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Abstract

Background: Quantitative computed tomography (CT) analysis has been proposed as a means of objectively
assessing fibrotic interstitial pneumonia (IP) including idiopathic pulmonary fibrosis (IPF). We investigated whether
percentages of high-attenuation areas (HAA%) and cystic areas (CA%) quantified from CT images were useful as
indices of fibrotic IP.

Methods: CT images of 74 patients with fibrotic idiopathic interstitial pneumonias (IPF, 36; non-specific interstitial
pneumonia, 9; unclassifiable idiopathic interstitial pneumonia, 29) were analyzed via in-house computer software,
which automatically calculated HAA%, CA%, mean lung density (MLD), standard deviation of lung density (SD-LD),
kurtosis, and skewness from CT attenuation histograms. These indices were compared in each instance with
physiologic measures, visual fibrosis score, clinical diagnosis, radiologic CT pattern, and prognosis.

Results: HAA% correlated significantly with physiologic measures and visual fibrosis score to a moderate extent
(%forced vital capacity, rs = −0.59; % carbon monoxide diffusion capacity, rs = −0.43; fibrosis score, rs = 0.23).
Densitometric parameters (MLD, SD-LD, kurtosis, and skewness) correlated significantly with physiologic measures
and fibrosis score (|rs| = 0.28-0.59). CA% showed no association with pulmonary functions but differed significantly
between IPF and other interstitial pneumonias (IPs) (1.50 ± 2.41 % vs. 0.41 ± 0.80 %; P < 0.01) and between the definite
usual interstitial pneumonia (UIP) pattern and other patterns (1.48 ± 2.38 % vs. 0.55 ± 1.19 %; P < 0.01). On univariate
analysis, HAA%, MLD, SD-LD, kurtosis, skewness, fibrosis score, and definite UIP pattern all correlated with survival, with
kurtosis alone identified as a significant predictor of mortality on multivariate analysis (hazard ratio = 0.67; 95 % CI,
0.44-0.96; P = 0.03).

Conclusion: CA% and HAA% are novel quantitative CT indices with differing properties in fibrotic IP evaluations. HAA%
largely reflects physiologic impairments, whereas CA% corresponds with diagnosis and HRCT pattern. Of the CT indices
examined, kurtosis constituted the strongest predictor of mortality.
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Background
Quantitative high-resolution computed tomography (HRCT)
analysis of the lung has been proposed as an objective and
non-invasive means of assessing parenchymal lesions in fi-
brotic interstitial lung diseases (ILDs) [1–5]. Densitometric
parameters (such as mean lung density [MLD], standard de-
viation of lung density [SD-LD], kurtosis, and skewness) de-
rived from CT attenuation histograms have served as indices
in earlier studies [1–6], corresponding with histopathologic
diagnosis [3], physiologic impairment [1, 2, 4, 6], and health-
related quality of life [4] in fibrotic ILDs, and with survival in
idiopathic pulmonary fibrosis (IPF) [5]. However, no stand-
ard quantitative method for assessing fibrotic ILDs (IPF and
others) by CT has been adopted as yet, nor has the clinical
utility of this approach been firmly established [7].
Fibrotic ILDs are marked by a combination of radio-

logic abnormalities, with high and low CT attenuation
[1]. Typically, high-attenuation areas (HAAs) signify par-
enchymal lesions, such as ground-glass opacity (GGO)
and reticulation [8], whereas emphysematous change
and cystic areas (CAs) are signified by low-attenuation
areas (LAAs). CAs with honeycombing are more charac-
teristic of fibrotic ILDs [8]. Determining percentages of
HAAs (HAA%) and CAs (CA%) in whole lung fields
may aid in determining the extents these characteristic
lesions. It was our view that HAA% and CA% might
serve as quantitative CT indices of fibrotic ILDs.
The main purpose of the present study was to deter-

mine the clinical utility of HAA% and CA% (alongside
densitometric parameters) in assessing fibrotic interstitial
pneumonia (IP). The relationships of these CT indices with
physiologic impairment, visual score, clinical diagnosis, CT
pattern, and prognosis were examined.

