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Abstract

Background: Bronchial provocation is often used to confirm asthma. Dyspnea sensation, however, associates poorly with
the evoked drop in FEV;. Provocation tests only use the large airways parameter FEV;, although dyspnea is
associated with both large- and small airways dysfunction. Aim of this study was to explore if adenosine 5
monophosphate (AMP) and adenosine evoke an equal dyspnea sensation and if dyspnea associates better with large
or small airways dysfunction.

Methods: We targeted large airways with AMP and small airways with dry powder adenosine in 59 asthmatic (ex)-
smokers with 25 packyears, 14 + 7 days apart. All subjects performed spirometry, impulse oscillometry (I0S), and Borg
dyspnea score. In 36 subjects multiple breath nitrogen washout (MBNW) was additionally performed. We analyzed the
association of the change (A) in Borg score with the change in large and small airways parameters, using univariate
and multivariate linear regression analyses. MBNW was analyzed separately.

Results: Provocation with AMP and adenosine evoked similar levels of dyspnea. AFEV; was not significantly associated
with ABorg after either AMP or adenosine provocation, in both univariate and multivariate analyses. In multivariate
linear regression, a decrease in FEF,s_75 during adenosine provocation was independently associated with an increase
in Borg. In the multivariate analyses for AMP provocation, no significant associations were found between ABorg and
any large or small airways parameters.

Conclusion: AMP and adenosine induce equally severe dyspnea sensations. Our results suggest that dyspnea induced
with dry powder adenosine is related to small airways involvement, while neither large nor small airways dysfunction
was associated with AMP-induced dyspnea.

Trail registration: NCT01741285 at www clinicaltrials.gov, first registered Dec 4th, 2012.
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Background

Airway hyperresponsiveness (AHR) is a distinct asthma
characteristic. Bronchial provocation tests can be used
to assess AHR, can help to diagnose asthma and monitor
asthma control [1]. However, the patient’s dyspnea percep-
tion associates poorly with the provocation test [2]. In clin-
ical practice, patients often experience dyspnea before the
provocative agent causes the forced expiratory volume in
the first second (FEV}) to drop 20% [3]. On the other hand,
others experience no dyspnea even when the FEV; has
dropped more than 20% [4]. A provocation test is based on
the FEV;, which is believed to be a marker for the larger
airway [5]. However, dyspnea sensation is associated with
both large- and small airways dysfunction [6—8]. To evalu-
ate the small airways, for example, the forced expiratory
flow between 25 and 75% of the expiration (FEF,5_75) or
the difference in resistance between 5Hz and 20 Hz
(R5-Ryp) measured with impulse oscillometry (I0OS) can
be used [5]. Provocation tests with subsequent IOS mea-
surements have suggested that dyspnea induced with a
provocative agent corresponds better to small- than to
large airways dysfunction [3, 9, 10].

Provocation tests can be performed with either direct
or indirect acting agents. Direct stimuli, such as histamine
and methacholine, stimulate the airway smooth muscle,
resulting in airway contraction [11]. Indirect stimuli, on
the other hand, induce the release of mediators from in-
flammatory cells, such as histamine, leukotrienes, and
prostaglandins causing airway contraction [12]. Examples
of indirect stimuli are mannitol, nebulized adenosine 5'-
monophosphate (AMP), and dry powder adenosine. The
well-established AMP is dose restricted (as AMP becomes
insoluble above 320-400 mg/mL) [13], whereas mannitol
and the newly available dry powder adenosine are not
[14]. AMP and dry powder adenosine are well tolerated by
patients [15], but mannitol evokes discomforting cough
[16, 17]. AMP and dry powder adenosine appear to act via
the same indirect pathways, but can consist of differently
sized particles. Nebulized AMP commonly has a mass
median aerodynamic diameter (MMAD) between 5.1-
8.5um [18], depending on the nebulizer settings and
AMP concentration [18, 19]. Dry powder adenosine, on
the other hand, can be produced with an MMAD as small
as 2.6-2.9 um [20], with a much smaller distribution in
particle size which is independent of the dose [20].
Therefore, dry powder adenosine was postulated to
reach the small peripheral airways to a larger extent
compared to nebulized AMP, especially when inhaled at
a low flow [21]. Thus, to target the small airways specif-
ically, without a dose restriction and cough, adenosine
may be valuable.

