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Abstract 

Background  Society is burdened with stroke-associated pneumonia (SAP) after intracerebral haemorrhage (ICH). 
Cerebral small vessel disease (CSVD) complicates clinical manifestations of stroke. In this study, we redefined the CSVD 
burden score and incorporated it into a novel radiological-clinical prediction model for SAP.

Materials and methods  A total of 1278 patients admitted to a tertiary hospital between 1 January 2010 and 31 
December 2019 were included. The participants were divided into training and testing groups using fivefold cross-val-
idation method. Four models, two traditional statistical models (logistic regression and ISAN) and two machine learn-
ing models (random forest and support vector machine), were established and evaluated. The outcomes and baseline 
characteristics were compared between the SAP and non-SAP groups.

Results  Among the of 1278 patients, 281(22.0%) developed SAP after their first ICH. Multivariate analysis revealed 
that the logistic regression (LR) model was superior in predicting SAP in both the training and testing groups. Inde-
pendent predictors of SAP after ICH included total CSVD burden score (OR, 1.29; 95% CI, 1.03–1.54), haematoma 
extension into ventricle (OR, 2.28; 95% CI, 1.87–3.31), haematoma with multilobar involvement (OR, 2.14; 95% CI, 
1.44–3.18), transpharyngeal intubation operation (OR, 3.89; 95% CI, 2.7–5.62), admission NIHSS score ≥ 10 (OR, 2.06; 
95% CI, 1.42–3.01), male sex (OR, 1.69; 95% CI, 1.16–2.52), and age ≥ 67 (OR, 2.24; 95% CI, 1.56–3.22). The patients 
in the SAP group had worse outcomes than those in the non-SAP group.

Conclusion  This study established a clinically combined imaging model for predicting stroke-associated pneumo-
nia and demonstrated superior performance compared with the existing ISAN model. Given the poor outcomes 
observed in patients with SAP, the use of individualised predictive nomograms is vital in clinical practice.
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Background
Intracerebral haemorrhage (ICH) ranks among the top 
causes of stroke-related morbidity and mortality globally, 
comprising 15% of all stroke cases [1–3]. Stroke-associ-
ated pneumonia (SAP), a common complication, wors-
ens stroke outcomes, extending hospital stays, escalating 
healthcare costs, and increasing long-term mortality, 
particularly in affected patients [4–12].

Past research has identified several risk factors linked 
to SAP onset, including advanced age [8, 9, 13–16], male 
gender [8, 13, 15, 17], hypertension [18], heart failure [16, 
17, 19], severe stroke [8, 13, 16, 20], dysphagia [14–16, 18, 
21], elevated neutrophil-to-lymphocyte ratio [22], and 
high admission blood glucose levels [16, 23]. Several risk 
scores have been established based on the routinely col-
lected parameters. For instance, the risk between ISAN 
scoring layered ischemia and hemorrhagic stroke, while 
A2DS2 and AIS-APS scores specially used for ischemic 
stroke depend on the clinical characteristics of easy use 
[1, 7, 15, 16]. However, these studies lack sufficient radi-
ology and targeted prediction factors.

Cerebral and brain-brain small vascular disease 
(CSVD) is a chronic deductive cerebral vascular con-
dition, which affects the global function and structure 
of the brain [24–28]. Dysfunction of endothelial cells, 
leading to blood–brain barrier dysfunction, disruption 
of blood flow homeostasis, and abnormal inflamma-
tory responses, have been recognized as both the initial 
driver of CSVD and factor affecting systematic vascu-
lar inflammation, including pulmonary microvascular 
inflammation [29, 30]. Previous studies have shown that 
after ICH, there is positive correlation between CSVD 
burden, increased haematoma, and poor results [31–34]. 
A survey conducted by YY (2022) shows that combining 
CSVD’s neural imaging features with A2DS2 scores is a 
promising method for predicting SAP and bad ending of 
patients with acute cerebral infarction [35]. However, the 
association between the CSVD burden and the occur-
rence of SAP after ICH remains to be explored.

