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Abstract

Background: Idiopathic pulmonary fibrosis (IPF) is an irreversible interstitial pulmonary disease featured by high
mortality, chronic and progressive course, and poor prognosis with unclear etiology. Currently, more studies have
been focusing on identifying biomarkers to predict the progression of IPF, such as genes, proteins, and lipids. Lipids
comprise diverse classes of molecules and play a critical role in cellular energy storage, structure, and signaling. The
role of lipids in respiratory diseases, including cystic fibrosis, asthma and chronic obstructive pulmonary disease (COPD)
has been investigated intensely in the recent years. The human serum lipid profiles in IPF patients however, have not
been thoroughly understood and it will be very helpful if there are available molecular biomarkers, which can be used
to monitor the disease progression or provide prognostic information for IPF disease.

Methods: In this study, we performed the ultraperformance liquid chromatography coupled with quadrupole time of
flight mass spectrometry (UPLC-QTOF/MS) to detect the lipid variation and identify biomarker in plasma of IPF patients.
The plasma were from 22 IPF patients before received treatment and 18 controls.

Results: A total of 507 individual blood lipid species were determined with lipidomics from the 40 plasma samples
including 20 types of fatty acid, 159 types of glycerolipids, 221 types of glycerophospholipids, 47 types of sphingolipids,
46 types of sterol lipids, 7 types of prenol lipids, 3 types of saccharolipids, and 4 types of polyketides. By comparing the
variations in the lipid metabolite levels in IPF patients, a total of 62 unique lipids were identified by statistical analysis
including 24 kinds of glycerophoslipids, 30 kinds of glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingolipids and 1
kind of fatty acids. Finally, 6 out of 62 discriminating lipids were selected as the potential biomarkers, which are able to
differentiate between IPF disease and controls with ROC analysis.

Conclusions: Our results provided vital information regarding lipid metabolism in IPF patients and more importantly, a
few potentially promising biomarkers were firstly identified which may have a predictive role in monitoring and diagnosing
IPF disease.
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Background
Idiopathic pulmonary fibrosis (IPF) is a disease featured as
chronic, progressive, irreversible interstitial pneumonia
with a poor prognosis of unknown etiology [1] and a me-
dian survival of 3 to 5 years after initial diagnosis [2, 3]. It
more commonly occurs in patients of 50 to 70 years of

age. This disease is characterized by the histological pattern
of usual interstitial pneumonia [4, 5] with parenchymal fi-
brosis and excess collagen deposition [6]. It is well accepted
that the pathology of this disease includes fibroblast/myofi-
broblast proliferation, activation of alveolar epithelial cells,
with exacerbated deposit of extracellular matrix leading to
the gradual destruction of the lung tissue [7]. Although
there have been increasing number of studies investigating
the pathogenesis of idiopathic pulmonary fibrosis (IPF), the
lacking of effective treatments and early diagnostic tools in-
dicate the urgent needs for reliable biomarkers in both
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diagnosing at early stage and monitoring the progression
of this disease. In the recent publications, a few potentially
useful blood cellular and molecular biomarkers have been
identified, including chemokines, proteases and growth fac-
tors [8]. Despite the recent progress, there has not been a
single biomarker proved to be useful in diagnosing and
monitoring the progress of IPF. The diagnosis of IPF has
not changed much over the last few years, which means
that a multi-disciplinary approach is probably required for
a breakthrough. With the new emergent technology of lipi-
domics, to identify novel lipid biomarkers for diagnostic
and monitor purposes of IPF becomes possible.
Lipids comprise diverse classes of molecules that play

a critical role in cellular energy storage, structure, and
signaling [9–11]. Previously, lipids are only considered
as the components of membranes and source. Now
lipids are known to act as a indispensable factor in the
immune response by organizing signaling complexes in
cellular membrane, such as lipid rafts [12] or affecting
the immune reaction by release of lipid-derived media-
tors [13, 14]. The etiologies of certain diseases have been
proven to be associated with individual lipid molecules
and many studies have indicated that certain lipid meta-
bolic disorders or abnormalities can lead to a variety of
human diseases [10, 15–19].
The role of lipids in lung and respiratory diseases has

attracted more attention in recent years including cystic
fibrosis, asthma and COPD which are all associated with
abnormal metabolism. For example, the epithelium lipid
metabolism has been proved to be changed in asthmatic
patients [20, 21]. The amount of ceramides in the airway
epithelium of a guinea pig model was found to be in-
creased in response to the induction of experimental al-
lergic asthma [22]. In another study, the increased
amount of ceramides was detected in the airway epithe-
lium and has been linked to cell death, infection suscep-
tibility and immune inflammation in cystic fibrosis [23].
When it comes to IPF however, the human plasma lipid
profiles of IPF is so far poorly understood and to identify
reliable and unique lipid molecular biomarkers will be
very beneficial in IPF diagnosis and management [24].
Based on the above reasons, to analyze and identify poten-
tial IPF-specific lipid biomarkers will contribute signifi-
cantly to the diagnosis and management in IPF patients.
With the development of omicis [25] and the advanced

