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Abstract
Background  Idiopathic pulmonary fibrosis (IPF) is a severe lung condition, and finding better ways to diagnose and 
treat the disease is crucial for improving patient outcomes. Our study sought to develop an artificial neural network 
(ANN) model for IPF and determine the immune cell types that differed between the IPF and control groups.

Methods  From the Gene Expression Omnibus (GEO) database, we first obtained IPF microarray datasets. To conduct 
protein-protein interaction (PPI) networks and enrichment analyses, differentially expressed genes (DEGs) were 
screened between tissues of patients with IPF and tissues of controls. Afterward, we identified the important feature 
genes associated with IPF using random forest (RF) analysis, and then constructed and validated a prediction ANN 
mode. In addition, the proportions of immune cells were quantified using cell-type identification by estimating 
relative subsets of RNA transcripts (CIBERSORT) analysis, which was performed on microarray datasets based on gene 
expression profiling.

Results  A total of 11 downregulated and 36 upregulated DEGs were identified. PPI networks and enrichment 
analyses were carried out; the immune system and extracellular matrix were the subjects of the enrichments. Using 
RF analysis, the significant feature genes LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were 
identified. The nine feature gene scores were integrated into the ANN to develop a diagnostic prediction model. The 
receiver operating characteristic (ROC) curves demonstrated the strong diagnostic ability of the ANN in predicting IPF 
in the training and testing sets. An analysis of IPF tissues in comparison to normal tissues revealed a reduction in the 
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic, pro-
gressive interstitial lung disease. The etiology of IPF is 
unknown, and its high-resolution computed tomography 
(HRCT) or pathological manifestation is usual interstitial 
pneumonia (UIP) [1, 2]. In Europe and North America, 
the incidence of IPF is between 2.8 and 9.3 per 100,000 
people, making it a rare disease. The epidemiological data 
about IPF are scarce in China, but its incidence has sig-
nificantly increased in recent years [3, 4]. IPF progresses 
slowly at the early stage, and it will gradually cause dif-
fuse fibrosis of the lungs, eventually leading to respi-
ratory failure and death [5]. IPF has developed into a 
severe, potentially fatal condition as a result of a lack of 
early management and comprehensive understanding of 
the disease’s pathophysiology [6]. Patients with IPF con-
tinue to have a dismal prognosis, with a median survival 
of about three years [7]. It is critical to identify novel tar-
gets for the diagnosis and treatment of IPF to enhance 
the prognosis of affected patients.

IPF is an intricate and multifactorial disease that arises 
from the interplay between genetic and environmental 
elements. Genetic factors have been demonstrated to 
be crucial in the pathogenesis of IPF [8, 9]. An array of 
characteristic genes that serve as references for the clini-
cal diagnosis of IPF have been linked to its occurrence 
and progression [10–12]. However, these genes remain 
inadequate for the early detection of IPF. At present, the 
diagnosis of IPF is still based on whether HRCT or histo-
logical manifestation of the lung is UIP, the application of 
genomics has had some help in the diagnosis of IPF [1, 2]. 
Thus, further investigation is required to identify novel 
approaches that can identify feature genes and establish 
diagnostic models.

As a chronic lung disease, inflammation and fibrosis 
are involved in the pathogenesis of IPF. It is mainly due 
to aberrant wound healing response following repetitive 
epithelial cell injury. Inflammatory cytokines released 
by immune cells may activate fibroblasts and connective 
tissue cell proliferation [13]. Immune dysregulation is 
involved in the occurrence and development of IPF [14]. 
Research from animal modeling and human research 

indicates that innate and adaptive immune mechanisms 
can orchestrate existing fibrotic responses [15].

Artificial intelligence and artificial neural networks 
(ANNs) have been progressively introduced into the 
medical field to assist physicians in managing vast vol-
umes of data and implementing precision medicine 
more easily. ANN is a type of computing mode, which 
was inspired by the human brain [16]. The learning and 
trial-and-error methods form the foundation of the 
ANN algorithm. The prognosis and prediction of tumors 
were the primary focus of earlier ANN research [17, 
18]. Recently, one research constructed an ANN model 
that demonstrated robust performance across multiple 
cohorts, but it was not analyzed from the perspective of 
immune infiltration [19].