Methods
Patients
For this retrospective study, 74 consecutive patients with fi-
brotic idiopathic interstitial pneumonias (fibrotic IIPs) were
recruited. All patients were undergoing HRCT at Kyoto
Central Clinic, Kyoto, Japan between January 2004 and De-
cember 2006 and were followed for >3 months. Fibrotic
IIPs comprised IPF, non-specific interstitial pneumonia
(NSIP; biopsy-proven in all) and unclassifiable IIPs. IPF and
NSIP were diagnosed according to the 2002 American
Thoracic Society (ATS)/European Respiratory Society
(ERS) IIP statement [9], and HRCT patterns were classified
based on the 2011 American Thoracic Society (ATS)/Euro-
pean Respiratory Society (ERS)/Japanese Respiratory Soci-
ety (JRS)/Latin American Thoracic Association (LATA) IPF
guidelines [7]. If HRCT showed a possible or inconsistent
usual interstitial pneumonia (UIP) pattern, and a pathologic
diagnosis was unavailable, the case was interpreted as un-
classifiable IIP according to the 2013 ATS/ERS IIP state-
ment [10]. Patients were excluded on grounds of connective

tissue disease or systemic vasculitis, history of exposure to
any causative agent of ILD, active pulmonary infection,
acute respiratory illness in the preceding 4 weeks, or viable
neoplasm. The Kyoto Central Clinic Institutional Review
Board approved this study protocol. Written informed con-
sent was not obtained from the participants, because this is
a retrospective study using clinical and HRCT data that
were accumulated in daily practice.

Clinical evaluation
Clinical information was collected from medical records.
Standardized pulmonary function tests and HRCT were
performed on the same day [11]. Equations published
for Japanese adults were used to determine the predicted
values of each parameter [12].

HRCT techniques
In each instance, thin-section HRCT was done using a CT
scanner with single-detector row (Pronto; Hitachi Medical
Corporation, Tokyo, Japan) at 120 kVp, 200 mAs, and 33-
cm field of view settings. Axial scans (2 mm thick) were
obtained at 10-mm intervals, with a gantry speed of 1.0 s/
rotation. No contrast medium was used. In the course of
scanning, breath-holding was required after deep inspir-
ation in supine position. Each HRCT image generated a
512 × 512 matrix of numeric data (CT numbers) in
Hounsfield units (HU) via standard lung algorithm (filter
No. 9). In addition to routine calibration by air and water
phantoms, CT numbers were corrected using air density
samples from intrathoracic trachea to eliminate effects of
X-ray tube aging [13].

Quantitative CT analysis
In-house computer software was engaged to analyze all
HRCT lung images. Lung fields in each slice were iden-
tified by excluding major hilar bronchi and vessels.
HAAs and LAAs were defined as areas in lung fields
with CT values > −200 HU and < −960 HU, respect-
ively. LAAs were indicative of emphysematous patches,
and in general CAs were equated with honeycombing.
To extract CAs from LAAs, each LAA cluster was first
defined as a continuous LAA entirely bounded by
pixels, with CT values > −960 HU. Most emphysema-
tous lesions were small, discrete LAAs or larger LAA
clusters, rather than cystic lesions. Cystic lesions only,
particularly areas of honeycombing, were defined as
LAA clusters with areas of 9π–400π mm2 (i.e., circular
areas 3–20 mm in diameter) (Fig. 1). The minimum
diameter (3 mm) was stipulated by a recent radiologic
definition of honeycombing [14], and the maximum
diameter (20 mm) was set to exclude continuous em-
physematous lesions and bullous changes. HAA% and
CA% were calculated as percentages of whole lung
field occupied by HAA and CA, respectively. MLD,
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SD-LD, kurtosis, and skewness likewise were calcu-
lated automatically from CT attenuation histograms as
follows:

MLD ¼
Xlmax

l ¼lmin
ln lð Þ=N

SD‐LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXlmax

l¼lmin
n lð Þ l−MLDð Þ2=N

r

Kurtosis ¼
Xlmax

l¼lmin
n lð Þ l−MLDð Þ4=N SDð Þ4� �

− 3

Skewness ¼
Xlmax

l¼lmin
n lð Þ l−MLDð Þ3=N SDð Þ3� �

l = CT value
n (l) = number of pixels in each CT value
N = number of pixels in all CT values
SD = SD-LD

MLD and SD-LD represent the average and standard
deviation of the HU of each pixel, respectively. Kurtosis
describes how sharply peaked a histogram is when com-
pared with the histogram of a normal distribution. Skew-
ness describes the degree of asymmetry of a histogram,
and a long right tail indicates positive skewness.