In this study we evaluated whether there is a difference
between the perception of dyspnea induced with the as-
sumed small airways trigger dry powder adenosine or the

Table 1 Baseline characteristics
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Gender (M/F)

Age (years)

BMI (kg/m?)

Smoking status (Current/Ex)
Number of packyears (years)
Adenosine provocation (pos/neg)
Positive Adenosine (mg)

AMP provocation (pos/neg)
Positive AMP (mg/mL)

Borg score (points)

FEV, ()

FEV, percentage of predicted (%)
FVC (L)

FVC percentage of predicted (%)
FEV1/FVC (%)

FEF,s

FEF,5 percentage of predicted (%)
FEFso

FEFso percentage of predicted (%)
FEF75

FEF,5 percentage of predicted (%)
FEF2575

FEF,5_,5 percentage of predicted (%)
Rs (kPa sL™)

Roo (kPasL™)

Rs-Roo (kPa sL™ )

AX (kPaL™")

Xs (kPa sL™")

Fres (571)

LCly 5967

LClsg,®

Scond”

a
Sacm

24/35
47.0 (37.0-55.0)
268 (23.1-314)
30/29

16.8 (11.0-26.0)
45/14

3.11 (0.87-6.38)
40/19

14.67 (4.7-44.88)
0.0 (0.0-2.0)
293 (2.36-3.44)
85 (74-96)

4.14 (3.52-4.94)
105 (94-116)

70 (62-77)

4.86 (3.46-6.42)
72 (48-96)

235 (1.70-3.27)
51 (36-65)

0.67 (046-1.14)
36 (25-56)

1.79 (1.30-2.74)
49 (35-65)

0.53 (042-0.67)
042 (0.35-0.47)
0.08 (0.04-0.22)
0.64 (0.24-1.82)
-0.13

9.27 (860-11.28)
6.22 (5.76-7.37)
0.04 (0.02-0.06)

4(0.10-0.19)

Data is presented as count or median (inter quartile range (IQR)). pos positive
response, < 20 mg for adenosine and < 160 mg/ml for AMP; neg negative
response, > 20 mg for adenosine and > 160 mg/ml for AMP, FEV; forced
expiratory volume in the first second, FVC forced vital capacity, FEF,s forced
expiratory flow at 25% of FVC, FEFs, forced expiratory flow at 50% of FVC,
FEF,s forced expiratory flow at 75% of FVC, FEF,s_,5 forced expiratory flow at
25 to 75% of FVC, Rs resistance to 5 Hz, R, resistance to 20 Hz, Rs-Ry
difference in resistance to 5 Hz and 20 Hz, AX reactance area, X5 reactance to
5 Hz, F,.s resonance frequency, LC/ lung clearance index, S ,,s ventilation

heterogeneity of the conducting airways, S, ventilation heterogeneity of the
acinar airways. * = multiple breath nitrogen washout (MBNW) was measured in

36 subjects

(- 0.22- -0.09)
16.78 (12.33-21.83)

assumed larger airways trigger nebulized AMP. In addition,
we evaluated for both triggers if the perception of dyspnea
during a provocation test is more closely associated to
changes in large- or small airways function.
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Methods