Thus, our work aimed to develop an ANN model for 
IPF using candidate gene weight and compare immune 
cell types in IPF and control groups. As a first step in this 
investigation, we gathered IPF microarray datasets from 
the Gene Expression Omnibus (GEO) database. Differen-
tially expressed genes (DEGs) between tissues of patients 
with IPF and tissues of controls were screened to perform 
enrichment analyses and protein-protein interaction 
(PPI) network. Afterwards, we identified the important 
feature genes associated with IPF using random forest 
(RF) analysis, and then constructed and validated a pre-
diction ANN mode. The prediction power of these cru-
cial feature genes was screened using receiver operating 
characteristic (ROC) curves. Furthermore, based on the 
gene expression profiling of microarray datasets, cell-
type identification by estimating relative subsets of RNA 
transcripts (CIBERSORT) analysis was used to quantify 
the proportions of immune cells.

Methods
Data acquisition
The GSE110147, GSE21369, and GSE24206 series of 
matrix files were acquired from the GEO database of the 
National Center for Biotechnology Information (NCBI) 
(http://www.ncbi.nlm.nih.gov/geo/). The Affymetrix 
Human Gene 1.0 ST Array’s GPL6244 platform serves 
as the foundation for GSE110147 [20]. The GPL570 plat-
form, which is part of the Affymetrix Human Genome 

infiltration of natural killer cells resting, monocytes, macrophages M0, and neutrophils; conversely, the infiltration of T 
cells CD4 memory resting, mast cells, and macrophages M0 increased.

Conclusion  LRRC17, COMP, ASPN, CRTAC1, POSTN, COL3A1, PEBP4, IL13RA2, and CA4 were determined as key feature 
genes for IPF. The nine feature genes in the ANN model will be extremely important for diagnosing IPF. It may 
be possible to use differentiated immune cells from IPF samples in comparison to normal samples as targets for 
immunotherapy in patients with IPF.
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U133 Plus 2.0 Array, was used to create both GSE21369 
and GSE24206 [21, 22]. The GSE110147 dataset con-
tained 11 samples of normal lung tissue obtained from 
tissue flanking lung cancer resections and 22 samples 
collected from the organs of those with IPF (Supplemen-
tary File 1A). Eleven samples from patients who had been 
diagnosed with IPF and six normal samples serving as 
controls comprised the GSE21369 dataset (Supplemen-
tary File 1B). The GSE24206 dataset comprised six con-
trol specimens retrieved from healthy donor lungs and 17 
samples from patients with IPF (Supplementary File 1C).

Probe annotation files were utilized to convert probes 
in each dataset into gene symbols. Gene expression val-
ues were calculated using the probe with the highest 
expression level where multiple probes had the same 
gene symbol.

For further integration analysis, the matrix files of mul-
tiple datasets were merged into a merged dataset cohort 
due to their shared platform and the importance of 
incorporating large sample size data from various data-
sets. The “SVA” package’s combat function was utilized 
to preprocess and eliminate batch effects after the three 
datasets were merged into a single dataset cohort (Sup-
plementary File 1D).

Lung tissue samples from 50 healthy controls and 119 
patients with IPF were included in the testing cohort. The 
GSE32537 dataset, which was based on the Affymetrix 
Human Gene 1.0 ST Array GPL6244 platform, was used 
for the study (Supplementary File 1E) [23].

Screening DEGs in dataset between IPF and control 
samples
The “linear models for microarray data (limma)” package 
was used to standardize presentation data and identify 
DEGs [24]. The DEG threshold values were established as 
follows: |log2 fold change (FC)| > 2 between the IPF and 
control samples, and adjusted (adj) P value < 0.05. The 
“ggplot2” and “pheatmap” packages in R plotted volcano 
plots and heatmaps.

Enrichment analyses of DEGs
Using Metascape (http://metascape.org/), we performed 
various bioinformatics analyses to get more biologi-
cal insights into the DEGs [25]. The ontology categories 
DisGeNET, Pattern Gene Database (PaGenBase), and 
Transcription Regulatory Relationships Unravelled Sen-
tence-based Text mining (TRRUST) all showed gene list 
enrichments. A discovery platform called DisGeNET 
(https://www.disgenet.org/) houses one of the most pub-
licly accessible libraries of genes and variations linked to 
human diseases [26]. A free database called PaGenBase 
(https://bioinf.xmu.edu.cn/PaGenBase/) contains infor-
mation on the pattern genes of eleven model organisms 
that have been discovered using serial gene expression 

profiles under various physiological conditions [27]. A 
manually maintained library of transcriptional regula-
tory networks in humans and mice is called TRRUST 
(https://www.grnpedia.org/trrust/) [28]. The enrich-
ment background comprised all of the genome’s genes. 
Terms that met the following criteria were gathered 
and clustered: membership similarities, P value < 0.01, 
minimum count of 3, and enrichment factor (the ratio 
between the observed counts and the counts expected by 
chance) > 1.5.