mass spectrometry have made it feasible to identify and
quantify a variety of lipids species in human samples
such as the tandem mass spectrometer utilized (MS/MS)
[26, 27],direct infusion MS (DIMS) [28], and liquid
chromatography-mass spectrometry (LC-MS) [29–32].
Among different LC-MS platforms, ultraperformance li-
quid chromatography coupled with quadrupole time of
flight mass spectrometry (UPLC-QTOF/MS) is widely
adapted to lipidomics due to its enhanced reproducibility

of retention time [33–35]. In this study, a global lipid pro-
filing was performed containing measurement of 20 kinds
of fatty acid, 159 kinds of glycerolipids, 221 kinds of gly-
cerophospholipids, 47 kinds of sphingolipids, 46 kinds of
sterol lipids, 7 kinds of prenol lipids, 3 kinds of saccharoli-
pids, and 4 kinds of polyketides. Subsequently, the correl-
ation analysis, receiver operating characteristic (ROC)
analysis and orthogonal partial least squares discriminant
analysis (OPLS-DA) were performed to evaluate the varia-
tions in lipid metabolites. The potential influence of gen-
der, smoking history, and disease stages on the lipid
metabolites was also looked at between IPF object and/or
controls. Our results provided vital information regarding
lipid metabolism in IPF patients and more importantly, a
few potentially promising biomarkers were firstly identi-
fied which may have a predictive role in monitoring and
diagnosing IPF disease.

Methods
Sample and collection
In this study, 22 IPF patients and 18 controls were ob-
tained from the First Hospital of Tsinghua University
from January 2014 to March 2016. All IPF patients were
diagnosed with IPF after the age of 60, and all of con-
trols were all above 60 years old when examined. The
demographic figures are listed in the Table 1. The stages
of disease are classified into mild and severe according
to the arterial blood oxygen partial pressure (≧
60 mmHg). The diagnosis of IPF patients was made
according to the internal recommendations of the
ATS/ERS/JRS/ALAT statement using high-resolution
computed tomography (HRCT), as well as the clinical
history of the patient [36]. All cases were discussed in
our discussion team about interstitial lung disease
composed of: a specialist in pulmonary rehabilitation,
a specialist in occupational medicine, a radiologist, a
rheumatologist, a pulmonologist and a pathologist.
Blood samples were collected from each patient be-
fore received treatment and control. The controls
were precluded if there was a history of pulmonary
disease. For each subject, 10 ml whole blood was col-
lected into a vessel tube containing heparin as anti-
coagulant. Each sample was centrifuged at 1500 x g
for 15 min to collect serum and stored at -80 °C im-
mediately until further analysis.

Table 1 Sample demographics of the study subjects

IPF (N = 22) Control (N = 18)

Age, mean 73 72

Gender (males/females) 11/11 8/10

Smoking History (Yes/No) 9/13 10/8

Stages (mild/severe) 11/11 –
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Lipidomics
Liquid chromatography-mass spectrometry (LC-MS)-grade
isopropanol, acetonitrile, methanol and water were pur-
chased from Fisher Scientific (New Jersey, USA). Debriso-
quine, Pro-Asn, glycoursodeoxycholic acid andmalic acid,
4-nitrobenzoic acid (4-NBA) were products of Sigma (St.
Louis, MO, USA). High purity formic acid (99%) was pro-
vided by Thermo-Scientific (Rockford, IL). The serum lipid
extraction was conducted as described previously [37].
Briefly, the plasma samples were thawed on ice before be-
ing vortexed. For metabolite extraction, 25 μL of plasma
sample was mixed with 175 μL of extraction buffer (25%
acetonitrile in 40% methanol and 35% water). The sample
was then incubated on ice for 10 min before centrifuged
again at 14,000 rpm at 4 °C for 20 min. Subsequently, the
produced supernatant was transferred to a fresh tube and
dried under vacuum. After drying, the dried samples were
reconstituted in 200 μL of buffer containing 5% methanol,
1% acetonitrile and 94% water. Fine particles were removed
by centrifuge at 13,000 rpm for 20 min at 4 °C. Finally, the
supernatant was transferred to a glass vial for ultraperfor-
mance liquid chromatography-quadrupole time-of-flight
mass spectrometry (UPLC-QTOF-MS) analysis.

Statistical analysis
All statistical analyses were conducted using R software
version 2.9.1. The OPLS score plots and T-test and vari-
able importance for projection (VIP) statistics were used
to select significant variables leading to group separ-
ation. A supervised OPLS analysis was applied in our
study to identify potential lipids that were used to clas-
sify the samples and remove non-correlated variables.
The differences between the intensities of lipids in IPF
and healthy controls were compared by T test when the
data follow a normal distribution or Wilcoxon rank-sum
test when otherwise. In this study, the identified lipids
were pre-selected as potential biomarkers when VIP
value is bigger than 1.0. To analyze the diagnostic value
of potential lipid biomarkers for identifying IPF disease,
a ROC analysis was performed. Correlation analysis of
differential lipids was performed by MetaboAnalyst soft-
ware. The influence of gender, smoking history, and
stages of disease of individual subjects on lipid metabol-
ism were evaluated by the Mann-Whitney U-test. The p
values of less than 0.05 was considered statistically
significant.