CT visual scoring
Three independent observers (KT, TH, and TK) blinded
to clinical information reviewed HRCT images. Lung
fields were divided into upper, middle, and lower zones
at level of carina and at right inferior pulmonary venous
confluence, respectively. On a scale of 0–5, each of the
three zones was rated for extent of GGO (GGO score)
and fibrotic opacity (fibrosis score) [15]. Mean scores for
each zone and for the whole lung were calculated jointly
by the three observers.

Statistical analyses
Statistical analyses relied on standard software (JMP v9;
SAS Institute Inc., Cary, NC, USA). Each statistical vari-
ation in quantitative data was expressed as a single deter-
mination ± standard deviation, with statistical significance
set at P < 0.05. Spearman’s rank correlation test was used
to examine the relationships between quantitative CT in-
dices, physiologic measures, and CT visual scores. Group
comparisons were made using the Mann–Whitney U test.
Univariate and multivariate survival regression analyses
were performed to assess prognostic value of each CT
index, applying the Cox proportional hazards model.

Results
Characteristics of study patients
Characteristics of study population are summarized in
Table 1. Among the 75 patients with fibrotic IIPs, the
diagnoses were IPF (n = 36, 12 biopsy proven), non-
specific interstitial pneumonia (NSIP; n = 9, all biopsy
proven), and unclassifiable IIP (n = 29). On HRCT, defin-
ite UIP pattern was observed in 28 (78 %) of IPF group

Fig. 1 The schema of CT image analysis. a Original CT image of the
left lung slice. b Processed image showing clusters of low
attenuation areas (LAA) coloured in black. c Processed image
showing cystic areas (black areas) defined as LAA clusters with an
area of 9π–400π mm2
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members; and of 29 subjects with unclassifiable IIP, 8
(28 %) displayed possible UIP pattern and 21 (72 %) in-
consistent UIP. Mean interval from diagnosis to HRCT
evaluation was 58.1 months (range, 5–86 months).

Comparisons of quantitative CT indices, physiologic
measures, and CT visual scores
The relationships of quantitative CT indices with physio-
logic impairment and semi-quantitative visual assess-
ment of CT images are presented in Table 2. The
interobserver correlation coefficients of the GGO and fi-
brosis scores calculated by the Blant-Altoman method
were 0.72–0.83 and 0.77–0.95, respectively. The interob-
server Spearman’s rank correlation coefficients (rs) of the
GGO and fibrosis scores were 0.66–0.77 and 0.77–0.96, re-
spectively. HAA% correlated moderately with physiologic

measures (|rs| = 0.43-0.59) and weakly with fibrosis score
(|rs| = 0.25). Densitometric parameters correlated moder-
ately with both physiologic measures (|rs| = 0.45-0.59) and
fibrosis score (|rs| = 0.28-0.33), whereas CA% correlated
weakly with fibrosis score (rs = 0.35) and held no relation-
ship with physiologic impairment.

Comparison of quantitative CT indices in IPF and non-IPF
groups
To determine whether quantitative CT indices reflected dif-
ferences in clinical diagnosis, IPF (n = 36) and non-IPF (n
= 38, i.e., NSIP and unclassifiable IIPs) group values were
compared (Table 3). CA% of the IPF group significantly
exceeded that of the non-IPF group (1.50 ± 2.41 % vs.
0.41 ± 0.80 %; P < 0.01), but HAA% and densitometric
parameters of IPF and non-IPF groups were similar.
Quantitative CT indices of subjects with definite UIP

pattern (n = 35) and those with other patterns (n = 39)
on HRCT (Table 4) were also compared. Again, CA%
was significantly higher in patients with definite UIP pat-
tern (1.48 ± 2.38 % vs. 0.55 ± 1.19 %; P < 0.01), whereas
HAA% and densitometric parameters did not differ be-
tween groups.

Prognostic value of quantitative CT analysis
Median duration of follow-up after HRCT was 38 months
(range, 5–86 months), and survivors were followed up for
8–86 months (median, 66 months). Of subjects studied,
31 (41 %) died (chronic respiratory failure, 13; acute ex-
acerbation, 12; pulmonary infections, 4; pneumothorax, 1;
sudden death, 1).
Univariate regression analyses indicated that HAA%,

MLD, SD-MLD, kurtosis, skewness, fibrosis score, and
definite UIP pattern corresponded significantly with
poorer prognosis (Table 5), whereas CA% was not a sig-
nificant predictor of mortality. Given these results,
HAA%, kurtosis, fibrosis score, and definite UIP pattern
were entered into the Cox proportional hazards model.
Kurtosis was the sole densitometric parameter entered,
because it correlated strongly with other parameters

