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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is a common lung disorder characterized by persistent
and progressive airflow limitation as well as systemic changes. Metabolic changes in blood may help detect COPD
in an earlier stage and predict prognosis.

Methods: We conducted a comprehensive study of circulating metabolites, measured by proton Nuclear Magnetic
Resonance Spectroscopy, in relation with COPD and lung function. The discovery sample consisted of 5557
individuals from two large population-based studies in the Netherlands, the Rotterdam Study and the Erasmus
Rucphen Family study. Significant findings were replicated in 12,205 individuals from the Lifelines-DEEP study, FINR
ISK and the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) studies. For replicated
metabolites further investigation of causality was performed, utilizing genetics in the Mendelian randomization
approach.

Results: There were 602 cases of COPD and 4955 controls used in the discovery meta-analysis. Our logistic
regression results showed that higher levels of plasma Glycoprotein acetyls (GlycA) are significantly associated with
COPD (OR = 1.16, P = 5.6 × 10− 4 in the discovery and OR = 1.30, P = 1.8 × 10− 6 in the replication sample). A bi-
directional two-sample Mendelian randomization analysis suggested that circulating blood GlycA is not causally
related to COPD, but that COPD causally increases GlycA levels. Using the prospective data of the same sample of
Rotterdam Study in Cox-regression, we show that the circulating GlycA level is a predictive biomarker of COPD
incidence (HR = 1.99, 95%CI 1.52–2.60, comparing those in the highest and lowest quartile of GlycA) but is not
significantly associated with mortality in COPD patients (HR = 1.07, 95%CI 0.94–1.20).

Conclusions: Our study shows that circulating blood GlycA is a biomarker of early COPD pathology.
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Background
Chronic obstructive pulmonary disease (COPD) is a
progressive inflammatory lung disease and currently
the third leading cause of death worldwide [1, 2].
COPD is characterised by chronic airway inflamma-
tion, airway remodelling and airflow limitation [3]. A
reduced ratio of the Forced Expiratory Volume in 1 s
(FEV1) to Forced Vital Capacity (FVC) is a measure
of obstruction and is used to diagnose COPD even
before the onset of clinical symptoms [3, 4]. Smoking
is the most important risk factor for COPD and re-
lated to impaired lung function [2]. COPD is a com-
plex heterogeneous disease in which systemic features
beyond airflow obstruction, including systemic inflam-
mation, oxidative stress, muscle dysfunction, cachexia
and vascular pathology occur [5, 6]. Understanding
these systemic effects may give new insights into the
pathogenesis and progression of COPD but may alter-
natively yield important clues for preventive research.
Recent developments in metabolomics have made it

possible to investigate the associations between circulat-
ing metabolites and COPD. Glycoprotein acetyls (GlycA)
was found to be predictive for several chronic diseases,
among which COPD [7]. In a previous metabolomics
study using proton Nuclear Magnetic Resonance (1H-
NMR), lower levels of lipoproteins, N,N-dimethylglycine
and higher levels of glutamine, phenylalanine, 3-
methylhistidine and ketone bodies were found in the
circulation of ex-smoking COPD patients compared with
ex-smoking controls [8]. In severe COPD patients,
branched chain amino acids (BCAAs) were found to be
lower, compared with controls [8]. Interestingly, BCAAs,
3-methylhistidine, ketone bodies, and triglycerides were
negatively correlated with cachexia and positively corre-
lated with systemic inflammation [8], but these findings
have not been replicated. Another question that remains
to be answered is whether the metabolic changes are a
cause or a consequence of COPD. If the latter is true,
the metabolites may be relevant for the disease progres-
sion and prognosis.
To answer these questions, we performed a comprehensive

integrative metabolic analysis to identify plasma metabolic
measures associated with COPD and lung function levels,
defined as FEV1/FVC, using the NMR approach in a set of
large epidemiological studies, in depth characterized for gen-
etic and environmental risk factors. The discovery phase of
the study was conducted in two population-based studies in
the Netherlands, the Rotterdam Study (RS) [9] and the Eras-
mus Rucphen Family study (ERF) [10, 11]. A replication
meta-analysis was conducted in the Lifelines-DEEP study
(LLDEEP) [12], two cohorts of the FINRISK study [13, 14]
and the Prospective Investigation of the Vasculature in Upp-
sala Seniors (PIVUS) study [15, 16].