The “org.Hs.eg.db” and “clusterProfiler” packages in R 
were used to perform the gene ontology (GO) functional 
enrichment analyses and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis for 
the DEGs [29, 30]. GO functional enrichments comprised 
molecular function (MF), cellular component (CC), and 
biological process (BP). Enrichment was statistically sig-
nificant at a q value < 0.05. The outcomes of these enrich-
ment analyses were visualized using R’s ggplot2 package.

Establishment of a PPI network
To develop a PPI network, the DEGs were incorpo-
rated into the STRING database (https://string-db.org/). 
STRING contains known and projected PPIs. The inter-
actions are a combination of direct and indirect linkages 
that come from the sharing of knowledge between organ-
isms, computational prediction, and the compilation of 
interactions from other databases [31]. The PPI network 
was constructed with “homo sapiens” as the study species 
and a minimum interaction value of 0.4.

Identification of important feature genes and construction 
of an ANN model
The “randomForest” package was then utilized to per-
form an RF analysis with the parameter (number of 
decision trees) set to 500. We then filtered the DEGs to 
determine which nodes had the lowest cross-validation 
errors, which we then selected as the parameter for the 
final model. Genes with importance scores > 1.0 were 
considered IPF key feature genes, and a subset of signif-
icant genes were found to have importance scores. The 
“pheatmap” package was utilized to visualize significant 
feature genes and group the data based on their expres-
sion levels.

We scored the DEGs according to their expression 
concerning the median value to remove batch effects 
between cohorts. Genes that were upregulated were 
given a score of 1 if their levels were higher than the 
median. Otherwise, they received a score of 0. The oppo-
site trend was seen in the score when this gene was 
down-regulated. Using gene scores, we developed an 
ANN model to diagnose IPF. Three layers make up the 
ANN: an output, a hidden, and an input layer. In this 

http://metascape.org/
https://www.disgenet.org/
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stage, the R packages “neuralnet” and “NeuralNetTools” 
were utilized [32, 33].

Evaluation of the ANN model
The gene cohort was tested and validated using the same 
methodology, which was also utilized to assess the IPF 
model’s diagnostic accuracy. Using the “pROC” pack-
age, we created ROC curves for each of the two cohorts 
to assess the effectiveness of the ANN model. The true 
positive rate, or “Sensitivity,” is represented by the verti-
cal scale in the ROC curve, whereas the horizontal axis 
represents the false positive rate, or “1-Specificity.” The 
area under the curve (AUC) showed how accurate the 
model was.

Discovery of immune cell infiltration characteristics
To quantify the relative proportions of infiltrating 
immune cells from the gene expression profiles in IPF, a 
bioinformatics algorithm called CIBERSORT (https://
cibersortx.stanford.edu/) was used to calculate immune 
cell infiltration characteristics. CIBERSORTx is an ana-
lytical tool from the Alizadeh Lab and Newman Lab to 
impute gene expression profiles and provide an estima-
tion of the abundances of member cell types in a mixed 
cell population, using gene expression data [34, 35]. 
Based on a reference set of 22 immune cell subtypes 
(download the LM22 Signature Matrix file from CIBER-
SORTx), 1,000 permutations were used to calculate 
immune cell abundance.

Distribution and correlation analyses of 22 different 
types of invading immune cells were performed using the 
R “corrplot” package. To illustrate how the immune cell 
infiltration of the IPF and control samples differed,  plots 
were generated using the R package.

Statistical analysis
We used RGui 4.2.3 for all statistical analyses. DEGs 
were compared between IPF and control samples using 
an adj P value < 0.05 and |log2FC| >2. We collected terms 
having a P value < 0.01, a minimum count of 3, and an 
enrichment factor > 1.5 from DisGeNET, PaGenBase, and 
TRUST ontologies. For GO functional enrichment and 
KEGG pathway enrichment, a q value < 0.05 indicated 
statistical significance. The last interaction value in the 

PPI network was set as 0.4. The feature genes’ diagnostic 
efficacy was assessed using ROC curve analysis and AUC 
value. In continuous variable group comparisons, the 
Student’s t-test was used for normally distributed data 
and the Mann-Whitney U for abnormally distributed 
variables. P < 0.05 was considered significant for all two-
sided statistical analyses.