Table 1 Characteristics of study population (n = 74)

Characteristics Value Range

Demographics

Age, years 65.7 ± 9.2 (30 - 86)

Male 49 (66 %) -

Smoking (yes) 45 (60 %)

Interval from diagnosis, months 58.1 ± 48.2 (1 - 263)

Diagnosis

IPF 36 (49 %)

NSIP 9 (12 %)

Other 29 (39 %)

Pulmonary function tests

%FVC, % 72.2 ± 20.0 (29.0 - 113.3)

%DLCO, % 54.1 ± 21.8 (10.3 - 122.9)

Quantitative CT indices

HAA% (>-200 HU), % 1.83 ± 1.15 (0.27 - 7.01)

LAA% (<-960 HU), % 3.91 ± 4.25 (0.14 - 22.5)

CA%, % 0.94 ± 1.85 (0 - 10.54)

MLD, HU −758.0 ± 53.3 (−860.3 - −635.7)

SD-LD, HU 195.9 ± 22.6 (152.5 - 259.4)

Kurtosis 2.40 ± 1.81 (−0.53 - 7.45)

Skewness 1.61 ± 0.44 (0.66 -2.68)

CT visual scores

GGO score [0-5] 0.45 ± 0.52 (0 - 2.06)

Fibrosis score [0-5] 1.66 ± 0.68 (0.33 - 3.28)

Fibrosis score ≥2 in any field 48 (65 %)

Values expressed as mean ± standard deviation or number (%)
Numbers in square brackets represent theoretical score range
IPF idiopathic pulmonary fibrosis, NSIP, nonspecific interstitial pneumonia;
%FVC percentage of predicted forced vital capacity, %DLCO percentage of
predicted diffusion capacity of carbon monoxide, CT computed tomography,
HAA% percentage of lung field occupied by high-attenuation areas, LAA%
percentage of lung field occupied by low-attenuation areas, CA% percentage
of lung field occupied by cystic areas, MLD mean lung density, HU hounsfield
units, SD-LD standard deviation of lung densities, GGO ground-glass opacity

Table 2 Spearman’s rank correlation coefficients for
determinants of fibrotic IP

HAA% CA% MLD SD-LD Kurtosis Skewness

%FVC –0.59 – −0.55 −0.52 0.48 0.49

%DLCO −0.43 – −0.56 −0.45 0.57 0.59

GGO – −0.40 – – – –

Fibrosis 0.25 0.38 – 0.33 −0.28 −0.28

Missing data (–) indicating correlation was not statistically significant
CT computed tomography, HAA% percentage of lung field occupied by high-
attenuation areas, CA% percentage of lung field occupied by cystic areas, MLD
mean lung density, HU hounsfield units, SD-LD standard deviation of lung
densities, %FVC percentage of predicted forced vital capacity, %DLCO percent-
age of predicted diffusion capacity of carbon monoxide, GGO visual score of
ground-glass opacity, Fibrosis, visual fibrosis score
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(|rs| = 0.85-0.98), and another study in IPF recognized its
superiority in predicting mortality [5]. In multivariate ana-
lysis, kurtosis was the only significant determinant of
prognosis (HR = 0.67; 95 % CI, 0.44-0.96; P = 0.03)
(Table 5).
To assess the independent prognostic value of kurtosis,

multivariate regression analyses were performed, coupling
kurtosis with a second clinical parameter (Table 6). Kur-
tosis remained a significant prognostic factor, even after
adjusting for age, male gender, and clinical diagnosis of
IPF separately (Table 6, models 1–3). Kurtosis was also a
stronger predictor of mortality than %FVC (Table 6,
model 4), albeit surpassed by %DLCO.