Methods
Study population
Studies included in the discovery sample
The RS is a population-based study of 14,926 people
older than 45 years, from the Ommoord area of Rotter-
dam, incorporating three independent cohorts: RS-I
(established in 1989), RS-II (2000) and RS-III (2006),
with multiple subsequent visits [9]. Participants filled in
questionnaires, underwent physical examination and
provided fasting blood samples at each visit. For this
analysis, three independent samples from different RS
cohorts were enrolled: Sample 1) visit 4 of RS-I (RS-I-4);
sample 2) a combined sample, which we collectively call
RS-E5 in this manuscript, comprising of visit 5 of RS-I
(RS-I-5), visit 3 of RS-II (RS-II-3), and visit 2 of RS-III
(RS-III-2); and sample 3) another independent set from
RS-III-2.
ERF is a population-based study from the south-west

of the Netherlands. It is a genetically isolated population
comprising 3465 living descendants of 22 couples from
the nineteenth century and their spouses [10]. The base-
line data collection was performed in 2002–2005 when
participants underwent physical examinations, provided
blood samples and completed questionnaires. A follow-
up of the participants was performed in 2015–2018,
reviewing the medical records at the general practi-
tioner’s office.

Studies included in the replication sample
LLDEEP is a sub-cohort of the large general population-
based cohort study Lifelines, which was initiated to study
genes, exposures and their interactions in the aetiology
of complex multifactorial diseases and healthy ageing
[17, 18]. LLDEEP consists of 1500 participants who reg-
istered at the Lifelines research site in Groningen be-
tween April and August 2013. These subjects gave
additional biological materials, including blood samples
for metabolite and inflammation profiling, and extensive
phenotype information [12]. Metabolic and lung func-
tion data were available for 717 LLDEEP individuals and
these subjects are included in the current study.
The FINRISK cohorts comprise cross-sectional popu-

lation surveys that are carried out every 5 years since
1972, to assess the risk factors of chronic diseases (e.g.
cardio-vascular disease, diabetes, obesity, cancer) and
health behaviour in the working age population (25–74
years of age), in 3–5 large study areas of Finland. The
FINRISK surveys are conducted by the National Institute
for Health and Welfare, THL (previously National Public
Health Institute, KTL). Extensive information from each
participant was collected at baseline via questionnaire
and health examination with blood collection. The co-
horts were followed up by linking them to national
health registers. The cohorts FINRISK 1997 (total of
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6898 participants) and an extension of FINRISK 2007,
known as DIetary, Lifestyle and Genetic determinants of
Obesity and Metabolic syndrome (DILGOM) study [19]
(total of 4600 participants) are included in our replica-
tion sample for COPD analysis.
The PIVUS study started in 2001 with the aim to inves-

tigate endothelial function as a prospective cardiovascular
risk factor in elderly subjects. A random sample of
Uppsala city residents were invited from the register of in-
habitants within 1 month following their 70th birthday.
No exclusion criteria were applied except that participants
were required to have a Swedish identification number. In
PIVUS, 1016 subjects agreed to participate, resulting in a
participation rate of 50.1% of all invited, whereof 51.5%
were female. The participants have undergone a range of
physical measurements, and given information about their
medical history, lifestyle habits and regular medication. In
addition, blood samples were drawn.

Assessment of COPD status and lung function
measurements
COPD in the RS was defined as pre-bronchodilator FEV1/
FVC < 0.7, assessed either by spirometry at the RS re-
search center or by reviewing medical histories of the par-
ticipants. Spirometry was performed in the RS by trained
paramedical personnel, according to the guidelines of the
American Thoracic Society/European Respiratory Society
(ATS/ERS). When spirometry measurements were absent
or uninterpretable, all files from specialists and general
practitioners were reviewed to set a diagnosis of COPD. In
total, this analysis included 541 incident COPD subjects
and 4407 subjects without COPD which had metabolo-
mics data available from all three RS cohorts.
For the ERF study, the doctor’s diagnosis of COPD

was confirmed by reviewing medical records based on
FEV1/FVC < 0.7, with or without medication use. If the
information on FVC was missing, the following criteria
for COPD were used: FEV1 < 80% of predicted, use of re-
spiratory medication and a COPD diagnosis mentioned
in the report of the respiratory specialist to the general
practitioner. In total, 61 incident and prevalent COPD
subjects and 548 subjects without COPD which had
metabolomics data available were included from ERF
study. For ERF participants, we did not have lung func-
tion measurements at the time of the metabolomics
measurements, so we did not include this cohort in the
FEV1/FVC analysis.
For LLDEEP, COPD was also defined as a FEV1/FVC <