Study design and patients

This study was performed with baseline data from the
previously published OLiVIA study (clinical trial number:
NCT01741285, www.clinicaltrials.gov) [22]. Included sub-
jects were asthmatics (doctor’s diagnosis), current or
ex-smokers (>5 pack years), aged between 18 and 65
years, and all had a preserved lung function (FEV; >
50%predicted and > 1.2 L). Excluded were subjects with a
recent (< 6 weeks) exacerbation or upper airway infection,
females who were pregnant or lactating, and subjects with
clinically unstable concomitant diseases. The screenings
phase of the OLiVIA study incorporated two provocation
tests. First an AMP provocation and 14 + 7 days later a dry
powder adenosine provocation, performed after a washout
period of four to six weeks for asthma maintenance ther-
apy and eight hours for short acting [2-antagonists
(SABAs). In the Olivia study only subjects with hyperre-
sponsiveness to adenosine (>20% drop in FEV; on <20
mg adenosine) were included. In the current study, all
subjects who performed both provocation tests were ac-
cepted, on condition that they experienced dyspnea
(increase in Borg > 1) evoked by the challenge.

Measurements

Provocation tests

Wet nebulized AMP (MMAD 5.1-8.5 um) [18] was ad-
ministered in doubling concentrations ranging from 0.04
to 320 mg/mL. The AMP solutions were inhaled during
two minutes of tidal breathing, without a breath-holding
period, using the APS Pro System (CareFusion) with the
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SideStream nebulizer (Philips Respironics) at an output
rate of 0.13 mL/min. Consecutive concentrations were
inhaled at five-minute intervals until the concentration
caused the FEV; to drop >20% (PC,) or the highest
concentration was administered.

Dry powder adenosine (MMAD 2.6-2.9 um) [20] was
administered in doubling doses of 0.04 to 80mg. The
powder was inhaled from functional residual capacity
(FRC) to total lung capacity (TLC) at a low flow rate
of 20 30L/min guided by an inspiratory flow meter,
as described previously [23]. After each inhalation
subjects held their breath for 10s at TLC to allow for
optimal airway deposition [24]. The procedure was re-
peated at three-minute intervals until the adminis-
tered dose evoked a>20% drop in FEV; (PD,y) or the
highest dose was administered.

Pulmonary function tests

Before and after each provocation test pulmonary
function tests were performed. In all subjects spirom-
etry and IOS measurements were performed to obtain
parameters for large (i.e. FEV;, Ry) and small airways
(i.e. FEFy5_75, Rs5-Ryg), using the classification from
the review by Van der Wiel et al. [5]. Due to avail-
ability of the measurement device, multiple breath ni-
trogen washout (MBNW) was only measured in a
subset of subjects in one of the centers. MBNW pro-
vided the index for the ventilation heterogeneity of
the acinar (S,.,) and conductive airways (Sconq), and
the lung clearance index (LCI).

A Borg AMP

rho = 0.56, p<0.001

o
0 ' 60—
2

3 4

5 6 7 8 9 10
A Borg Adenosine

Fig. 1 Scatter plot of correlation between change(4) in Borg Adenosine and Borg AMP
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Fig. 2 Comparison of dry powder adenosine to AMP provocation. a. the change in Borg dyspnea score (ABorg), b. the change in the forced
expiratory volume in 1s (AFEV,), c. the change in the resistance of the respiratory system to 20 Hz (AR,), d. the change in lung clearance index
reaching 2.5% of the starting nitrogen concentration in the lung (ALCl,sq), €. the change in the lung clearance index reaching 5% of the starting
nitrogen concentration in the lung (ALClse), f. the change in ventilation heterogeneity of the accinar airways (ASacin)
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Dyspnea score

Before and after the provocation test dyspnea was assessed
with the Borg dyspnea score [25], scoring dyspnea sensa-
tion from 0 = ‘no dyspnea at all’ to 10 = ‘maximal dyspnea’.