Discussion
Through this study, we found that HAA% and densito-
metric parameters were associated with physiologic mea-
sures and with CT visual scores in fibrotic IP, whereas
CA% helped to distinguish between IPF and non-IPF diag-
noses. High HAA% was also associated with survival, but
among CT indices, kurtosis was the most significant pre-
dictor of mortality. These outcomes validate use of HAA%
and CA% as indices with which to quantify parenchymal
lesions of fibrotic IP in CT images.
A novel CT index, HAA%, was introduced herein to

gauge the extent of parenchymal abnormalities (primar-
ily fibrotic lesions) in fibrotic IP [8]. Restrictive pulmon-
ary function (reduction in %FVC) and impaired gas
exchange (diminished %DLCO) are the major physiologic

Table 3 Comparison of subject groups: IPF vs non-IPF

IPF (n = 36) Non-IPF (n = 38) P

Pulmonary function tests

%FVC, % 71.5 ± 20.7 72.9 ± 19.5 NS

%DLCO, % 56.0 ± 23.9 52.5 ± 19.9 NS

Quantitative CT indices

HAA% (>-200 HU), % 1.90 ± 1.31 1.76 ± 0.99 NS

LAA% (<-960 HU), % 5.25 ± 5.17 2.64 ± 2.62 <0.01

CA%, % 1.50 ± 2.41 0.41 ± 0.80 <0.01

MLD, HU −767.4 ± 51.0 −749.1 ± 54.6 NS

SD-LD, HU 197.6 ± 24.6 194.3 ± 20.7 NS

Kurtosis 2.54 ± 1.87 2.21 ± 1.82 NS

Skewness 1.67 ± 0.44 1.56 ± 0.45 NS

CT visual scores

GGO score [0-5] 0.21 ± 0.25 0.67 ± 0.61 <0.01

Fibrosis score [0-5] 2.10 ± 0.44 1.23 ± 0.59 <0.01

Fibrosis score ≥2 in any field 35 (97 %) 13 (34 %) <0.01

Values expressed as mean ± standard deviation or number (%)
Numbers in square brackets represent theoretical score range
IPF idiopathic pulmonary fibrosis, NSIP nonspecific interstitial pneumonia,
%FVC percentage of predicted forced vital capacity, %DLCO percentage of
predicted diffusion capacity of carbon monoxide, CT computed tomography,
HAA% percentage of lung field occupied by high-attenuation areas, LAA%
percentage of lung field occupied by low-attenuation areas, CA% percentage
of lung field occupied by cystic areas, MLD mean lung density, HU hounsfield
units, SD-LD standard deviation of lung densities, GGO ground-glass opacity

Table 4 Comparison of subject groups: definite UIP (HRCT) vs other patterns

Definite UIP (n = 35) Other patterns (n = 39) P

Pulmonary function tests

%FVC, % 71.7 ± 20.6 73.0 ± 19.4 NS

%DLCO, % 54.8 ± 23.4 53.5 ± 20.6 NS

Quantitative CT indices

HAA% (>-200 HU), % 1.93 ± 1.32 1.74 ± 0.98 NS

LAA% (<-960 HU), % 5.34 ± 5.22 2.63 ± 2.59 <0.01

CA%, % 1.54 ± 2.43 0.40 ± 0.79 <0.01

MLD, HU −765.8 ± 50.9 −751.0 ± 55.2 NS

SD-LD, HU 198.2 ± 24.8 193.9 ± 20.6 NS

Kurtosis 2.50 ± 1.81 2.25 ± 1.82 NS

Skewness 1.66 ± 0.44 1.58 ± 0.45 NS

CT visual scores

GGO score [0-5] 0.21 ± 0.25 0.66 ± 0.61 <0.01

Fibrosis score [0-5] 2.13 ± 0.41 1.23 ± 0.50 <0.01

Fibrosis score ≥2 in any field 35 (100 %) 13 (33 %) <0.01

Values expressed as mean ± standard deviation or number (%)
Numbers in square brackets represent theoretical score range
IPF idiopathic pulmonary fibrosis, NSIP nonspecific interstitial pneumonia, %FVC percentage of predicted forced vital capacity, %DLCO percentage of predicted
diffusion capacity of carbon monoxide, CT computed tomography, HAA% percentage of lung field occupied by high-attenuation areas, LAA% percentage of lung
field occupied by low-attenuation areas, CA% percentage of lung field occupied by cystic areas, MLD mean lung density, HU hounsfield units, SD-LD standard
deviation of lung densities, GGO ground-glass opacity