0.7. Pre-bronchodilator spirometry was performed ac-
cording to the ATS/ERS guidelines using a Welch Allyn
Version 1.6.0.489, PC-based Spiroperfect with CA Work-
station. Technical quality and results were assessed by
well-trained assistants and abnormal results were re-
evaluated by lung physicians.

In the FINRISK study the COPD information was ex-
tracted based on diagnoses and reimbursement informa-
tion from the National health register, which include the
Drug Reimbursement Register, the Care Register for
Health Care, the Register for Prescribed Drug Purchases,
the Causes-of-Death Register, and the Cancer Register.
The maximum retrospective time period available for
obtaining prevalent disease events was 20 years for DIL-
GOM and 10 years for FINRISK97.
In the PIVUS study FEV1 and FVC were assessed with

spirometry using a Vitalograph Alpha spirometer (Vitalo-
graph Ltd. Buckingham, United Kingdom) according to
the American Thoracic Society recommendations [20, 21].
The best value of three acceptable recordings was used.
FEV1 and FVC expressed as percent of predicted values,
were adjusted for age, sex and height according to Heden-
ström’s formula [22, 23]. PIVUS study was included only
in the FEV1/FVC analysis, as this study does not have con-
firmed diagnosis of COPD by lung specialist.

Assessment of blood metabolites
Metabolic profiling in RS, ERF and LLDEEP was done as
part of the 4th Rainbow Project of the BioBanking for
Medical Research Infrastructure of the Netherlands
(BBMRI-NL) (https://www.bbmri.nl/omics-metabolomics/
). For all studies used in the discovery and replication
samples, to quantify the metabolite biomarkers random
selection of fasting EDTA plasma samples were used for
quantitative high-throughput 1H-NMR metabolomics
platform performed by the same company using the same
standardized quality control protocol (Nightingale Ltd.,
Helsinki, Finland). All samples were stored at − 80 °C
which ensures the biological stability. Details of the proto-
col and advantages of the NMR-based metabolomics ana-
lyses using plasma were described elsewhere [24, 25]. The
protocol describes steps for quality control and sample
preparation, data storage and spectral analyses. If metabol-
ite values were flagged to be unreliable by the quality con-
trol protocol, they were treated as missing. If distributions
of the metabolites deviated from normal, every cohort ap-
plied normalization steps as suggested by Nightingale.
Those included natural logarithm transformation and
scaling to standard deviation units. Using this method, we
were able to quantify a wide range of blood metabolite
biomarkers such as lipoprotein fractions, amino-acids,
cholesterol levels, glycerides, phospholipids, fatty acids, ke-
tone bodies and metabolites related to inflammation and
glycolysis. In total, 161 metabolites, overlapping between
RS and ERF, were used in the discovery analysis.

Statistical analyses
Association of COPD and FEV1/FVC with metabolites
Per cohort, we used transformed metabolite levels as in-
dependent variable and COPD status or FEV1/FVC as
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dependent variables in logistic and linear regression
models, respectively. The models were adjusted for age,
sex, body mass index (BMI, kg/m2), lipid lowering medi-
cation (LLM) use and smoking status (current, ex- or
never smokers). For the discovery sample, the results
from ERF, RS-I-4, RS-E5 and RS-III-2 were meta-
analysed using fixed effect models in “METAL” software
[26]. As the metabolites are known to be highly corre-
lated, we applied the method by Li and Ji [27] to assess
the number of independent metabolites. Using this
method, we calculated that for the 161 metabolites, the
number of independent tests was 45, which resulted in
the Bonferroni significance threshold of P = 0.001 (0.05/
45). Significant metabolites were further tested for repli-
cation in the meta-analysis of LLDEEP, FINRISK1997
and DILGOM studies for the COPD analysis and of
LLDEEP and PIVUS studies for the FEV1/FVC analysis.
Again, the same regression models were used for the
fixed effect meta-analysis in “METAL” software.
For significant metabolites, we calculated the odds ra-