Results
Identification of DEGs in merged dataset cohort
Following the merge of three datasets (GSE110147, 
GSE21369, and GSE24206), batch effects were prepro-
cessed and eliminated using the “SVA” package’s combat 
function to produce a merged dataset cohort. Using the 
“limma” package, the DEGs of the merged dataset were 
tested. Using adj P value < 0.05 and |log2FC| > 2.0 thresh-
olds, 47 DEGs were identified, with 11 downregulated 
and 36 upregulated (Table 1, Supplementary File 2). Fig-
ure  1A illustrates the heatmap depicting the expression 
levels of the eleven downregulated DEGs and thirty-six 
upregulated DEGs. Additionally, Fig.  1B illustrates the 
volcano plot of these DEGs.

Prediction of the disease spectrum and function of DEGs
The DisGeNET enrichment analysis summary showed 
that IPF was linked to lung diseases (interstitial), lung dis-
eases, and connective tissue diseases (Fig. 2A). Summary 
of enrichment analysis in PaGenBase showed tissues and 
cells were related to IPF such as lung, bronchial epithelial 
cells, and trachea (Fig. 2B). The summary of enrichment 
analysis in TRRUST showed IPF-related transcription 
factors, including SP1, STAT3, TFAP2A, BRCA1, REAL, 
NFKB1, and JUN (Fig. 2C).

GO functional and KEGG pathway enrichment analyses
The GO BP enrichment analysis revealed that the DEGs 
were remarkably enriched in various biological pro-
cesses including extracellular matrix (ECM) organization, 
extracellular structure organization, external encapsulat-
ing structure organization, collagen fibril organization, 
response to nutrient, antimicrobial humoral immune 
response mediated by antimicrobial peptide, humoral 
immune response, collagen metabolic process, organ or 
tissue specific immune response, and blood coagulation. 

Table 1  47 DEGs in merged dataset cohort
Downregulated DEGs S100A12 PLA2G1B FCN3 CA4 IL6 SLC6A4

MT1M CPB2 PEBP4 AGER CRTAC1
Upregulated DEGs CFAP53 ASPN ERICH3 CXCL14 KRT17 COL1A1

SERPIND1 TXLNGY LRRC17 SFRP2 KRT15 DSC3
CFAP43 COL3A1 RPS4Y1 COMP S100A2 SNTN
CLCA2 MSMB CXCL13 DDX3Y IL13RA2 MUC5B
POSTN PROM1 ZBBX DIO2 CP GPR87
DNAH12 KRT5 SPP1 MMP7 MMP1 BPIFB1

https://cibersortx.stanford.edu/
https://cibersortx.stanford.edu/
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The DEGs were considerably abundant in collagen-con-
taining ECM, endoplasmic reticulum lumen, fibrillar col-
lagen trimer, banded collagen fibril, collagen trimer, and 
complex of collagen trimers, according to the GO CC 
enrichment analysis. The results of the GO MF enrich-
ment analysis demonstrated that the DEGs exhibited 
a significant enrichment in the following functional 
domains: ECM structural constituent, platelet-derived 
growth factor binding, integrin binding, heparin binding, 
calcium-dependent protein binding, metallopeptidase 
activity, metalloendopeptidase activity, cytokine activity, 
glycosaminoglycan binding, growth factor binding, and 
other functions (Supplementary File 3A). The top 10 GO 

functional enrichments ranked by q value are shown in 
Fig. 3A.

The analysis of the KEGG pathway enrichment 
revealed that the DEGs exhibited a high enrichment in 
advanced glycation end products (AGE)-receptor for 
AGE (RAGE) signaling pathway in diabetic complica-
tions signaling pathway, ECM − receptor interaction, 
interleukin 17 (IL-17) signaling pathway, viral protein 
interaction with cytokine and cytokine receptor, pan-
creatic secretion, amoebiasis, protein digestion and 
absorption(Supplementary File 3B). The seven KEGG 
pathway enrichments ranked by q value are shown in 
Fig. 3B.