Therefore, in this study, we aimed to (1) evaluate 
whether CSVD burden independently contributes to 
SAP development after first ICH, (2) implement an image 
scoring system to quantify the CSVD burden, and (3) 
develop and validate a radiology-clinical model for pre-
dicting SAP risk.

Methods
Patients and follow‑up
All 1278 patients consecutively enrolled in this retro-
spective study were diagnosed with ICH. The diagno-
sis was confirmed using computed tomography (CT) at 
our institution. They were admitted to a tertiary hospi-
tal between 1 January 2010 and 31 December 2019. The 

exclusion criteria included: (1) patients diagnosed with 
primary intraventricular haemorrhage and/or those with 
multiple ICH foci resulting in difficulties in calculating 
haematoma volume; (2) patients with a history of stroke, 
possibly with complete or partial paralysis; (3) patients 
who did not undergo CT within 72 h post-stroke or those 
who did not have CT scans with required image quality 
for calculating haematoma volume; and (4) patients who 
were lost to follow-up or declined to participate in the 
study (see Fig. 1). Participant deaths were recorded using 
an electronic medical system and were supplemented by 
telephone interviews.

Clinicodemographic variables
Data on age, sex, current smoking status, and alcohol 
consumption were also collected. The coexisting dis-
eases included hypertension, diabetes mellitus, ischae-
mic heart disease, atrial fibrillation, hyperlipidaemia, and 
hyperuricaemia. Additional clinical characteristics such 
as neutrophil-to-lymphocyte ratio, blood pressure, and 
National Institutes of Health Stroke Scale (NIHSS) score 
were also recorded upon admission. The body mass index 
(BMI) was also recorded. Other potential predictors, 
including post-stroke vomiting, dysphagia (evaluated as 
dysphagia or requiring dysphagia rehabilitation training), 
transpharyngeal intubation (orogastric, nasogastric, and 
endotracheal tubes), and post-stroke pump proton inhib-
itor (PPI) usage, were confirmed through the electronic 
medical system.

Radiological variables
The volume and location of the ICH were obtained and 
verified using CT within 72-h of stroke onset. Standard-
ised window widths and levels were applied to the CT 
images to distinguish the haematomas from the brain 
tissue. The haematoma volume was measured using a 
manually outlined haematoma profile on each slice of 
non-enhanced CT (3D Slicer software version 4.10.2). 
The haematoma contours of each patient were deline-
ated independently by two radiologists blinded to the 
clinical data (RL and RW). A senior radiologist (YY) was 
consulted to reach consensus when the contours differed. 
The location of the ICH was categorised as follows: cor-
tical involvement (defined as any haemorrhage involving 
the cortex), deep involvement (including the basal ganglia 
and thalamus), infratentorial involvement (including the 
brainstem and cerebellum), and multilobar involvement 
(defined as a haematoma involving two or more lobes). 
CSVD burden included white matter lesions and corti-
cal/central brain atrophy. The severity of the white matter 
lesions was assessed using the sum of the anterior/pos-
terior white matter CT scores (0 none, 1–2, mild, 3–4 is 
severe) [36]. The degree of brain atrophy was measured 
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using the intercaudate distance to inner table width ratio 
(CC/IT) and temporal horn to choroid fissure distance 
[37, 38]. The total CSVD burden score was determined 
by collectively considering the score of CC/IT (≥ cutoff 
value 0.15, 1 point), the temporal horn to choroid fissure 
distance (≥ cutoff value 0.46, 1 point), and white matter 
lesion CT score (mild 1 point, severe 2 points).