tios per quartile of the metabolite distribution in the dis-
covery sample. To investigate the effects of smoking on
this association, we used two logistic regression models,
one adjusted for age, sex, BMI and LLM use, and a sec-
ond model additionally adjusted for smoking status
(current, ex- and never smokers). Results from each co-
hort were combined using inverse-variance weighted
fixed effects meta-analysis in “rmeta” package in R.

Exploring causality of the association between COPD and
metabolites
We have used a bi-directional approach in which we ex-
amined whether: 1) the genetic determinants of the sig-
nificant metabolites are associated with COPD and lung
function, which would lead to the conclusion that the
metabolites are most likely driving the disease; 2) the
genetic determinants of COPD are associated with sig-
nificant metabolites when the metabolites would most
likely be altered as an integral part of the disease patho-
physiology and may be biomarkers. The R package
“TwoSampleMR” was used for the two sample Mendel-
ian Randomization (MR) tests [28, 29]. We used the
genetic information from previously published genome-
wide association studies (GWAS) on metabolites (Model
1) [25] and COPD (Model 2) [30]. In brief, the genetic
score was based on the top single nucleotide polymor-
phisms (SNPs, P-value < 5 × 10− 8) with linkage disequi-
librium (LD) R2 < 0.05 within 500 kb clumping distance.
Harmonization was checked, including the strand issues
and palindromic SNPs. It resulted in eight independent
SNPs for COPD (R2 = 1.7%), and nine SNPs for GlycA
(R2 = 2.3%). Inverse variance weighted MR, Maximum
likelihood MR, MR Egger analysis and median-based es-
timator were performed to check the significant results.

Association with morbidity and mortality
We wanted to investigate whether an identified metabol-
ite in the circulation is a biomarker of early pathology
thus can be used as a predictive or diagnostic biomarker
or rather prognostic biomarker for mortality in COPD
patients. To this end, we performed an analysis in the
Rotterdam Study in which we associated identified me-
tabolite to the future risk of COPD. We determined the
relative risk by quartile of the metabolite concentration
in the circulation, using the lowest quartile as a refer-
ence. Only incident patients are included in this analysis
(whole RS sample, in total 541 case and 4407 controls);
prevalent COPD patients are excluded. To investigate
whether metabolites have utility in predicting COPD, we
constructed classical receiver operating curves (ROC)
and compared areas under the curve (AUC) [31]. To fur-
ther investigate whether the identified metabolites may
act as biomarker of the disease prognosis, we performed
a survival analysis in SPSS, similar to the previous study
by Fischer and colleagues for all-cause mortality, ignor-
ing any underlying morbidity [32]. To check whether the
metabolites associated with mortality in COPD patients,
we performed the Cox proportional hazards model in
three RS cohorts. Analyses were adjusted for age at sam-
pling, sex and smoking. We further performed a similar
analysis using four quartiles of metabolite, testing in
COPD cases and controls.

Results
Descriptive characteristics of the samples
Descriptive characteristics of all cohorts used in the analysis
are presented in Table 1. Comparing the discovery cohorts,
ERF participants were younger (mean age 49.0 ± 13.3) and
had a higher percentage of current smokers compared to the
participants of the three RS cohorts (RS-I-4 mean age 74.8 ±
6.5; RS-E5 mean age 68.4 ± 5.7; RS-III-2 mean age 62.8 ±
5.8). The RS cohorts had a higher percentage of users of the
LLM, compared to ERF (Table 1).
The mean FEV1/FVC and BMI were comparable

across the studies. Descriptive characteristics for COPD
cases and subjects without COPD separately in the dis-
covery cohorts are provided in eTable 1 in the Supple-
ment. In general, COPD subjects were older and more
often smokers compared to subjects without COPD.
Since FINRISK97 and DILGOM studies are based on
the data from National health registers, and thus do not
have minimum age entry criteria, the percentage of
COPD cases is lower compared with discovery sample,
containing elderly population.