Ethics statement
The clinical IPF samples included in this study were col-
lected from the First hospital of Tsinghua University. All
patient data were anonymous, so informed consent for
participation was not required. The use of these samples
was approved by the Institutional Review Board for hu-
man studies at the First Hospital of Tsinghua University.

In this study, all personal information including name,
date of birth, and contact information was all de-identi-
fied and not disclosed.

Results
IPF plasma lipid profiles of 507 apparent lipid species
In this study, the plasma lipid profiles of 507 individual
lipid species were determined with lipidomics from 40
plasma samples; 22 from IPF patients with 18 controls
(Additional file 1: Table S1). The detected individual
plasma apparent lipid species were classified into 8 cat-
egories: fatty acid, glycerolipid, glycerophospholipid,
sphingolipid, sterol lipid, prenol lipid, saccharolipid, and
polyketide in accordance with NIH-funded Consortium,
which has built an ongoing website tools offering precise
information based on numerous lipidomics studies [38].
The 507 individual lipid species included 20 kinds of
fatty acyls (3.94%), 159 kinds of glycerolipids (31.36%),
221 kinds of glycerophospholipids (43.59%), 47 kinds of
sphingolipids (9.27%), 46 kinds of sterol lipids (9.07%), 7
kinds of prenol lipids (1.38%), 3 kinds of saccharolipids
(0.59%), and 4 kinds of polyketides (0.79%), respectively.
The significant differences of each individual apparent
lipid species between IPF patients and control groups
were detailed in the context of this study.

Statistical analysis of the lipid profiling
Supervised orthogonal partial least squares (OPLS) ana-
lysis identifed the biggest variation in lipid profiling
using a few orthogonal latent variables and was per-
formed with the lipid-obtained data on the plasma in
positive ion mode by the UPLC-QTOF-MS/MS. The
metabolic patterns were plotted by the OPLS-DA model
(Fig. 1A). The OPLS-DA model was used to unfold the
difference of plasma metabolic pattern between IPF pa-
tients and control group. The OPSL score plot revealed
the significant deviation between IPF patients and
controls.
In order to identify the potential biomarkers, the S-plot

analysis was used based on the plasma lipid profiling data
(Fig. 1B). By comparing changes in the lipid metabolite
levels of IPF patients, a total of 62 unique lipids were de-
tected [variable importance for projection (VIP > 1),
Table 2]. The lipids were identified according to the re-
ported methods as described previously [37]. They in-
cluded 24 kinds of glycerophoslipids, 30 kinds of
glycerolipids, 3 kinds of sterol lipids, 4 kinds of sphingoli-
pids and 1 kind of fatty acid. The above lipids were se-
lected as potential biomarkers from the S-plot for further
analysis in our study.
All the determined glycerophospholipids and sphingo-

lipids showed a decreasing tendency in IPF objects
(Table 2). Although all of glycerophospholipids and
sphingolipids also showed a similar decreasing pattern
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in IPF patients, the magnitude of their drop was not the
same. 15 out of 30 glycerolipids and 1 out of sterol lipids
were lower in IPF objects. On the other hand, the
remaining glycerolipids, sterol lipids and fatty acids had
an increased level in IPF objects. These findings sug-
gested that the observed changes in lipid profiles were
likely caused by different expression in IPF patients.

Correlation and receiver operating characteristic (ROC)
curve analysis
To better understand the relationship of metabolite differ-
ences with IPF disease, correlation analysis was applied to
analyze these identified lipids data (Fig. 2). Firstly, The differ-
ences between the intensities of 62 identified lipids in IPF
and healthy controls were compared by T test when the
data follow a normal distribution or Wilcoxon rank-sum test
when otherwise. Comprehensive analysis with P-value, 35
out of 62 identified lipids were selected to further analyze
(Table 2, R1 to R35). Then, we evaluated the correlation

between IPF disease and 35-selected lipids. As shown in
Fig.2, the close correlations can be detected between
IPF disease and 12 out of 35 identified lipids, includ-
ing TG(16:0/18:2/18:2)[iso3] (R2), PC(22:6/16:0) (R3),
Stigmasteryl ester(16:1) (R7) and (E,E)-3,7,11-Trimethyl-
2,6,10-dodecatrienyl dodecanoate (R9), DG(O-16:0/18:1)
(R13), 3-Deoxyvitamin D3 (R16), TG(18:4/20:3/22:0)[iso6]
(R17), DG(18:0/18:2/0:0)[iso2] (R21), DG(16:0/18:2/
0:0)[iso2] (R22), DG(18:1/18:3/0:0)[iso2] (R24), TG(19:1/
22:6/22:6)[iso3] (R25), and DG(18:1/18:2/0:0)[iso2] (R26)
(correlation absolute value > 0.7). This result indicates that
these individual lipid molecules potentially are useful to
differentiated the IPF patients from control group and the
accuracy and efficiency possibly can be further increased if
more lipid candidates are to be used.
Theoretically, those lipid molecules possessing close

correlation with IPF disease would be more promising
to be used as biomarkers. To further demonstrate the
ability of the 12 out of 35 identified lipids to identify the