Fig. 2  Enrichment analyses using Metascape. (A) Summary of enrichment analysis in DisGeNET. (B) Summary of enrichment analysis in PaGenBase. (C) 
Summary of enrichment analysis in TRRUST. Terms that met the following criteria were gathered and clustered: membership similarities, P value < 0.01, 
minimum count of 3, and enrichment factor > 1.5

 

Fig. 1  DEGs in merged dataset. (A) The expression levels of the 11 downregulated DEGs and 36 upregulated DEGs in the merged dataset. Control 
samples (Con) and IPF samples (IPF) showed varied expression levels. Blue denotes low expression, whereas red denotes high expression. (B) The volcano 
plot presents 11 downregulated DEGs and 36 upregulated DEGs in the merged dataset. The thresholds were established at |log2FC| > 2.0 and adj P < 0.05; 
the genes upregulated and downregulated in the IPF samples are shown by the red (Up) and green (Down) dots respectively; genes that do not exhibit 
a difference in expression between the IPF and normal samples are represented by the black dots (Not)
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PPI network construction
Using the STRING database, we built a PPI network to 
examine the interactions between the 47 DEGs in more 
detail. The network has 46 nodes for target proteins and 
83 edges for protein interactions when the lowest inter-
action score was 0.40 (Supplementary file 4, Fig. 4).

The network’s 46 targets and 83 edges showed target 
interactions when setting the lowest interaction score to 
0.40.The increase in the degree value is directly related to 
the extent of connections.

Selection of important genes using RF analysis
To identify key feature genes on 47 DEGs, RF analy-
sis was performed. The number of decision trees was 
determined using cross-validation error. It was deter-
mined that the cross-validation error was minimized 
at 39 decision trees. As the final model parameter, 39 
decision trees were subsequently selected (Fig. 5A). Fol-
lowing this, a subset of significant genes was identified 
and assigned importance scores; the 30 most important 
genes, arranged in ascending order of importance scores, 
are displayed in Fig. 5B. Among them, leucine-rich repeat 

Fig. 3  GO functional and KEGG pathway enrichment analyses. (A) Top 10 GO functional enrichments ranked by q value. BP: biological process, CC: cellular 
component, MF: molecular function. (B) Chord plot of GO BP. The top eight GO BP functional enrichments are represented by the GO terms, and the en-
riched genes are indicated by the gene names with the relationship. (C) The nine KEGG pathway enrichments ranked by q value. (D) Chord plot of KEGG. 
The top eight KEGG pathway enrichments are shown by the KEGG terms, and the enriched genes are indicated by the gene names with the connection
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containing 17 (LRRC17), cartilage oligomeric matrix pro-
tein (COMP), asporin (ASPN), cartilage acidic protein 
1 (CRTAC1), collagen type III alpha 1 chain (COL3A1), 
periostin (POSTN), phosphatidylethanolamine bind-
ing protein 4 (PEBP4), interleukin 13 receptor subunit 
alpha 2 (IL13RA2), and carbonic anhydrase 4 (CA4) with 
importance scores > 1.0 were identified as feature genes 
for subsequent analysis. The heatmap presenting nine 
important feature genes is visualized in Figure S1.

Construction of an ANN model for IPF
Our score for the nine feature genes was their expres-
sion relative to the median. ANN was used to develop 
a diagnostic prediction model with three layers: input, 
hidden, and output, using the nine feature gene scores 
(Supplementary file 5A). To develop the ANN model, a 
deep machine-learning algorithm was performed using 
the feature gene weight. ANN model output data showed 
that the training method was repeated 114 times (the 
number of iterations), which was automatically selected 

by the ANN algorithm (Figure S2). The ANN model 
based on gene scores is constructed as shown in Fig. 6A, 
where the hidden layer displaying genes relevant to IPF 
was connected to the input layer containing genes for 
several groups depending on the scores and weights that 
were obtained. Five nodes were found to be present in the 
hidden layer. Based on these five nodes and their respec-
tive weights, we obtained the output layer, which was the 
attribute of the sample.