Association of COPD and FEV1/FVC with metabolites
In the discovery sample, six plasma metabolites were as-
sociated with COPD at a significance level of 5%
(Table 2, Fig. 1).
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At nominal significance, higher levels of GlycA (odds
ratio (OR) = 1.16; P = 5.6 × 10− 4), 3-hydroxybutyrate
(OR = 1.13; P = 0.003), free cholesterol in medium high-
density lipoprotein (HDL, OR = 1.10; P = 0.045) and
acetoacetate (OR = 1.09; P = 0.047) were associated with
a higher prevalence of COPD. Higher levels of histidine
and 18:2 linoleic acid (OR = 0.91 for both, P = 0.04 and
P = 0.05 respectively) were associated with a lower preva-
lence of COPD. When considering the multiple testing
correction threshold, only GlycA was significantly asso-
ciated with COPD (P = 5.6 × 10− 4). We tested all six me-
tabolites for replication in the independent samples. The
association of higher levels of GlycA with COPD was
significantly replicated (OR = 1.30, P = 1.8 × 10− 6) in the
12,205 participants of the replication sample, after mul-
tiple testing correction.

Findings for the FEV1/FVC ratio were not consistent
over the discovery and replication studies. Adjusting for
multiple testing, we found in the discovery cohorts that
lower levels of valine (β = 0.005, P = 2.5 × 10− 4) and
higher levels of GlycA (β = − 0.005, P = 4.5 × 10− 4) were
associated with a lower FEV1/FVC ratio (Table 3, Fig. 1).
Other metabolites that reached nominal significance in

the discovery included albumin which was positively as-
sociated with FEV1/FVC, and glutamine, triglycerides in
very large HDL and phenylalanine which were negatively
associated with FEV1/FVC (Table 3, Fig. 1). Only the
association of FEV1/FVC to albumin showed nominal
significance in the replication samples (β = 0.005, P =
0.03), but none were significantly associated when con-
sidering multiple testing correction. Meta-analysis re-
sults of all metabolites tested for the association with

Table 1 Discovery population characteristics per cohort

Study Discovery cohorts Replication cohorts

ERF RS-I-4 RS-E5 RS-III-2 LLDEEP FINRISK97 DILGOM PIVUS

N 609 2777 686 1485 717 6898 4600 854

Age, mean (sd) 49.0 (13.3) 74.8 (6.5) 68.4 (5.7) 62.8 (5.8) 46.0 (14.3) 48.0 (13.1) 52.3 (13.5) 70 (0)

Women, % (n) 55.8 (340) 58.2 (1615) 57.6 (395) 57.8 (859) 56.3 (404) 51.6
(3561)

53.4
(2458)

48.2 (412)

COPD cases, % (n) 10.0 (61) 12.1 (336) 10.3 (71) 9.0 (134) 13.8 (99) 0.6 (43) 0.8 (35) NA

FEV1/FVC, mean (sd), % of all NA 0.73 (0.08),
48.8

0.76 (0.07),
91.3

0.77 (0.07),
91.9

0.77 (0.08),
100

NA NA 0.76 (0.11),
100

BMI, mean (sd) 27.2 (4.85) 27.4 (4.1) 27.8 (4.3) 27.4 (4.5) 25.4 (4.1) 26.6 (4.5) 27.2 (4.8) 27.1 (4.26)

Current smokers, % (n) 43.3 (264) 12.6 (349) 9.5 (65) 13.7 (203) 20.5 (147) 23.9
(1648)

17.6 (810) 10.2 (87)

Ex-smokers, % (n) 30.0 (183) 56.1 (1559) 57.0 (391) 50.2 (746) NA 22.9
(1577)

26.3
(1210)

41.5 (354)

Never smokers, % (n) 26.6 (162) 31.3 (869) 33.5 (230) 36.1 (536) 79.4 (570) 53.2
(3673)

56.1
(2580)

48.2 (412)

Pack-years of smoking, mean
(sd), % of alla

24.9(20.4)
72.7

24.2 (23.4),
64.7

22.0 (20.8)
66.3

19.5 (20.3)
63.8

NA NA NA NA

LLM users, % (n) 12.3 (75) 22.4 (621) 32.5 (223) 22.2 (329) 3.9 (28) 3.4 (237) 15.7 (721) 16.5 (141)

sd standard deviation, RS-E5 consists of RS-I-5, RS-II-3 and RS-III-2; a Pack-years calculated in current and ex-smokers only, so “% of all” excludes never smokers;
LLM lipid-lowering medication, NA not applicable