Fig. 1 a. OPLS-DA scores plot based on the plasma lipid profiling of IPF patients (●D) and controls (●NC). b. S-plot used in the lipid biomarkers selection.
The lipids marked (□) are the lipids selected as potential biomarkers
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Table 2 List of assigned statistically significantly lipid molecules and change trend of biomarkers on plasma lipid profile in positive ion
mode after comparison of IPF patient samples to control samples

No. Code Calc m/
z

tR VIP Trenda Accepted Description LipidIon Element Lipid class P-Value

1 R1 1516.124 5.06 8.58719 ↓ CL(1′-[20:0/20:0],3′-
[18:1/18:2])

M + H,M + Na,M + H + Na C85H160O17P2 Glycerophospholipids 7.90E-
08***

2 R2 872.769 14.54 7.63644 ↑ TG(16:0/18:2/
18:2)[iso3]

M + H,M + NH4 C55H98O6 Glycerolipids 1.24E-
07***

3 R3 806.567 4.52 6.33481 ↓ PC(22:6/16:0) M + H,M + Na,M + K,2 M + H
,2 M + Na

C46H80NO8P Glycerophospholipids 9.24E-
07***

4 – 877.724 14.55 6.05829 ↓ TG(16:1/18:1/
18:2)[iso6]

M + Na,M + K,2 M + Na C55H98O6 Glycerolipids 0.2370

5 – 874.785 14.82 4.60354 ↑ TG(16:0/18:1/
18:2)[iso6]

M + H-H2O,M + H,M + NH4,
M + Na,
M + K,2 M + NH4,2 M + Na

C55H100O6 Glycerolipids 0.1117

6 R4 782.567 4.23 4.39906 ↓ PA(17:2/22:1) M + ACN + H C42H77O8P Glycerophospholipids 0.0074**

7 – 903.739 14.55 3.8738 ↓ TG(16:1/18:1/
20:3)[iso6]

M + Na,M + K C57H100O6 Glycerolipids 0.0017**

8 R5 900.801 14.84 3.45942 ↑ TG(16:0/18:1/
20:3)[iso6]

M + NH4,M + Na C57H102O6 Glycerolipids 0.0174*

9 R6 902.816 15.11 3.44338 ↑ TG(16:0/18:3/
20:0)[iso6]

M + NH4,M + Na,2 M + Na C57H104O6 Glycerolipids 0.0035**

10 R7 666.618 14.64 3.39521 ↑ Stigmasteryl
ester(16:1)

M + H,M + NH4,M + K,2 M +
NH4,2 M + Na

C45H76O2 Stero lipids 7.79E-
08***

11 R8 834.598 5.99 3.14588 ↓ PS(20:0/19:0) M + H-2H2O,M + H,M +
Na,2 M + H,2 M + Na

C45H88NO10P Glycerophospholipids 0.0019**

12 R9 369.352 14.65 3.00377 ↑ (E,E)-3,7,11-
Trimethyl-2,
6,10-dodecatrienyl
dodecanoate

M + H-2H2O C27H48O2 Fatty acids 7.31E-
08***

13 R10 577.519 15.08 2.65073 ↑ DG(16:0/18:1/0:0) M + H-H2O C37H70O5 Glycerolipids 7.02E-
08***

14 R11 848.769 14.77 2.49731 ↑ TG(16:0/16:1/
18:1)[iso6]

M + H,M + NH4,M + Na,M + K C53H98O6 Glycerolipids 0.0174*

15 R12 780.552 4.07 2.47828 ↓ PE(20:0/17:2) M + Na C42H80NO8P Glycerophospholipids 0.0232*

16 R13 603.535 15.07 2.44092 ↑ DG(O-16:0/18:1) M + Na C37H72O4 Glycerolipids 7.02E-
08***

17 – 758.569 3.96 2.34541 ↓ PC(16:0/18:2) M + H C42H80NO8P Glycerophospholipids 0.5407

18 R14 701.558 3.58 2.32011 ↓ SM(d16:1/18:1) M + H,M + Na,M + K,2 M +
H,2 M + Na

C39H77N2O6P Sphingolipids 0.0006***

19 R15 496.339 0.75 2.29702 ↓ PC(0:0/16:0) M + H-H2O,M + H,M + Na,M +
K,2 M + K

C24H50NO7P Glycerophospholipids 0.0049**

20 R16 369.352 15.00 2.27907 ↑ 3-Deoxyvitamin D3 M + H,M + NH4,2 M + H C27H44 Stero lipids 7.31E-
08***

21 – 870.753 14.27 2.16619 ↓ TG(14:1/16:0/
22:4)[iso6]