Primary and secondary outcomes
ICH-associated pneumonia (ICH-SAP) was determined 
according to the SAP consensus (defined as the spec-
trum of lower respiratory tract infections within the first 
seven days after stroke onset) [39]. To avoid false posi-
tive outcome, SAP in the study was also verified by the 
following criteria: (1) absence of infection within two 
weeks before stroke onset; (2) diagnosis of pneumonia 
based on a combination of clinical presentation (fever, 
cough, etc.), positive laboratory findings (white blood cell 
count ≥ 11*10^9/L, neutrophil count ≥ 7.5*10^9/L etc.), 
and positive chest CT findings; (3) initiation of antibi-
otic therapy after pneumonia diagnosis. To compare the 
efficacies of ICH-SAP prediction between our model 
and the ISAN model [7], the ICH-SAP probability based 
on the ISAN model was calculated and recorded. Other 

secondary outcomes included hospitalisation duration, 
modified Rankin scale (mRS) score at discharge, and all-
cause mortality within 30 or 90 days after discharge.

Statistical analysis
In the univariate analysis, independent t-tests (for vari-
ables with a normal distribution) or Mann–Whitney 
U tests (for variables with a non-normal distribution) 
were used to compare continuous variables, whereas the 
chi-square test or Fisher’s exact test was used for cat-
egorical variables between the SAP and non-SAP groups. 
The optimal cutoff value was selected by maximising 
the Youden index. Correlation analysis was performed 
among variables with a two-sided p-value < 0.1 and 
depicted using a correlation analysis heatmap (see Fig. 2).

Model development
The training and validation groups were created using a 
fivefold cross-validation method with 400 repetitions, 
ensuring that the sampling was proportional to the 
original dataset. Logistic regression (LR) was employed 
alongside two machine learning (ML) methods, namely, 
support vector machine (SVM) and random forest (RF), 
to establish the SAP prediction model. A grid search 

Fig. 1  Patient recruitment flowchart. ICH, intracerebral hemorrhage; IVH, intraventricular hemorrhage; CT, computed tomography
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method was used to identify the best gamma and cost 
coefficients in the SVM model ( Figure S1). The ‘best_
mtry’, ‘best_ntree’, ‘best_maxnodes’ and ‘best_nodesize’ 
were determined to establish a reasonable RF model with 
hyperparameter optimisation (see Figure S2). Moreover, 
in developing the LR model, multivariate analysis was 
conducted using a forward stepwise regression approach 
with the maximum likelihood ratio method to assess the 
independent predictors of SAP.

Model evaluation
The area under the curve (AUC) and its corresponding 
95% confidence interval (95% CI) were calculated and are 
shown in Table  2. The probability of SAP risk obtained 

from the ISAN scoring system was used to calculate the 
corresponding AUC value. Furthermore, based on the 
results of the LR model, a forest plot was generated to 
illustrate the odds ratios (OR) and their 95% confidence 
intervals (CI) for independent predictors of SAP, and a 
nomogram with a gradient colour style was created to 
calculate individualised ICH-SAP risk. Additionally, a 
calibration curve with 80–95% CI was generated for both 
the training and testing groups.

Outcome analysis
Differences in hospitalisation duration, mRS ≥ 3 at dis-
charge, and all-cause mortality of 30 days or 90 days 
after discharge between the SAP and non-SAP groups 

Fig. 2  Heatmap for correlation analysis within variables significant in univariable analysis. Different colors filling in the square represented different 
correlation coefficients. The square with a circle inside it represented a non-significant correlation between two corresponding variables. Numbers 
in the square represented the correlation coefficient. CSVD, cerebral small vessel disease; NIHSS, National Institutes of Health Stroke Scale; PPI, 
proton pump inhibitor
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were compared. All statistical analyses were conducted 
using the R software (Version 4.1.2). The packages uti-
lised in the analysis are described in the Supplementary 
Methods.

Result
Baseline patient characteristics
Among the 1278 patients finally enrolled in the study, 
the SAP occurrence rate after the first ICH was 
22.0% (n = 281/1278). Thirty one point seven percent 
(n = 405/1278) of patients aged ≥ 67 years(The cutoff 
value calculated based on the Youden index.). Seventy 
percent of patients the total cohort were male. The other 
characteristics of the cohort are shown in Table S1.