Tanizawa et al. BMC Pulmonary Medicine  (2015) 15:74 Page 5 of 10



impairments in fibrotic IP; as anticipated, HAA% corre-
sponded with both, similar to conventional densitometric
parameters. Correlations between densitometric parameters
and physiologic indices have been reported in IPF [1, 2], in
asbestosis [1], and in scleroderma [4]. Our data generated
from CT histograms have extended these findings to a
more heterogeneous group of fibrotic IIPs, adding HAA%
to current battery of available parameters. Because HAA%
reflects the extent of parenchymal lesions, such as GGO
and reticulation [8], it appears that quantifying the degree
of fibrotic changes determines the physiologic burden of fi-
brotic IP. This concept is aligned with a previous study in
IPF where semi-quantitative scoring of fibrotic lesions was
done [16]. The impact of HAA% and densitometric pa-
rameters on survival, shown in univariate analysis, also
validates HAA% as a clinically relevant CT determinant of
fibrotic IP.
The second new CT index introduced, largely coincid-

ing with extent of honeycombing, was CA%. Unlike
HAA% and densitometric parameters, CA% seemed to
reflect clinical diagnostic and radiologic pattern differ-
ences and thus may be useful for distinguishing IPF and
definite UIP pattern from other entities. The significant
correlation shown between CA% and fibrosis score (i.e.,
visually scored honeycombing) suggests that CA% may
capture and quantify characteristic lesions of fibrotic IP.
On the other hand, we found no association between
CA% and %FVC or %DLCO. Although restrictive im-
pairment and extent of honeycombing did not correlate
in other studies of IPF [16, 17], significant correlations
between honeycombing and impaired gas exchange were
consistently identified, using semi-quantitative scoring
[16] and a new quantitative CT method, texture analysis

Table 5 Univariate and multivariate regression analyses: radiologic indices of survival (n = 74)

Univariate Multivariate

HR 95 % CI P HR 95 % CI P

Quantitative CT indices

HAA% (>-200 HU), % 1.47 (1.13 – 1.83) < 0.01 1.06 (0.86 – 1.06) NS

LAA% (<-960 HU), % 0.97 (0.86 – 1.06) NS

CA%, % 0.98 (0.75 – 1.16) NS

MLD, HU 1.01 (1.00 – 1.02) 0.01

SD-LD, HU 1.03 (1.01 – 1.04) < 0.01

Kurtosis 0.67 (0.51 – 0.86) < 0.01 0.67 (0.44 – 0.96) 0.03

Skewness 0.28 (0.11 – 0.65) < 0.01

CT visual scores

GGO score 0.74 (0.35 – 1.40) NS

Fibrosis score 2.00 (1.20 – 3.39) 0.01 1.06 (0.45 – 2.21) NS

Definite UIP pattern 2.13 (1.05 – 4.47) 0.04 2.36 (0.84 – 7.60) NS

HR hazard ratio, CI confidence interval, CT computed tomography, HAA% percentage of lung field occupied by high-attenuation areas, CA% percentage of lung
field occupied by cystic areas, MLD mean lung density, HU hounsfield units, SD-LD standard deviation of lung densities, GGO ground-glass opacity, UIP usual
interstitial pneumonia

Table 6 Multivariate survival regression analyses: kurtosis and
other clinical parameters

Model 1

HR 95 % CI P

Age 1.01 (0.97 – 1.06) 0.54

Kurtosis 0.67 (0.51 – 0.86) <0.01

Model 2

HR 95 % CI P

Male 2.96 (1.23 – 8.78) 0.01

Kurtosis 0.66 (0.50 – 0.85) <0.01

Model 3

HR 95 % CI P

IPF 2.85 (1.37 – 6.17) <0.01

Kurtosis 0.62 (0.46 – 0.81) <0.01

Model 4

HR 95%CI P

%FVC 0.98 (0.96 – 1.00) 0.05

Kurtosis 0.75 (0.55 – 0.97) 0.03

Model 5

HR 95 % CI P

%DLCO 0.96 (0.93 – 0.99) 0.01

Kurtosis 0.81 (0.57 – 1.07) 0.15

HR hazard ratio, CI confidence interval, IPF idiopathic pulmonary fibrosis, %FVC
percentage of predicted forced vital capacity, %DLCO percentage of predicted
diffusion capacity of carbon monoxide
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[17]. In terms of survival, our outcomes also differed
from these studies, which showed that degree of honey-
combing significantly predicted mortality in IPF. There
was no relationship between CA% and survival in our
cohort. These discrepancies raise the possibility that our
method of determining CA% differed somewhat from
assessing honeycombing visually, although CA% corre-
lated significantly with fibrosis score in our study. Fur-
ther studies are needed to define the properties of CA%
and to refine the measuring of cystic lesions and honey-
combing in fibrotic IP.
Among quantitative CT indices, only MLD failed to