Statistical analysis

All analyses were performed on the change (A) in a param-
eter induced by the provocation test; calculated by subtract-
ing the pre-provocation value from the post-provocation
value. To check if adenosine and AMP induced similar re-
sponses, we compared changes in parameters between the
two tests with a two sided Student’s paired t-test or a
two-sided Wilcoxon test, in accordance with the normality
of distribution. With Spearman’s correlation the change in
Borg score (ABorg) was univariately correlated to the
change in each parameter of spirometry, IOS and MBNW,
for both AMP and adenosine. Subsequently, multivariate
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linear regression models were constructed, to investigate
the origin of dyspnea. A large- and a small airways param-
eter from both spirometry and IOS, was selected for the
model. The parameter had to have the lowest p-value in
the univariate correlation analysis and were corrected for
co-linearity (correlation <0.7). Because of assumed clinical
relevance, gender and smoking status were added to the
model. Models were ran once without reducing or increas-
ing the amount of parameters. As MBNW was measured
in fewer subjects, a separate model was constructed
expanding the models with the MBNW parameter with
the lowest p-value.

Results

Study population

For this study 77 subjects were screened. However, 18
subjects were excluded as they were unable to perform
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Fig. 3 Dry powder adenosine: Spearman'’s correlations to change in Borg dyspnea sensation (ABorg). a. the change in the forced expiratory
volume in 1's (AFEV,), b. the change in forced expiratory flow at 25% of forced vital capacity (FVC) (AFEF,s), c. the change in forced expiratory
flow at 75% of FVC (AFEF,s), and d. the change in forced expiratory flow at 25 to 75% of the FVC (AFEF,5_;5)
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spirometry or a provocation test adequately (n=05),
complete the medication washout period (n=38), had
chronic non-asthmatic respiratory diseases (n=2), or
had other unstable non-respiratory diseases (n = 3) [22].
A total of 59 subjects underwent both provocation tests
of which 36 performed a MBNW test. Baseline charac-
teristics are shown in Table 1.

Comparison of adenosine and AMP provocation

Provocation with adenosine and AMP evoked a decreases
in FEV; of 234 + 8% and 21.1 + 8%, respectively. The sever-
ity of dyspnea evoked with adenosine and AMP was not
significantly different, with an increase in Borg of 3.95 + 2.1
and 3.77 £2.1 points, respectively (p=0.65). Spearman’s
correlation between ABorg after adenosine and ABorg after
AMP was moderate (rho 0.56, p <0.001) (Fig. 1). AMP
provocation evoked a greater increase in Ry (p=0.04)
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compared to adenosine, while adenosine evoked a
greater increase in LCly54 (p=0.03) and S,un
(p=0.01) (Fig. 2). An overview of all comparisons is
shown in (see Additional file 1: Table S1).

Univariate associations with ABorg

In the univariate analyses, ABorg for provocation with
adenosine was significantly correlated with AFEFs
(Ls™1), AFEF,s (Ls '), and AFEF,s -5 (Ls™') and
showed a trend toward an association with the
AFEF5, (Ls™') (Fig. 3). The ABorg for provocation
with AMP was significantly associated with AAX (kPa
L™Y) and AXs (kPa sL™') and there was a trend to-
wards a correlation with AFEV; (L) and ARs-Ry
(kPa sL™') (Fig. 4). Results of all correlation analyses
are shown in (see Additional file 1: Table S2).
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Multivariate associations with ABorg

Spirometry-10S models

The multivariate model for adenosine included AFEV; (L),
AFEF,s -5 (Ls™ 1), ARy (kPa sL™') and ARs-R, (kPa sL™1)
(Table 2). This model showed an independent signifi-
cant, negative association of AFEF,5 ;5 (Ls~ 1 with
ABorg (R*=20.9%). The model for AMP included
AFEV; (L), AFEFs, (Ls™ '), ARy (kPa sL™'), and AXs
(kPa sL™') (Table 2) and showed no independent as-
sociations to ABorg (R? = 4.3%).