Results of univariable analysis
Age ≥ 67 years, dysphagia, transpharyngeal intubation, 
neutrophils-to-lymphocyte ratio, admission NIHSS 
score ≥ 10, multilobar involvement, haemorrhage exten-
sion into the ventricle, and high CSVD burden score were 
statistically different between patients with and with-
out SAP (p < 0.001). Patients with SAP were more likely 
to have a higher systolic blood pressure on admission 
(164.83 vs. 160.15, p = 0.044). Additionally, the propor-
tions of male patients and current smokers were higher 
in the SAP group (74.4% vs. 68.7%, p = 0.067; and 33.8% 
vs. 28.1%, p = 0.063, respectively), although the difference 
was not statistically significant (Table  1). All variables 
mentioned above (p < 0.1) in the univariable analysis were 
further included in the correlation and model establish-
ment analyses.

Development, validation, and evaluation of different 
model
The variables used to build the SVM and RF models 
were not highly correlated (Fig.  2). The classified SVM 
model was constructed using a radial kernel with the 
best gamma (0.1) and cost (1) parameters. The AUC for 
the training and testing groups in the SVM model were 
0.812 and 0.674, respectively (Table 2). The RF model was 
established with parameters ‘mtry’, ‘ntree’’, maxnodes’, 
and ‘nodesize’ equal to 10, 580, 7, and 3, respectively 
(see Figure S2). The AUC of the values for the training 
and testing groups were 0.684 and 0.652, respectively 
(Table 2). The final LR model indicated that total CSVD 
burden score (OR, 1.29; 95% CI, 1.03–1.54; p = 0.004), 
haematoma extension into ventricle (OR, 2.28; 95% 
CI, 1.87–3.31; p < 0.001), haematoma with multilobar 
involvement (OR, 2.14; 95% CI, 1.44–3.18; p < 0.001), 
transpharyngeal intubation operation (OR, 3.89; 95% CI, 
2.7–5.62; p < 0.001), admission NIHSS score ≥ 10 (OR, 
2.06; 95% CI, 1.42–3.01; p < 0.001), male sex (OR, 1.69; 
95% CI, 1.16–2.52; p = 0.007), and age ≥ 67 (OR, 2.24; 95% 

CI, 1.56–3.22; p < 0.001) were independent predictors of 
SAP after ICH (see Fig.  4B). The AUC for the training 
and testing groups in the LR model were 0.796 and 0.746, 
respectively (Table  2). Figure  3 shows a comparison of 
the AUC values for the cohort groups of the three mod-
els. Figure 4A indicates that the LR model did not overes-
timate or underestimate the SAP risk at 80% CI and 95% 
CI in either the training or testing groups. A practical 
nomogram for predicting the probability of developing 
SAP was created (Fig. 4C). The AUC of the ISAN model 
based on the ISAN SAP risk probability was 0.688. The 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPV), F1 score, and accuracy 
of each model are presented in Table 2.

Results of short and long‑term outcomes analysis
Patients with SAP had a significantly longer duration of 
hospitalisation than those without SAP (p < 0.001). More-
over, patients with SAP exhibited a higher frequency of 
poor outcomes, defined as mRS ≥ 3 at discharge, com-
pared to that of patients without SAP (81.5% vs. 51.2%, 
p < 0.001, Table  1). Additionally, the 30-day or 90-day 
discharge mortality rates were higher in the SAP group 
than in the non-SAP group (0.7% vs. 0.3%, p = 0.665, and 
2.1% vs. 0.8%, p = 0.116, respectively). The detailed distri-
bution of functional outcomes at the time of discharge in 
patients with and without SAP is presented in Fig. 5.

