increased levels of the VWF antigen 
(370.2%, 95% CI: 312–400%,p = 0.05) compared to sur-
vivors (143.5%, 95% CI: 104.5–218.9%, p < 0.05), similar 
to our results [29]. Likewise, Vineeth et al. [30] reported 
that reticuloendothelial activation markers (VWF, 
D-dimer, ferritin, and sCD163) were independently cor-
related with COVID-19 severity, with VWF (units/
dl) values of 202 (95% CI: 131–253) vs. 293.5 (95% CI: 
231.4–355.2) vs. 328.8 (95% CI: 272.9–384) vs. 340 (95% 
CI: 297–389, p < 0.001, for mild, moderate, severe, and 
critical disease, respectively. This finding suggested that 
the greater the VWF level is, the more severe the dis-
ease. Among the patients in the cohort, 87.4% had severe 
disease and mechanical ventilation at onset; the median 
SO2 concentration in the emergency department was 
64.9 ± 18.2%, and more than 50% of patients had moder-
ate (48.8%) or severe (28.8%) acute respiratory syndrome. 
Marco et al. [29] reported similar results among their 
patients. They evaluated VWF as a percentage of activity 
and showed a greater increase in VWF antigen in non-
survivors [370.2% (312–400)] than in survivors [143.5% 
(104.5–218.9%)] .

Another endothelial marker in this study was BDCA3, 
which is a cell surface-expressed transmembrane glyco-
protein also known as CD141 or thrombomodulin. The 
elevation of this marker suggested endothelial cell acti-
vation and dysfunction [31, 32]. Endothelial damage and 
a procoagulant state in COVID-19 patients have been 
proposed by several researchers [7, 8, 32, 33]. The cur-
rent study revealed that higher BDCA3 levels (≥ 3600 
pg/ml) are associated with greater mortality (Fig. 1) than 
lower BDCA3 levels. The risk of death was 3.5 times 
greater in patients with a higher BDCA3 level (HR 3.5, 
95% CI: 1.13–11.4, p = 0.029) than in patients with a level 
below 3600 pg/ml. Similar results were demonstrated by 
Goshua et al. [34] Their ICU patients had a median of 
BDCA3 of 4.2 (2.6–6.5) ng/ml, while non-ICU patients 
had a median of 3.0 (2.6–3.2) ng/ml (p = 0.23). Although 
the results did not reach statistical significance, when 
patients with high soluble thrombomodulin (BDCA3) 
concentrations (> 3.26 ng/ml) were evaluated via Kaplan-
Meier survival curves, the survival probability decreased 
compared to that of patients with BDCA3 concentrations 
less than 3.26 ng/ml. Additionally, in-hospital mortal-
ity was significantly lower among patients treated with 
lower concentrations of thrombomodulin than among 
those treated with higher concentrations (HR 5.9, 95% 

CI: 1.9–18.4), and among ICU patients (HR 4.5, 95% CI 
1.5–14.0%). This finding was similar to our Kaplan-Meier 
survival curve, with a cutoff point of 3600 pg/ml [34].

Further, Vicelli Dalla Sega et al. [35] presented simi-
lar data to our results, with a total of 54 patients, 30% of 
whom died because of COVID-19. They measured endo-
thelin-1, endoglin, sE-selectin, thrombomodulin, soluble 
vascular cell adhesion molecule 1 (sVCAM-1), and VWF 
at three follow-ups. They demonstrated that sVCAM-1 
was a predictor of mortality; nonetheless, the other bio-
markers at any time period were higher in non-survivors 
than in survivors. Similar results were found in our study. 
However, we found that BDCA3, VWF, and uPA were 
predictive of mortality, possibly because of our sample 
size, which was threefold larger than theirs. Both sets 
of data demonstrate that patients with COVID-19 have 
increased levels of endothelial biomarkers, confirming 
endothelial dysfunction in this disease [35].

Furthermore, in the review by Zhen W Mei et al. [36], 
multiple ways in which VWF acts were discussed, con-
firming the important role of coagulopathy caused by 
the SARS-CoV2 virus. They found an increased level 
of VWF in each phase of the disease, especially during 
microthrombus formation, which can indicate coagu-
lopathy. Although they did not review the role of VWF 
in mortality, we confirmed that VWF, BDCA3, and uPA 
play important roles in systemic inflammation and sever-
ity, which can lead to increased mortality in COVID-19 
patients. Additionally, knowing the contribution of the 
imbalance that VWF plays could impact severity and 
mortality with the implementation of specific therapies 
[36].

Concerning uPA analysis, uPA is known to be an 
important biomarker in the physiology and pathophysi-
ology of COVID-19, and it acts in local fibrinolysis, 
inflammation, tissue repair, matrix reconstruction, and 
angiogenesis. It has been shown to be more prevalent in 
acute respiratory diseases such as systemic inflammatory 
response syndrome (SIRS) [37]. Our data revealed ele-
vated levels of uPA in non-survivors and an adjusted HR 
of 4.2 (95% CI: 1.5–11.7, p = 0.006) for mortality. In con-
trast, Yatsenko Tetiana et al. [38] reported decreased lev-
els of uPA in patients with COVID-19. These differences 
may be due to the severity of the disease and sample size. 
Our sample shows other severe parameters of the dis-
ease, such as, fibrinogen, C-reactive protein (CRP), Tro-
ponin, etc. Likewise, almost 90% of the sample needed 
intubation at onset, demonstrating greater severity of 
the disease. Meanwhile, the sample from Yatsenko et al. 
shows parameters beyond the median of our population, 
which can indicate the phases of COVID-19. While they 
have uncomplicated and complicated COVID-19 cases, 
ours were all severely affected, so as to further draw a dis-
tinction between the two groups of patients [38, 39].



Page 7 of 8Sánchez-Santillán et al. BMC Pulmonary Medicine          (2024) 24:325 

Despite our relatively small sample size, the increase in 
risk determined using endothelial markers was consid-
erable, suggesting the important impact of endothelial 
dysfunction, the coagulation pathway, and complement 
activation on COVID-19 prognosis and survival. We 
explored whether an improvement in endothelial func-
tion reduces COVID-19 mortality or complications, or 
whether endothelial function markers could be used to 
identify other possible treatments.

Conclusion
The results of this study confirmed that the hypercoagula-
bility, hyperinflammatory state, and endothelial dysfunc-
tion caused by SARS-CoV-2 may lead to vascular events 
in COVID-19 patients. Moreover, the more severe the 
COVID-19 infection is, the greater the degree of endo-
thelial damage (VWF, BDCA3, and uPA) and the greater 
the association with an increased risk of mortality. The 
data and studies discussed in the paper demonstrate the 
impact of endothelial function through endothelial bio-
markers. However, there is a further need to explore spe-
cific therapies for endothelial function in COVID-19 so 
as to mitigate the progression of the disease.
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