The accuracy of the ANN model in predicting IPF is 
detailed in Tables  2 and 3, respectively, for the training 
and testing sets. Figure 6B shows the predictive model’s 
AUC was 1.000 [95% confidence interval (CI) 1.000–
1.000]. This value signifies that the model demonstrated 
a remarkable ability to predict IPF. The ANN model 
was utilized to detect feature genes in the assessment 
set that were identical to those found in the training set 
(Supplementary file 5B). The testing set AUC was 0.936 
(95% CI 0.894–0.971), showing the ANN model’s reliabil-
ity and stability (Fig.  6C). The heatmap presenting nine 

Fig. 4  PPI network
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important feature genes in the testing set is visualized 
in Fig.  7A and the expression of nine important feature 
genes between IPF tissues and normal control tissuesin 
the testing set is visualized in Fig. 7B. These results were 
consistent with those of differential expression analysis in 
the metadata cohort.

Immune cell infiltration
The CIBERSORT bioinformatics algorithm was uti-
lized to assess immune cell abundance using the LM22 
signature matrix file with 1,000 permutations after 
downloading it (Supplementary File 6A). The results of 
CIBERSORT are presented in Supplementary File 6B.

Figure 8A shows the findings of the distribution analy-
sis of 22 immune cell types in the IPF and control groups. 
Figure S3 shows immune cell correlation. Next, we inves-
tigated the immune cells that differed between IPF tissues 
and normal control tissues. IPF tissues had significantly 
decreased levels of T cells CD8, monocytes (P = 0.009), 
natural killer (NK) cells resting (P < 0.001), macrophages 
M1 (P = 0.010), and neutrophils (P = 0.028) compared to 
normal tissues. However, IPF tissues had significantly 
greater proportions of T cells CD4 memory resting 
(P = 0.020), macrophages M0 (P < 0.001), and mast cells 
resting (P = 0.028) compared to normal tissues (Fig. 8B).

Discussion
IPF is an interstitial disease in which UIP is its pri-
mary pathological manifestation. IPF remains incur-
able and has a dismal prognosis at this time. The precise 

mechanism by which IPF occurs and progresses remains 
poorly understood, despite the publication of numerous 
studies in the field [36]. The onset and progression of IPF 
may be influenced by epithelial-mesenchymal transition, 
ECM deposition, and pulmonary remodeling [37–39].

Patients frequently miss their best chance for treatment 
since there are no early diagnostic markers for IPF, which 
causes the disease to progress more quickly. It is essential 
to delve into the molecular mechanisms of IPF onset and 
progression, along with pinpointing the treatment target 
for the disease. Recent studies suggest that immune cell 
infiltration may play a major role in the development and 
progression of IPF and have the ability to eradicate aged 
alveolar epithelial cells [40, 41].

However, studies into the immune infiltration and 
abnormally expressed genes that distinguish IPF from 
normal tissues are limited. Initially, we employed micro-
array technology to gather three analogous cohorts from 
the GEO datasets. Subsequently, we conducted a merged 
dataset cohort comprising 23 control samples and 50 IPF 
samples. In total, 47 DEGs were found, 11 downregu-
lated and 36 upregulated, which was consistent with the 
previous differential gene analyses [12]. The enrichment 
analyses showed that they were linked to IPF-related 
transcription factors, cells and tissues, and illnesses. 
The PPI network showed the interaction between these 
DEGs. The primary GO functional enrichments were 
associated with ECM, suggesting that these DEGs con-
tribute to the formation of IPF and are intimately related 
to ECM [36–38]. Significant KEGG pathway enrichments 

Fig. 5  Identification of candidate important genes by RF analysis. (A) Effect on the error rate of the quantity of decision trees. The number of decision 
trees (trees) is denoted along the x-axis, whereas the error rate (Error) is represented along the y-axis. The black lines indicate the error values for all 
samples. (B) The 30 most significant genes as determined using RF analysis. Critical feature genes were identified in compliance with the specifications of 
the RF algorithm. MeanDecreaseGini represents the mean Gini index decrease value. A larger value indicates the more important of the variable
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Table 2  IPF prediction accuracy of the ANN model in the 
training set

Control IPF Total
Control 23 0 23
IPF 0 50 50

Table 3  IPF prediction accuracy of the ANN model in the testing 
set

Control IPF Total
Control 46 4 50
IPF 13 106 119

Fig. 6  The ANN model of the nine important genes for IPF. (A) Gene score-based ANN model generation. Three layers make up the ANN: an output 
(O1,O2), a hidden (H1-H5), and an input (I1-I9) layer. (B) The predictive model (Train group) AUC was 1.000 (95% CI 1.000–1.000). (C) Testing set (Test group) 
AUC was 0.936 (95% CI 0.894–0.971)
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were observed in the following domains:  IL-17 signaling 
pathway, AGE-RAGE signaling pathway, ECM-receptor 
interaction, pancreatic secretion, amoebiasis, viral pro-
tein interaction with cytokine and cytokine receptor, 
and protein digestion and absorption. These major path-
ways were also related to ECM and immune response, 

including the most important pathways that are highly 
relevant and enriched in IPF such as transforming growth 
factor β (TGF-β), mitogen-activated protein kinase 
(MAPK), phosphatidylinositol 3 kinase (PI3K)-protein 
kinase B (Akt), and nuclear factor κB (NF-κB) signaling 
pathways.