correlate with fibrosis score. As honeycombing or LAA
expands, fibrosis score increases, whereas MLD may re-
main unchanged or decrease. The reason is that incre-
ments in LAA (including honeycombing) offset any
fluctuations in HAA. Although MLD is associated with
physiologic measures and survival, this dynamic suggests
a possible flaw in using MLD as an integrative index of
fibrotic and cystic lesions in fibrotic IP. MLD properties
differing from those other densitometric parameters
were also reported in distinguishing IPF from NSIP [3].
Our analysis of CT parameters identified kurtosis as

the strongest predictor of mortality in fibrotic IP. Uni-
variate analysis also underscored that HAA%, fibrosis
score, and definite UIP pattern were significant corre-
lates of survival. These findings approximated those of
another study of IPF, showing that kurtosis surpassed
other densitometric parameters in this regard, although
fibrosis score was the only variable of significance in
multivariate analysis [5]. Consequently, it appears that
quantitative CT indices, including HAA%, enable assess-
ment of disease burden in fibrotic IP and may signal
long-term outcomes, making them potential surrogate
markers for clinical trials. In addition, kurtosis was inde-
pendent of other clinical and physiologic parameters in
its prognostic capacity, except for %DLCO. Given the
difficulty in measuring %DLCO in patients with severe
respiratory failure, these CT indices may more readily
serve analogous roles in clinical trials and other settings.
The pathological background of these CT indices has

been investigated in prior studies. Do et al. reported that
kurtosis and skewness were higher in patients with
pathological UIP than in those with NSIP [3]. Sumikawa
et al. revealed that the histograms of GGA and fine re-
ticulation patterns were similar, while the honeycombing
pattern showed less kurtosis and skewness and a higher
contrast and variance [18]. On the other hand, they also
showed that the histogram of the whole lung was similar
between UIP and NSIP, although an analysis of cubic re-
gions of interest (ROIs) demonstrated differences be-
tween UIP and NSIP [19]. Those findings suggest that
the whole lungs of patients with ILD are combinations of
various ILD-characteristic regions. Although the histogram

of each region can reflect the differences among the re-
gions, the features of different ROIs offset each other in the
histogram analysis of the whole lung, leading to conflicting
results of comparisons between different pathological pat-
terns [3, 20]. Indeed, our results showed no significant dif-
ferences in densitometric parameters between the IPF and
non-IPF groups. Given the significant association between
densitometric parameters and physiological impairments
and long-term outcomes, the densitometric parameters of
the whole lung might represent the physiological burdens
of disease rather than pathological patterns. The novel CT
indices used in this study, %HAA and %CA, are presumed
to reflect the fibrotic and honeycombing lesions, respect-
ively. The %HAA was similar between the IPF and non-IPF
groups. Although a different definition was used, the per-
centages of low, intermediate, and high CT density areas
did not differ between UIP and NSIP in a previous study
[20]. Similar to the densitometric parameters, the %HAA
or high-density area might not be an index for morpho-
logical characteristics but might instead be an index for the
extent and severity of disease. Of note, the %CA was higher
in patients with IPF and correlated with the extent of hon-
eycombing by visual scoring in our study. Those results
suggest the possibility that the %CA can detect the patho-
logical features of IPF/UIP even in whole-lung analyses.
Quantitative CT analysis of the lung has been per-

formed for COPD, bronchial asthma, and ILDs [6, 13,
21–26]. Histogram analysis of fibrotic ILDs has been
conducted for IPF, asbestosis, and scleroderma [1, 2, 4,
5]; and MLD, SD-LD, kurtosis, and skewness were
employed as CT indices in those studies. Sumikawa et
al. added contrast, variance, and entropy to the repertory
of CT indices used to discriminate the different ILD-
characteristic abnormalities more precisely [20]. In con-
trast to those for COPD and bronchial asthma, the
standard CT indices remained to be elucidated for ILDs.
In addition to the histogram indices, we calculated the
%HAA and %CA. As aforementioned, the analysis of
whole-lung histograms might not be able to detect the
extents of different disease-characteristic lesions suffi-
ciently, because each lesion can offset other lesions in a
single histogram. Therefore, we sought to measure the
areas of fibrotic lesions and honeycombing directly and
automatically. Although such a cut-off approach using
CT values has been well established in COPD and em-
physema, its utility and limitations in ILDs should be ex-
amined in further studies.
Recently, texture analysis has emerged as a novel

method for quantifying fibrotic IP by CT [17, 27]. Tex-
ture analysis is based on the histogram analysis of ILD-
characteristic findings in small ROIs. That method seg-
ments the whole lung into small ROIs, classifies each
ROI into one CT pattern such as GGA, reticulation, or
honeycombing determined through histogram analysis,