M + NH4,M + Na,M + K C55H96O6 Glycerolipids 0.2829

22 R17 925.796 14.55 2.1151 ↑ TG(18:4/20:3/
22:0)[iso6]

M + H-2H2O C63H108O6 Glycerolipids 7.86E-
08***

23 R18 801.682 10.78 2.06029 ↓ SM(d17:1/24:0) M + H,M + Na C46H93N2O6P Sphingolipids 1.85E-
05***

24 – 899.709 13.99 1.99376 ↓ TG(16:1/18:2/
20:4)[iso6]

M + NH4,M + Na,M + K C57H96O6 Glycerolipids 0.1458

25 R19 546.352 1.24 1.88084 ↓ PS(22:0/0:0) M + H-2H2O C28H56NO9P Glycerophospholipids 0.0249*

26 – 873.693 13.97 1.87046 ↓ TG(15:1/17:1/
20:4)[iso6]

M + Na,M + K C55H94O6 Glycerolipids 0.1245

27 – 834.598 5.14 1.83438 ↓ PC(22:4/18:2) M + H,M + Na,2 M + Na C48H84NO8P Glycerophospholipids 0.4226
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Table 2 List of assigned statistically significantly lipid molecules and change trend of biomarkers on plasma lipid profile in positive ion
mode after comparison of IPF patient samples to control samples (Continued)

No. Code Calc m/
z

tR VIP Trenda Accepted Description LipidIon Element Lipid class P-Value

28 R20 832.580 5.49 1.81376 ↓ PC(20:2/18:2) M + Na,2 M + Na C46H84NO8P Glycerophospholipids 1.22E-
06***

29 – 931.771 15.01 1.81008 ↓ TG(17:0/17:0/
22:5)[iso3]

M + Na C59H104O6 Glycerolipids 0.5582

30 – 786.601 4.84 1.76508 ↓ PC(18:1/18:1) M + H-H2O,M + H,
M + K

C44H84NO8P Glycerophospholipids 0.9026

31 – 1564.121 2.72 1.68796 ↓ PC(22:4/14:0) M + NH4,M + K,
2 M + H

C44H80NO8P Glycerophospholipids 0.2314

32 R21 603.532 14.82 1.64593 ↑ DG(18:0/18:2/0:0)
[iso2]

M + H-H2O C39H72O5 Glycerolipids 7.53E-
08***

33 R22 575.503 14.54 1.62251 ↑ DG(16:0/18:2/0:0)
[iso2]

M + H-H2O C37H68O5 Glycerolipids 2.58E-
07***

34 – 812.614 6.86 1.61868 ↓ PS(O-20:0/20:2) M + H-H2O,
M + H

C46H88NO9P Glycerophospholipids 0.0893

35 – 849.693 14.21 1.61511 ↓ TG(14:1/18:1/
18:2)[iso6]

M + NH4,M + Na,
M + K

C53H94O6 Glycerolipids 0.2829

36 – 904.831 15.36 1.53098 ↑ TG(17:0/18:1/
19:1)[iso6]

M + NH4,M + Na,
M + K,2 M + Na

C57H106O6 Glycerolipids 0.1615

37 R23 828.551 5.01 1.5305 ↓ PS(P-18:0/19:0) M + H-H2O,M + K C43H84NO9P Glycerophospholipids 0.0428*

38 R24 599.504 14.54 1.49112 ↑ DG(18:1/18:3/0:0)
[iso2]

M + H-H2O,M + H C39H68O5 Glycerolipids 1.21E-
07***

39 – 901.725 13.34 1.48742 ↓ TG(16:0/16:0/
22:6)[iso3]

M + NH4,M + Na C57H98O6 Glycerolipids 0.7340

40 R25 955.759 13.01 1.48372 ↓ TG(19:1/22:6/
22:6)[iso3]

M + H-2H2O C66H102O6 Glycerolipids 3.56E-
06***

41 – 925.724 14.16 1.46671 ↓ TG(12:0/22:2/
22:6)[iso6]

M + NH4,M + Na,
M + K

C59H98O6 Glycerolipids 0.1458

42 – 879.739 13.99 1.38113 ↓ GalCer(d18:1/
26:1(17Z))

M + ACN + H C50H95NO8 Sphingolipids 0.7340

43 R26 601.518 14.53 1.36641 ↑ DG(18:1/18:2/0:0)
[iso2]

M + H-H2O C39H70O5 Glycerolipids 8.04E-
07***

44 – 810.599 4.57 1.32667 ↓ PC(18:0/18:1) M + Na C44H86NO8P Glycerophospholipids 0.1534