Fig. 7  Validation of the expression of the nine important genes in the GSE32537 dataset. (A) The heatmap presenting nine important feature genes in 
the testing set. Control samples (Con) and IPF samples (IPF) showed varied expression levels. Blue denotes low expression, whereas red denotes high 
expression. (B) The expression of nine important feature genes between IPF tissues and normal control tissues in the testing set. Control (Con) and IPF 
samples (IPF) are represented by blue and yellow colors correspondingly. *** P < 0.05
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Then, with the rapid development of science and tech-
nology, RF analysis and ANN model were used to identify 
important feature genes and establish a diagnostic model. 
The CIBERSORT instrument was utilized to investigate 

the involvement of immune cell infiltration features in 
IPF.

Using RF analysis, nine important feature genes were 
identified. Six upregulated genes were LRRC17, COMP, 
ASPN, POSTN, COL3A1, and IL13RA2, and three 

Fig. 8  Distribution and difference of immune cell infiltration. (A) The distribution analysis of 22 immune cell types in IPF samples (IPF) and control 
samples (Con). (B) The differential immune cells in IPF tissues comparing normal control tissues. Control (Con) and IPF samples (IPF) are represented by 
blue and red colors, correspondingly
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downregulated genes were CRTAC1, PEBP4, and CA4. 
Therefore, the nine genes were constructed and validated 
as a prediction ANN mode. The results obtained from 
conducting the ROC and AUC analyses suggested that 
all nine genes possessed a significant potential in disease 
diagnosis.

It is anticipated that LRRC17 contributes to the devel-
opment of bone marrow, negatively regulates osteoclast 
differentiation, and is active in ECM and extracellular 
space [42, 43]. COMP encodes a noncollagenous ECM 
protein [44]. The most intriguing clinical application of 
COMP is its utilization as a biomarker for IPF. COMP is a 
large pentameric glycoprotein that interacts with numer-
ous ECM proteins in cartilage and other tissues [45, 46]. 
ASPN encodes a small leucine-rich proteoglycan carti-
lage extracellular protein [47]. Tissue regeneration and 
development are facilitated by a secreted ECM protein 
encoded by POSTN [48]. ASPN and POSTN may act as 
hub genes regulating pulmonary fibrosis [49]. ASPN pro-
motes the differentiation of lung myofibroblasts induced 
by TGF-β by facilitating the recycling of TβRI, which is 
dependent on Rab11 [50]. Periostin is a useful biomarker 
for type 2 inflammation and pulmonary fibrosis [51]. In 
extensible connective tissues, COL3A1 encodes type III 
collagen pro-alpha1 chains [52]. Dysregulated expres-
sion of COL3A1 might impact the development of IPF 
through modulating IPF-related biological processes and 
the expression level of COL3A1 is correlated with IPF 
prognosis [53]. COL3A1 could serve as a biomarker for 
IPF and non-small cell lung cancer progression [54]. The 
protein encoded by IL13RA2, which is closely linked to 
IL13RA1, binds IL13 with high affinity and helps inter-
nalize it [55]. The induction of fibrotic markers by IL-13 
in vitro is impeded by the overexpression of IL-13Ral-
pha2, which also prevents bleomycin-induced pulmo-
nary fibrosis [56]. CRTAC1 is responsible for producing 
a glycosylated ECM protein located in the interterrito-
rial matrix of articular deep zone cartilage [57]. CRTAC1 
serves as a biomarker for the health status of alveolar 
type-2 epithelial cells in lavage fluid and plasma [58]. 
Protidylethanolamine-binding proteins, which comprise 
PEBP4, are a family of proteins that have undergone sig-
nificant evolutionary conservation. These proteins play 
critical biological roles, including lipid binding and ser-
ine protease inhibition [59]. The glycosylphosphatidyl-
inositol-anchored membrane isozyme CA4 is encoded 
by CA4. This isozyme is expressed on the proximal renal 
tubules and luminal surfaces of pulmonary capillar-
ies [60]. While there are currently no IPF-related genes 
deserving further inquiry, these genes are linked to the 
disease and should be thoroughly investigated.