Table 2 Metabolites associated with COPD in the discovery and replication studies

Metabolite Discovery meta-analysis Replication meta-analysis

β SE OR P-value Directiona N β SE OR P-value Directionb N

GlycA 0.152 0.044 1.16 5.6 × 10−4 ++++ 5557 0.266 0.053 1.30 1.8 × 10−6 +++ 12,205

3-hydroxybutyrate 0.122 0.041 1.13 0.003 ++++ 5002 −0.031 0.057 0.97 0.662 − − + 12,173

Histidine −0.097 0.047 0.91 0.037 − − − − 5534 −0.153 0.063 0.86 0.020 −−− 12,200

Free cholesterol in med. HDL 0.099 0.049 1.10 0.045 + − ++ 5557 0.004 0.063 1.00 0.867 − − + 12,208

Acetoacetate 0.084 0.042 1.09 0.047 ++ − + 5551 −0.061 0.059 0.94 0.360 −−− 12,204

18:2, linoleic acid −0.095 0.048 0.91 0.049 + −−− 5546 −0.036 0.057 0.96 0.238 + − + 12,167

Model adjusted for age, sex, BMI, LLM use and smoking status; GlycA Glycoprotein acetyls, HDL high density lipoprotein, β effect size, SE standard error, OR odds
ratio; Direction - direction of the effect in individual studies; N - meta-analysis sample size; a Direction of the effect in the discovery studies in order: ERF, RS-III-2,
RS-E5, RS-I-4; b Direction of the effect in the replication studies in order: LLDEEP, FINRISK97, DILGOM; In bold: significant results (P < 0.001)
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COPD and FEV1/FVC in the discovery sample are pro-
vided in the supplementary material (eTable 4 and
eTable 5, respectively).

Exploring causality of COPD and circulating GlycA
Next, we performed a Mendelian Randomisation experi-
ment investigating the hypothesis that: 1) GlycA is in-
creasing the risk of COPD and therefore the genetic
determinants of GlycA (used as instrumental variables)
are also associated with COPD and 2) the opposite sce-
nario is true in which (pre)clinical COPD pathology in-
creases GlycA levels. The results of both models are
presented in Table 4.
The genetic risk score (GRS) for Model 1 included

nine independent SNPs (R2 = 2.3%) and yielded no sig-
nificant evidence for association (P = 0.97 for inverse
variance weighted method). In Model 2, we found that
genes associated with a higher risk of COPD are also as-
sociated with higher levels of GlycA, through the COPD
(Table 4, P = 0.00068 for inverse variance weighted
method), suggesting that COPD pathology increased
GlycA levels. The results of weighted median and
weighted mode were significant as well (P-value< 0.05).
This analysis is based on eight independent SNPs in the

GRS (R2 = 1.7%). No heterogeneity or pleiotropic effect
were detected. Leaving out either SNP did not change
the significance of the MR results. The detailed MR out-
put are shown in supplementary information.

Is circulating GlycA predictive biomarker for COPD?
Compared to the lowest quartile, those subjects in the
highest quartile of GlycA had a 1.99-fold (95% Confi-
dence interval: 1.52–2.60) higher risk of developing
COPD, after adjustment for age, sex, BMI and LLM use
(eTable 2). Smoking accounted for a part of the observed
association between plasma GlycA and COPD attenuat-
ing the OR for those in the highest quartile of GlycA to
1.74, while the association remained significant (95%
Confidence interval: 1.32–2.28). To test whether circu-
lating GlycA adds to the predictive value, we compared
the AUC curves for the models including: 1) age and sex
(AUC = 0.601); 2) age, sex and smoking (AUC = 0.670)
and 3) age, sex, smoking and circulating GlycA levels in
blood (AUC = 0.675). The AUC comparing model 2 and
1 shows that smoking is associated with an increase in
AUC by 0.069. Adding circulating GlycA increased the
AUC further by only 0.005 (eFigure 1).