45 R27 759.637 6.96 1.30466 ↓ SM(d18:1/20:0) M + H,M + Na,2 M + H C43H87N2O6P Sphingolipids 0.0139*

46 – 524.371 1.10 1.29548 ↓ PC(18:0/0:0) M + H,M + K C26H54NO7P Glycerophospholipids 0.2479

47 R28 830.566 3.80 1.25023 ↓ PC(22:6/18:2) M + H,M + Na C48H80NO8P Glycerophospholipids 0.0038**

48 R29 1620.182 4.50 1.22041 ↓ PI-Cer(d20:0/16:0) M + H-2H2O,M + K,
2 M + H

C42H84NO11P Glycerophospholipids 7.90E-
08***

49 – 828.551 4.04 1.20343 ↓ PE(22:6/19:0) M + Na C46H80NO8P Glycerophospholipids 0.2060

50 R30 948.800 14.59 1.20004 ↑ TG(18:1/20:3/
20:4)[iso6]

M + NH4 C61H102O6 Glycerolipids 7.90E-
08***

51 R31 794.602 4.86 1.19345 ↓ PC(20:3/P-18:1) M + H,M + Na,
2 M + H

C46H84NO7P Glycerophospholipids 1.93E-
07***

52 R32 790.569 5.79 1.18604 ↓ PA(20:5/20:1) M + H-H2O,
M + ACN + H

C43H73O8P Glycerophospholipids 0.0012**

53 – 881.754 14.25 1.18421 ↓ TG(15:0/18:1/
19:1)[iso6]

M + Na C55H102O6 Glycerolipids 0.2829

54 – 1494.138 6.25 1.17806 ↓ CL(1′-[20:0/18:0],3′-
[18:0/18:0])

M + H C83H162O17P2 Glycerophospholipids 0.5751

55 R33 851.708 13.63 1.14176 ↓ 20:1-Glc-Sitosterol M + H-H2O C55H96O7 Stero lipids 0.0161*

56 R34 897.696 13.73 1.10216 ↓ M+H C59H92O6 Glycerolipids 0.0014**
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Table 2 List of assigned statistically significantly lipid molecules and change trend of biomarkers on plasma lipid profile in positive ion
mode after comparison of IPF patient samples to control samples (Continued)

No. Code Calc m/
z

tR VIP Trenda Accepted Description LipidIon Element Lipid class P-Value

TG(18:3/18:3/
20:5)[iso3]

57 – 542.321 0.60 1.09805 ↓ PC(20:5/0:0) M + H C28H48NO7P Glycerophospholipids 0.3318

58 – 1576.219 8.50 1.05263 ↓ PC(17:0/19:1) M + K,2 M + H C44H86NO8P Glycerophospholipids 0.2471

59 – 951.740 14.31 1.04393 ↓ TG(18:4/20:0/
20:5)[iso6]

M + Na,M + K C61H100O6 Glycerolipids 0.3918

60 – 896.768 14.27 1.01614 ↓ TG(18:1/18:2/
18:3)[iso6]

M + NH4,M + Na C57H98O6 Glycerolipids 0.9892

61 R35 920.768 14.30 1.01291 ↑ TG(16:0/20:3/
20:5)[iso6]

M + NH4,M + K C59H98O6 Glycerolipids 1.40E-
06***

62 – 905.754 13.68 1.00186 ↓ TG(12:0/20:1/
22:3)[iso6]

M + Na C57H102O6 Glycerolipids 0.8811

aChange trend of lipids on IPF patients vs controls. The levels of potential lipid biomarkers labeled with (↑) and (↓) represent up-regulation and down-regulation,
respectively. The variable importance for projection (VIP) statistics and T-test were used applied to select significant variables leading to group separation. VIP
value larger than 1.0 were considered statistically significant and significant differences in statistics were also defined by P values of < 0.05 (*), < 0.01 (**), and
< 0.001 (***)

Fig. 2 Correlation analysis of the 35 pre-selected discriminating lipids in IPF patients and controls. R1 to R35 represents the corresponding pre-selected
discriminating lipids as shown in Table 2. Red and blue represent a negative and positive correlation, respectively. The color depth represents the degree
of correlation: the deeper color indicates higher correlation

Yan et al. BMC Pulmonary Medicine  (2017) 17:174 Page 7 of 12



IPF objects and controls, the receiver operating charac-
teristic (ROC) curve was applied according to the results
for the area under the curve (AUC) and sensitivity/speci-
ficity at the best cut-off points (Fig. 3). The AUC values
of these molecules showed significant differences in the
discovery set. 6 (R7, R9, R13, R16, R17 and R21) of them
showed higher sensitivity/specificity for identifying IPF
objects from controls (Fig. 3). This result have

demonstrated that each of the sixmolecules may be used
as potential biomarkers in diagnosing IPF disease in the
future.