After the nine feature genes were included in the ANN, 
a diagnostic prediction model was developed, which 
exhibited outstanding IPF prediction performance. It 

has the potential to accurately differentiate IPF samples 
from normal samples, which will be crucial for the IPF 
diagnosis.

We utilized CIBERSORT to analyze immune cell infil-
tration in normal and IPF samples. Consequently, it was 
discovered that certain immune cell subtypes were inti-
mately connected to significant BPs of IPF. It was found 
that there was an increase in mast cells, macrophages 
M0, and T cells CD4 memory resting in IPF tissues in 
comparison to normal tissues, and a decrease in the infil-
tration of monocytes, neutrophils, NK cells resting, and 
T cells CD8. These processes may be linked to the onset 
and progression of IPF. There are similar differences in 
other chronic lung diseases, our next research is to fur-
ther analyze feature genes in order to find immune cell 
gene targets specific to IPF.

Indeed, it has been demonstrated previously that 
immunological and inflammatory cells are crucial to the 
development of IPF. A few of the findings line up with 
earlier research. The pathological result of suboptimal 
wound healing after a lung injury is IPF. M1 macrophages 
repair wounds after alveolar epithelial injury, while M2 
macrophages resolve lung inflammation [61]. NF-κB 
exacerbates M1 macrophage polarization by promoting 
the release of proinflammatory cytokines [62]. According 
to research, polarized M1 macrophages cultured in a dis-
tinct polarizing medium can redifferentiate into a differ-
ent cell phenotype or revert to M0 macrophages after 12 
days in a cytokine-deficient medium [63]. NK cell resting 
percentage was lower in IPF tissue samples than in con-
trols [64]. The interest in immunological dysregulation in 
IPF has been rekindled by recent publications emphasiz-
ing the prognostic and mechanistic roles of monocytes 
and monocyte-derived alveolar macrophages [65]. BLT1 
mediates bleomycin-induced lung fibrosis independently 
of neutrophils and CD4 + T Cells [66]. It may be possible 
to use these differentiated immune cells as targets for 
immunotherapy in patients with IPF.

A genomic classifier was developed with machine 
learning and whole transcriptome RNA sequencing using 
lung tissue obtained by biopsy. It was introduced and val-
idated for lung tissue obtained by transbronchial forceps 
biopsy. Genetic testing of lung tissue can increase the 
multidisciplinary discussion of confidence in distinguish-
ing diagnostic IPF from non-IPF. However, because there 
are few studies on genetic testing of lung tissue biopsy, 
the sensitivity of genetic testing is low, and it is prone to 
false negatives, more clinical studies are needed to fur-
ther evaluate its sensitivity and specificity [1, 2].

Given the above results, we can detect the nine feature 
genes and increase confidence in IPF early diagnose .The 
detection of the nine feature genes before and after treat-
ment in patients with a definite diagnosis of IPF to fur-
ther validate our model. The efficacy after treatment and 
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expression changes in the nine feature genes, combined 
with immune cell infiltration, provide a basis for further 
investigation of treatment-related mechanisms.

The study has limitations, despite our best efforts to 
conduct it properly. These should be noted as well. Even 
though we merged the three datasets to acquire as many 
samples as feasible, the metadata cohort requires more 
samples. Second, the validation cohort sample size must 
be raised. Ultimately, the roles of immune cell infiltration 
and nine feature genes in IPF were inferred from bioin-
formatics analysis. However, additional experimental 
study is required to validate these findings.

Conclusion
In conclusion, it was determined that key IPF fea-
ture genes included LRRC17, COMP, ASPN, CRTAC1, 
POSTN, COL3A1, PEBP4, IL13RA2, and CA4. The abil-
ity to accurately identify between IPF samples and nor-
mal samples is made possible by the nine feature genes 
ANN model’s superiority, and this will be crucial for the 
diagnosis of IPF. Immune cells that differ between IPF 
and normal samples may have a role in the onset of the 
disease and may one day be the focus of immunotherapy 
for patients with IPF.
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