Discussion
Our study indicated that the multivariable logistic 
regression model achieved superior SAP prediction abil-
ity compared to both the ML models and the existing 
ISAN model. The following risk factors: age ≥ 67 years, 
male sex, transpharyngeal intubation, NHSS score ≥ 10 
on admission, haematoma involving multiple lobes or 
extending into ventricle, and high total CSVD burden 
score were identified as independent predictors of SAP 
after first ICH.

Advanced age, male gender, significant neurofunctional 
deficits, and extension of the haematoma into the ventri-
cle were predictive factors for SAP occurrence, aligning 
with previously reported results [8, 14–17]. The presence 
of multilobar involvement in the haematoma, indicat-
ing a larger haematoma volume, strongly correlated with 
SAP development in our study. This finding supports 
previous research, which showed that patients with a 1 
ml increase in hematoma volume were 1.02 times more 
likely to develop SAP compared to those without it [1]. 
Our study demonstrated that transpharyngeal intuba-
tion, an easily judged and accessible indicator in clini-
cal practice, independently increased the risk of SAP, 
whereas dysphagia did not reach statistical significance in 
the final model after controlling for confounding factors. 
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This may be attributed to the fact that manipulating the 
transoropharyngeal route increases the risk of accidental 
aspiration.

CSVD has been extensively studied, whereas the 
association between CSVD and SAP has rarely been 

discussed [24, 25, 27, 28, 31, 32]. A previous study 
hypothesised that older patients with a history of severe 
cerebral atrophy were likely to develop lower respira-
tory tract infections [40]. Nam et al. found that patients 
with severe leukoaraiosis were likely to develop SAP 

Table 1  Predictors of SAP: univariable analysis

SD Standard Deviation, IQR Interquartile Range, PPI proton pump inhibitor, BMI Body Mass Index, mRS modified Rankin scale, NIHSS National Institutes of Health 
Stroke Scale, CSVD, cerebral small vessel disease; Continuous variables were expressed as mean ± standard deviation or median (IQR). Categorical variables were 
expressed as counts and percentages

Variables SAP(n = 281) Non-SAP(n = 997) P-value

Demographics
  Age ≥ 67 45.9% (n = 129/281) 27.7% (276/997) 0.000

  Gender (male/total) 74.4% (n = 209/281) 68.7% (n = 685/997) 0.067

Lifestyle-related variables
  Current drinking 35.9% (n = 101/281) 34.9% (n = 348/997) 0.747

  Current smoking 33.8% (n = 95/281) 28.1% (n = 280/997) 0.063

Clinical variables
  post-stroke vomiting 27.9% (n = 78/280) 24.6% (n = 245/996) 0.268

  Dysphagia 17.5% (n = 48/275) 7.4% (n = 73/980) 0.000

  Transpharyngeal intubation 59% (n = 164/278) 19.7% (n = 194/984) 0.000

  Post-stroke PPI usage 46.7% (n = 128/281) 37.1% (n = 364/997) 0.004

Coexisting disease
  Hypertension 90.7% (n = 255/281) 90.3% (n = 900/997) 0.811

  Diabetes mellitus 18.9% (n = 53/281) 19.8% (n = 197/997) 0.737

  Ischemic heart disease 5.3% (n = 15/281) 5.6% (n = 56/997) 0.857

  Atrial fibrillation 3.2% (n = 9/281) 1.8% (n = 18/997) 0.150

  Hyperlipidemia 22.8% (n = 64/281) 26.7% (n = 266/997) 0.187

  Hyperuricemia 5.0% (n = 14/281) 4.5% (n = 45/997) 0.741

Laboratory index
  BMI index, n (%) 0.297

  < 18.5 9.9% (n = 8/81) 5.5% (n = 23/416)

  18.5–24 40.7% (n = 33/81) 45.7% (n = 190/416)

  ≥ 24 49.4% (n = 40/81) 48.8% (n = 203/416)