Tanizawa et al. BMC Pulmonary Medicine  (2015) 15:74 Page 7 of 10



and calculates the extent of each CT pattern automatic-
ally. As a result, the CT data of the whole lung are con-
verted into a combination of the ROI percentages of the
histogram-based CT patterns. Texture analysis aims to
overcome the limitations of whole-lung histogram ana-
lysis by dividing the whole lung into small ROIs, thus
avoiding the summation of the whole lung CT data into
a single histogram. The expanse of honeycombed areas
and serial changes in abnormalities (reticular and total
interstitial) in texture analysis reportedly are significant
predictors of mortality in IPF [17, 27]. By comparison,
percentages of reticular and honeycombed areas in
whole lung fields of texture analysis exceeded corre-
sponding %HAA and %CA values in our study, although
the study groups were not comparable [17, 27]. These
texture analysis parameters also correlated more strongly
with visual scores than did %HAA and %CA [17, 27].
Thus, ILD-specific lesions may be better defined via tex-
ture analysis than through our pixel-counting and global
histogram approach.
On the other hand, texture analysis is a computer-

aided method, relying on recognition of radiologic fea-
tures by a consensus of experts in each study group; in-
deed, software applications of the various studies were
not uniform [17, 27]. Even among experts, inter-observer
agreement on ILD-specific abnormalities, such as honey-
combing, is less than satisfactory [28]. Thus, a gold stand-
ard of analytics has yet to be established, and the broader
utility of texture analysis should be examined not only in
IPF but also in other IIPs or fibrotic IP.
Another issue in quantitative CT analysis is the selec-

tion of ROIs. Sumikawa et al. reported that three-
dimensional (3D) histogram analysis using cubic ROIs is
superior to two-dimensional histogram analysis with
square ROIs for assessing various CT patterns of ILDs
[18]. They applied a similar method to quantify pulmon-
ary adenocarcinoma with GGA and demonstrated the
utility of 3D histogram analysis in small lung cancer
[29]. In addition, a 3D approach was used in a recent
texture analysis [27]. We used CT scans with a 2 mm
thickness obtained at 10 mm intervals and therefore
could not apply a 3D analysis. Those differences in CT
scanning conditions might have influenced our results.
There are acknowledged limitations to this study. First,

the subjects did not receive uniform treatment such as
corticosteroids, immunosuppressive agents, or pirfeni-
done, because evidence-based guidelines for IPF were
just published recently [7]. Given the relatively poor out-
comes of the patients with IPF who received the com-
bination therapy of prednisone and azathioprine in the
PANTHER-IPF study [30], different therapeutic strat-
egies might have affected the long-term outcomes of pa-
tients with IPF. In addition, our cohort included several
patients with non-IPF IIPs, whose responses to treatment

could be more variable. Hence, we could not address the
impact of therapeutic regimens on survival. Furthermore,
the ramifications of dyspnea, overall health status, exercise
capacity, and comorbidities could not be assessed, due to
the retrospective design. These factors may well have bear-
ing on prognosis of IPF and fibrotic IIPs [31–37]. Addition-
ally, our cohort included several patients with unclassifiable
IIP because of a lack of pathological diagnoses. Those pa-
tients can be potentially diagnosed with IPF or NSIP, and
such diagnoses might influence the results of comparisons
between IPF and non-IPF and multivariate survival ana-
lyses. Finally, we did not determine longitudinal changes in
CT indices at this time. Best et al. have already demon-
strated that serial changes in densitometric parameters cor-
relate with changes in physiologic measures [5]. Given the
significant impact of declining %FVC on survival of patients
with IPF [7, 36, 38, 39], the prognostic implications of
changes in quantitative CT indices, particularly HAA%,
should be examined in future studies.

Conclusion
Despite these limitations, the differing properties of
these novel quantitative CT indices, HAA% and CA%,
were evident. HAA% largely reflected physiologic im-
pairments in fibrotic IP, whereas CA% corresponded
with diagnosis and HRCT pattern. Future studies applying
quantitative CT analysis for fibrotic IP should incorporate
these CT indices to assess disease characteristics and sever-
ity more comprehensively.
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