Spirometry-I0S-MBNW models

In the subgroup analysis incorporating MBNW data,
AS_onq Was added to the adenosine model (Table 2). The
result shows that ABorg had the best association with
AFEF,5_55 (kPa sL™%), yet not significant (p = 0.09). The
model incorporating AS.,,q had an improved R? (R*=
26.5%). The AMP model with MBNW incorporated
ALClI5y, (Table 2), which shows no independent associ-
ation to ABorg (R* = 5.4%).

Table 2 Multivariate models predicting ABorg in AMP and
adenosine provocation

AMP

A. B.

B (p-value) B (p-value)
Gender 0.25 (0.78) 0.55 (0.62)
Smoking status —0.11 (0.90) —0.23 (0.87)
AFEV, (L) —0.97 (0.62) -0.74 (0.72)
A FEFgo (Ls™ ) 0.50 (0.54) 0.60 (0.48)
A Ry (kPa sL™) —2.00 (0.76) —1.01 (0.88)
A Xs (kPa sL™") -0.64 (0.67) - 069 (0.65)
A LClso, 0.22 (0.65)

Adenosine

A. B.

B (p-value) B (p-value)
Gender -0.83 (0.37) -0.81(0.37)
Smoking status 0.32 (0.65) 045 (0.51)
A FEV, (L) 0 (043) 0.98 (0.60)
A FEFss 55 (Ls™) —2.18 (0.04) —1.82 (0.09)
ARy (kPasL™) -828 (0.11) —6.53 (0.20)
A Rs-Ryp (kPa sL™ ) 261 (0.27) 320 (0.18)
A Scond 14.56 (0.16)

A. The models based on all subjects and B. the models incorporating multiple
breath nitrogen washout (MVBNW). A = change (post-pre); FEV, = forced
expiratory volume in the first second; FEFs, = forced expiratory flow at 50% of
FVGC; FEF,s_75 = forced expiratory flow at 25 to 75% of FVC; Ryo = resistance to
20 Hz; X5 = reactance to 5 Hz; Rs-R,, = difference in resistance to 5 Hz and 20
Hz; LClsq, = lung clearance index at 5%; Scons = ventilation heterogeneity of the
conducting airways
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Discussion

We found that dry powder adenosine and AMP evoke
equal increases in dyspnea sensation, with a similar de-
crease in FEV;. However, during adenosine and AMP
provocation, the increase in dyspnea sensation was
differentially associated with large- and small airways
dysfunction. The only independently association with
dyspnea induced by dry powder adenosine was the de-
crease in FEF,5_75, whereas dyspnea induced by AMP
was not associated with changes in either large- or
small airways dysfunction.

Our aim was to selectively target the small airways
with dry powder adenosine. Therefore, we expected that
dyspnea induced by dry powder adenosine would associ-
ate primarily with small airways parameters. Our find-
ings were partly in line with this as we found the
increase in Borg dyspnea score after inhalation of adeno-
sine to associate with the decrease in FEF,5_-5, both in
the univariate and multivariate analysis. However, the
adenosine-induced change in other small airways param-
eters, such as Rs-Ryg, Scond and S,ein, did not associate
with ABorg. This was in contrast to our expectations, as
these parameters are considered to be measures of the
more peripheral small airways. A possible explanation
could be that the measurements provide different infor-
mation, yet there is no gold standard to determine which
parameter is most accurate. Another possible explan-
ation could be that the adenosine did not reach the
more peripheral small airways even though it was de-
signed to reach the small airways, consist of relatively
small particles (MMAD of 2.6-2.9 um) [20], and was in-
haled with a low flow of 30 L/min [21]. Unfortunately
we lack information on the exact deposition as radiola-
beling for adenosine was not performed and our conclu-
sions are thus based on assumed differential deposition.