  Neutrophils/lymphocyte, median (IQR) 6.09 (10.14, 3.9) 4.25 (2.67, 7.57) 0.000

Admission systolic blood pressure, mean ± SD 164.83 ± 25.85 160.15 ± 24.12 0.044

Admission diastolic blood pressure, median (IQR) 91 (80, 100) 90 (80, 100) 0.812

Discharge mRS ≥ 3 81.5% (n = 229/281) 51.2% (n = 510/997) 0.000

Hospitalization duration (day), median (IQR) 17 (13, 22) 14 (11, 18) 0.000

Death within 30-day discharge 0.7%(n = 2/281) 0.3%(n = 3/997) 0.665

Death within 90-day discharge 2.1% (n = 6/281) 0.8% (n = 8/997) 0.116

NIHSS score ≥ 10 59.1% (n = 166/281) 29.4% (n = 293/997) 0.000

Radiological variables
  Haematoma volume (ml), median (IQR) 7.83(2.94,15.27) 7.62(3.22,14.22) 0.789

  Cortical involvement 35.2% (n = 99/281) 32.8% (n = 327/997) 0.445

  Deep involvement 78.3% (n = 220/281) 75.4% (n = 752/997) 0.320

  Infratentorial involvement 8.9% (n = 25/281) 12.0% (n = 120/997) 0.166

  Multilobar involvement 34.2% (n = 96/281) 15.5% (n = 155/997) 0.000

  Extension into ventricle 35.6% (n = 100/281) 19.4% (n = 193/997) 0.000

  Total CSVD burden score 1 (1, 2) 1 (1, 2) 0.000

Follow-up duration (day), median (IQR) 1624 (1065, 2544) 1945 (1274, 2715) 0.000
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after acute ischaemic stroke, which may be accounted 
for by studying the correlation between the degree of 
leukoaraiosis and the level of impaired brain structure 
and function (such as reduction of the cough reflex) 
[41]. Another study indicated that brain atrophy may 
contribute to the occurrence of SAP through indirect 

influence on swallowing reflex and that dilated perivascu-
lar spaces interpreted as blood–brain barrier dysfunction 
are associated with poor outcomes [35]. The degree of 
CSVD burden, which represents the level of endothelial 
cell dysfunction in microvascular inflammation, results 
in a highly inflammatory microenvironment in the 

Table 2  Multiple model evaluation indexes for different model

Model evaluation index Support vector machine Random forest Logistic regression ISAN

Training group Testing group Training group Testing group Training group Testing group Total group

AUC​ 0.812 0.674 0.684 0.652 0.796 0.746 0.688

95% CI 0.783–0.842 0.602–0.747 0.650–0.718 0.580–0.724 0.762–0.830 0.677–0.815 ——

Sensitivity 0.793 0.395 0.471 0.463 0.387 0.395 0.149

Specificity 0.832 0.874 0.897 0.841 0.940 0.974 0.904

Positive predictive value 0.573 0.593 0.566 0.439 0.644 0.593 0.304

Negative predictive value 0.934 0.756 0.856 0.854 0.844 0.756 0.790

F1 score 0.665 0.474 0.514 0.450 0.483 0.474 0.200

Accuracy 0.823 0.722 0.803 0.761 0.818 0.722 0.527

Fig. 3  ROC curve of different models in the cohort group. AUC, area under the curve