Gender, smoking, and disease status-associated differences
in the lipid levels of six-promising biomarkers
To demonstrate whether gender, smoking history, and
disease stage have influence on selecting useful future

Fig. 3 ROC curves analysis of 12 lipid metabolite for discriminating IPF objects from controls
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biomarkers, 6 lipid levels in serums from IPF objects
and control were further studied. Table 3 summarises
the significance of all 6 biomarkers with regards to gen-
der, smoking history, and disease stage-associated differ-
ences. None of these 6 was found to have significant
differences related to these parameters mentioned above.

Discussion
IPF is a kind of chronic and progressive disease with low
survival rate, and remains to be a clinical challenge. It is
regarded as a fetal disease due to its poor prognosis and
a low median survival of only 3~5 years after diagnosis.
At the moment, only clinical data are available for diag-
nosis to researchers and clinicians, which is of limited
value as they do not reflect the precise pathological
mechanisms underlying IPF. To better elucidate disease
mechanism and make early diagnosis of IPF, identifica-
tion of molecular biomarkers with high diagnostic value
is paramount. In recent publications, a number of bio-
markers have been hypothesized to be present in serum
used as potential prognostic or diagnostic tools. The
main protein biomarkers associated with cell dysfunction
are the Krebs con den lungen-6 (KL-6) antigen and the
surfactant protein A and protein D (SP-A and SP-D)
[39]. Biomarkers found in IPF involved in fibrogenesis
are matrix metalloproteinases-1 and -7 (MMP-1 and
MMP-7), which play a role in the breakdown and re-
modeling of extracellular matrix components [40]. How-
ever, no lipid biomarkers have yet been studied for IPF.
This work is the first comprehensive investigation into
the potential lipid biomarkers for IPF using
UPSL-QTOF-MS/MS.
Lipids is the fundamental component of cellular mem-

branes, also exert several essential and critical roles in
cellular functions including energy storage, signal trans-
duction, formation of membrane bilayer and cellular
barriers. The metabolism of lipid is indicated in numer-
ous human diseases, such as Alzheimer’s disease, dia-
betes, obesity, atherosclerosis and several types of
respiratory diseases. There are eight major categories of
lipid types based on their structures: fatty acid, glyceroli-
pid, saccharolipid, polyketide, sphingolipid, sterol lipids,

prenol lipid and glycerophospholipid. Although abnor-
mal lipid metabolism has been shown to result in cystic
fibrosis and lung injury published by Ollero’s and Goss’
research groups, respectively [41, 42], its potential role
in pathology of IPF remains unclear.
In this study, analysis of lipid profile from 22 IPF patients

and 18 control subjects revealed the characterization of
lipid composition. The glycerophospholipids (GPs) appears
to be the important biological molecules for the backbone
of cellular membranes. Besides an integral component of
biomembranes, GPs also seem to be a reservoir of a large
amount of many bioactive mediators [43], which are pro-
duced by the reaction of phospholipases on GPs. GPs can
be further divided into different categories including glycer-
ophosphoglycerols (PGs), glycerophosphatidic acids (PAs),
glycerophosphoinositols (PIs), glycerophosphoserines (PSs),
glycerophosphoethanolamines (PEs) and cardiolipin (CLs).
In our study, 2 CLs, 2 PAs, 13 PCs, 2 PEs, 1 PIs, and 4

PSs were identified as unique lipids of IPF patients based
on VIP scores (Table 2). The levels of all screened GPs
was decreased in IPF patients compared to the control
subjects. This phenomenon may be due to the fact that
PG is a precursor of CL biosynthesis and PA is the critic
substrate for biosynthesis of PI, PG, PE, and PC. A pre-
vious TLC-MALDI/TOF-based metabonomics study dis-
played significantly decreased plasma PCs in cystic
fibrosis patients, including PC(P-40:1), PC(38:6),
PC(38:5), PC(38:4), PC(38:2), PC(38:0) and PC(36:5)
[44]. However, using electrospray ionization tandem
mass spectrometry (ESI-MS/MS)-based metabonomics,
Marien et al. showed an increase in non-small cell lung
cancer of PI(38:3), PI(40:3), PI(38:2), PS(32:0), PS(36:4),
PS(36:1), PS(40:2), PS(38:1), PS(34:0), PS(40:1), PS(38:5),
PS(34:2) and PS(38:4), compared to normal lung tissues
[45]. Increasing evidence implicates that GPs biomarkers
were several in agreement with abnormal GPs metabol-
ism found in above mentioned lung disease and IPF
model. This result indicated that GPs with top scores
could be used as potential biomarkers for IPF.
Our study identified 159 glycerolipids in IPF patients

and 30 out of these 159 have the capacity to differentiate
IPF patients from control subjects (VIP > 1, Table 2).
Glycerolipids possess long chain fatty acids in ester link-
age to the glycerol backbone and were classified into
two major groups: diacylglycerol (DG) and triacylglyc-
erol (TG), which are the most abundant lipids found in
circulating plasma [46]. For example, all six DGs out of
30 glycerolipids showed similar tendencies to increase in
the plasma from IPF patients with variable magnitudes.
Interestingly, 9 out of 24 TGs displayed increased levels
in IPF patients compared to control subjects. A previous
study demonstrated that glycerolipids were significantly
reduced in lung tissues of mice, which lacked the p53
oncogene [47]. This result indicates that the abnormal