With respect to AMP-induced dyspnea, multivariate
analysis showed no large or small airways parameters
that independently associated with ABorg. This may sug-
gest that other factors than airway caliber or resistance
play a role in the sensation of induced dyspnea. AMP
acts on adenosine receptors which are located on various
inflammatory cells including mast cells, eosinophils, and
neutrophils, and their activation induces a cascade
resulting in airway contraction [12]. Adenosine receptors
are also found on afferent nerve endings [26]. It could
be speculated that activation of afferent nerve endings
plays a role in the dyspnea sensation after inhalation of
AMP, independent of the presence of airway contraction.
This activation may be direct or indirect through bron-
chial interstitial edema. In the context of direct activation,
the findings of Burki et al. [27] are of interest. They ad-
ministered intravenous adenosine to six asthmatic and six
healthy subjects. Both groups reported a significant in-
crease in dyspnea, with a higher intensity of the dyspnea
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in asthmatics. The FEV}, however, remained unchanged,
indicating the absence of airway constriction. Based on
these observations, they concluded that afferent nerve
endings may be involved in the adenosine-induced
sensation of dyspnea, which in asthmatics might be
sensitized due to inflammation. In the context of indirect ac-
tivation, interstitial edema may arise when the adenosine-in-
duced inflammatory response induces alveolar-capillary
leakage [28], which triggers the J-receptors to induce dys-
pnea sensation [29]. This, combined with the knowledge
that afferent nerve endings are mainly seen in the upper and
central airways [30], where we assume AMP primarily de-
posits, supports our speculation.

Although dry powder adenosine and AMP provocation
may induce dyspnea through different processes, the de-
gree of dyspnea after the final dose was not different. In
addition, both tests were well tolerated and, apart from
dyspnea, only led to minor cough in some subjects. This
confirms previous findings in a small proof of concept
study, that the relatively new adenosine provocation test
is well tolerated [23].

We only included current and ex-smokers with
asthma. It is therefore unclear whether these findings
can be extrapolated to never-smoking asthmatics, as pre-
vious studies have shown a decreased dyspnea perception
attributed to smoking, in asthmatics [31]. Never-smoking
asthmatics may have had greater increases in dyspnea as a
result of the provocations, but what this would have done
to the association of dyspnea to large- and small airways
parameters cannot be speculated.

Conclusion

Our study shows that provocation with dry powder ad-
enosine and AMP evoke similar levels of dyspnea. Dys-
pnea sensation evoked with dry powder adenosine shows
small airways involvement independent of large airways
involvement, while AMP evoked dyspnea associated with
neither large- nor small airways dysfunction. This may in-
dicate that dry powder adenosine and AMP evoke dys-
pnea via different processes.

Additional file

Additional file 1: This document contains supplementary Tables ST and
S2, as referred to in the text. Table S1 is The change (post - pre) in all
pulmonary function parameters evoked by the provocation. Table S2
shows Spearman'’s univariate correlation of the change in Borg dyspnea
score with gender, smoking status, and all pulmonary function
parameters. (DOCX 27 kb)
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AHR: Airway hyperresponsiveness; AMP: Adenosine 5-monophosphate;

AX: Reactance area; FEF,s: Forced expiratory flow at 25% of FVC; FEF,s_

,5: Forced expiratory flow between 25 and 75% of the expiration;

FEFso: Forced expiratory flow at 50% of FVC; FEF,s: Forced expiratory flow at
75% of FVC; FEV;: Forced expiratory volume in the first second;
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FRC: Functional residual capacity; FVC: Forced vital capacity; IOS: Impulse
oscillometry; LCl: Lung clearance index; MMAD: Mass median aerodynamic
diameter; PC,o: Provocative concentration causing the FEV; to drop 220%;
PD,g: Provocative dose causing the FEV; to drop 220%; Ryo: Airway
resistance to 20 Hz; Rs: Airway resistance to 5 Hz; Rs-R.o: Difference between
airway resistance to 5Hz and 20 Hz; SABA: Short acting f3;-antagonists;
Sacin: Ventilation heterogeneity of the acinar airways; Scong: Ventilation
heterogeneity of the conductive airways; TLC: Total lung capacity;

Xs: Reactance to 5 Hz; A: Change; pre-provocation minus post-provocation
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