(See figure on next page.)
Fig. 4  Information of multivariable logistic regression model. A displayed the calibration curve belt of the logistic regression model in the training 
and testing groups, respectively. The gray belt region represented a well-calibrated situation of both training and testing groups within an 80% 
to 95% confidence interval range. B was a forest plot displaying the results of the multivariable analysis. C was a nomogram with gradient colors 
representing different total scores and SAP risk. CSVD, cerebral small vessel disease; NIHSS, National Institutes of Health Stroke Scale; OR, odds ratio; 
95% CI, 95% confidence interval; SAP, stroke-associated pneumonia
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Fig. 4  (See legend on previous page.)
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pulmonary glands [29, 42, 43]. In this study, CSVD was 
found to be independently associated with the develop-
ment of SAP after ICH, after controlling for haematoma 
volume confounders. This relationship may be explained 
by several hypotheses. First, in line with existing assump-
tions, CSVD is always accompanied by impairment of 
neurofunction, indirectly affecting SAP occurrence to 
some extent. Second, CSVD, deemed as endothelial cell 
activation and dysfunction, accelerates the formation of 
the pulmonary inflammatory microenvironment, con-
tributing to the development of SAP. Therefore, the pos-
sible cumulative effect of the CSVD burden on patients 
likely predicts ICH-SAP risk and helps in the clini-
cal rationalisation of medical resources, designation of 
care plans, and implementation of targeted preventive 
strategies.

The ISAN model has demonstrated high clinical 
applicability in patients with stroke, exhibiting the abil-
ity to accurately distinguish between SAP and non-SAP 
patients [7]. However, this study was primarily con-
ducted in the ischaemic stroke group, with only 8% of 
the patients having ICH. In addition, this model did not 
include radiological elements, and the AUC value of the 
model in our study was only 0.688. The logistic regression 

model, incorporating both clinical and radiological risk 
factors; showed good differentiation ability for SAP and 
was well-calibrated in both our study’s training and test-
ing groups. The high negative predictive value compared 
with the positive predictive value in our study, coupled 
with a well-calibrated belt indicating no over-or underes-
timation of SAP, suggesting that future prognostic models 
might benefit from attempts to achieve a more balanced 
distribution of differentiation utility between higher and 
lower values. Although our study did not include mRS 
scores at 3-month discharge, we observed that patients 
who experienced ICH-SAP tended to have longer hospi-
talisation durations and higher all-cause mortality during 
the longitudinal follow-up period.

Our study has several limitations. First, given the retro-
spective nature of the study, SAP may have been under-
estimated, despite the strict diagnostic criteria used. 
Additionally, patients with SAP exhibited a tendency 
towards poor outcomes in this study, although longitudi-
nal mRS score follow-up was not conducted. Therefore, 
large-scale studies with standardised long-term observa-
tions are required. Second, only patients with first-ever 
ICH were included in this study, potentially leading to a 
selection bias, as pre-stroke dependence has been shown 

Fig. 5  Short or long-term prognosis difference between SAP and non-SAP patients. A showed the difference in hospitalization duration 
between patients with and without SAP using Mann–Whitney u test. B displayed the proportion of the SAP or non-SAP patient’s mRS at discharge. 
C and (D) were comparison results of death within 90-day or death within 30-day discharge difference between SAP and non-SAP group. SAP, 
stroke-associated pneumonia; IQR, interquartile range; mRS, modified Rankin scale
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to be a risk factor for SAP. Furthermore, the radiology-
clinical model was not validated using an external data-
set. Third, although the underlying mechanism by which 
CSVD influences ICH-SAP remains unclear, the current 
study demonstrates that CSVD is a predictive factor for 
ICH-SAP, providing guidance for future research.

In conclusion, we developed a novel radiological-clin-
ical model to predict SAP after first ICH. Future studies 
are required to further explore and confirm the relation-
ship between CSVD and SAP.

Conclusion
This study indicated that CSVD burden increased the 
risk of SAP after first ICH, independent of ICH volume. 
The novel radiology-clinical SAP model, incorporating 
the CSVD burden, was optimally established by logis-
tic regression, surpassing two other machine learning 
models and the ISAN model in terms of performance. 
Patients developing SAP tended to have a poor progno-
sis in short- and long-term follow-ups. A nomogram with 
a gradient colour style was created based on a well-cali-
brated model to aid in the early identification of patients 
at a high risk of ICH-SAP in clinical practice. This tool 
assists in the selection of appropriate treatment and care 
strategies, thereby enhancing outcomes and potentially 
preventing SAP-related complications.
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