Table 3 Differences in the lipid levels of eight-promising biomarkers
under the influence of gender, smoking, and disease status. The
statistical significance was determined by Mann-Whitney U-test

No. Gender/P-value Smoking/P-value Disease status/P-value

R7 0.92 0.92 0.65

R9 0.51 0.51 0.91

R13 0.81 0.16 0.17

R16 0.40 0.40 0.84

R17 0.85 0.43 0.30

R21 0.96 0.17 0.15
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function of glycerolipid was associated with lung disease.
Further investigation of the exact roles of glycerolipids
in IPF patients would be beneficial.
We detected 47 sphingolipids (SLs) by UPSL-QTOF-MS/

MS in plasma samples and found that 4 out of them can
distinguish the IPF patients from control subjects. 4 types
of SLs (GalCerd18:1/26:1, d18:1/20:0, d16:1/18:1, d17:1/
24:0) significantly decreased in plasma of patients with IPF.
SLs are ubiquitous cellular membrane components that are
implicated in multiple cellular processes including autoph-
agy, apoptosis, differentiation and cell division [48]. Cer-
amide is generated from either sohingomyelin or de novo
sphingolipids synthesis [49] and its upregulation has been
found in chronic-obstructive pulmonary disease [50]. In
contrast, our results showed decreased SLs serum level in
IPF patient, which could be due to the differences between
different respiratory diseases. In the future, we will compare
SLs levels in serum and bronchoalveolar lavage fluids be-
tween respiratory diseases, such as COPD and pneumonia.
Although it remains to be equivocal whether differences
exist in SLs levels between IPF and other respiratory dis-
eases, our data have provided a direction for future investi-
gation into implications of these SLs in IPF patients.
Moreover, this study identified 46 kinds of serol lipids

and 20 kinds of fatty acids. 3 kinds of 46 serol lipids and
1 kind of 20 fatty acids were considered as potential bio-
markers. Fatty acids are the most important class of lipids
and function as precursors of various bioactive lipid mole-
cules. In our study, fatty acid (E,E)-3,7,11-Trimethyl-
2,6,10-dodecatrienyl dodecanoate was shown to be posi-
tively correlated with IPF and may distinguish IPF patients
from control subjects. Three (3-Deoxyvitamin D3,16:1
Stigmasteryl ester, and 20:1-Glc-Sitosterol) out of 46 sterol
lipids identified have been shown to correlate with the
IPF. Other studies have shown that plasma cholesterol
level was significantly increased in diet-induced hyperlipi-
domic rats [51], and cholesteryl ester apparent lipid
molecular species have high sensitivity, specificity and ac-
curacy in the diagnosis of prostate cancer [10]. Further
validation of the specificity of these lipid molecules in IPF
patients among respiratory disease would be desirable.
Furthermore, we investigated lipid molecules of 12

metabolites possessing close correlations with IPF dis-
ease. 6 of them showed higher sensitivity and specificity
for identifying IPF patients from control subjects ROC
analysis (Fig. 3). Previous study has demonstrated that
age, gender, and smoking status can affect plasma lipid
metabolite levels in healthy adults [52, 53]. The impact
of gender and smoking on 6 promising biomarker levels
were determined in this study and no correlation was
found (Table 3). Further validations on whether the 6
identified promising biomarkers has the increased ability
to discriminate IPF objects from healthy controls or
other respiratory disease are highly suggested.

For the analysis of IPF patients and biomarkers, the
potential defect in this study was the small sample size.
Another limitation is the lack of a longitudinal study,
which made it impossible to observe the clinical impact
of the present discovery as no treatment responses can
be assessed. Although we have identified promising lipid
biomarkers in this study, further validations are neces-
sary to evaluate the specificity of the identified bio-
markers for IPF diagnosis. Then, further longitudinal
multicenter studies would contribute more to evaluate
the real value of lipid biomarkers as diagnostic and prog-
nostic tools. In addition, the lipid biomarkers identified
in this study should be compared with known diagnostic
and prognostic biomarkers in the future, such as KL-6,
SP-A, SP-D. This will provide an insight into a better
understanding of the diagnostic and prognostic utility of
identified lipid biomarkers. Lastly, more specific lipido-
mics analyses of these lipid changes in IPF will probably
help to better understand the IPF pathology and may
contribute to future development of novel therapeutic
targets.

Conclusions
In conclusions, our study has yielded important informa-
tion regarding lipid metabolism in IPF patients and pre-
sents the first identification of promising potential
biomarkers for the diagnosis of IPF. Our results demon-
strate that individual lipid molecules have the ability to
differentiate IPF from controls. Implications for future
studies include validation of the accuracy of biomarkers
to diagnose IPF and investigation in their IPF-specificity
compared to other respiratory diseases, such as asthma,
COPD, and infective pneumonia.
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