Fig. 1 Top metabolites associated with COPD and/or FEV1/FVC. Colors represent standardized effect estimates of the metabolite association with
corresponding trait (COPD, FEV1/FVC). Red color means that the trait is associated with a higher metabolite concentration, while blue represents a lower
metabolite concetration. For replicated metabolites, replication P-value is shown with stars: *P< 0.05 and ***P< 0.001. HDL – high-density lipoprotein

Table 3 Top metabolites associated with FEV1/FVC - Results of the discovery and replication studies

Metabolite Discovery meta-analysis Replication meta-analysis

β SE P-value Directiona N β SE P-value Directionb N

Valine 0.005 0.001 2.5 × 10–4 +++ 3324 − 0.0015 0.0023 0.5314 −+ 1460

GlycA −0.005 0.001 4.5 × 10–4 ––– 3324 − 0.0010 0.0022 0.6438 –– 1463

Albumin 0.004 0.001 0.0047 +++ 3324 0.0045 0.0021 0.0353 ++ 1463

Glutamine −0.003 0.001 0.0097 ––– 3323 0.0029 0.0023 0.1923 ++ 1393

Triglycerides in very large HDL −0.003 0.001 0.0160 ––– 3324 0.0031 0.0022 0.1491 ++ 1469

Phenylalanine −0.003 0.001 0.0334 ––– 3324 − 0.0012 0.0023 0.5899 +− 1450

Model adjusted for age, sex, BMI, LLM use and smoking status; HDL high density lipoprotein, β effect size, SE standard error; Direction - direction of the effect in
individual studies; N - meta-analysis sample size; a Direction of the effect in the discovery studies in order: RS-III-2, RS-E5, RS-I-4; b Direction of the effect in the
replication studies in order: LLDEEP, PIVUS; In bold: significant results (P < 0.001)
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Is circulating GlycA a prognostic biomarker for mortality
in COPD?
A previous study has shown that GlycA is a predictor of
all-cause mortality in the general population [32]. We
confirm this in our current study, after adjustment for
age, sex and smoking (hazard ratio (HR) = 1.16, P =
4.39 × 10− 9) (eTable 3). The mean follow-up time in
years was 6.94, ranging from 0.04 to 15.96. We first per-
formed the analysis with continuous GlycA and then
compared mortality across the quartiles of GlycA. We
found that those in the highest quartile have 1.4-fold
(95% Confidence interval: 1.22–1.61, P = 1.64 × 10− 6)
higher risk of mortality during follow-up compared to
those in the lowest quartile (eTable 3). However, when
stratifying these analyses by COPD status, we observed
that this association is driven by controls (eTable 3; eFi-
gure 2). In COPD patients, circulating GlycA levels are
not significantly associated with mortality when studying
GlycA as a continuous variable (HR = 1.06, P = 0.32) nor
for those in the highest quartile (HR = 1.07, P = 0.70 in
COPD cases). In those without COPD, the association of
continuous GlycA to mortality is stronger and significant
(HR = 1.18, P = 1.43 × 10− 9).

Discussion
In our metabolome-wide discovery analysis, we identi-
fied 11 plasma metabolites associated with COPD or
lung function levels (FEV1/FVC) at marginal signifi-
cance. Of these 11 metabolites, only higher levels of
GlycA were significantly associated with COPD when
adjusting for multiple testing and this is the only metab-
olite we could replicate in the independent cohorts. Our
MR analysis suggested a causal relation between COPD
and higher GlycA levels in the circulation by showing
that the genetic predisposition to COPD associates with
GlycA. The GlycA level seemed to be an early biomarker
of COPD since it was associated with the incidence of

COPD, even after adjustment for smoking. Although
GlycA was found to be a predictor of mortality in the
general population [33], the metabolite did not predict
mortality in COPD patients.
GlycA is the most convincing and interesting finding

of our study. This metabolite was recently associated
with the incidence of a variety of disorders, including
COPD based on record linkage [7]. Using two
population-based cohorts, we identified new associations
with GlycA including alcoholic liver disease, chronic
renal failure, glomerular diseases and inflammatory poly-
arthropathies. The GlycA associations were for a large
part independent of that of high-sensitivity C-reactive
protein (hsCRP), but GlycA and hsCRP also share con-
tributions to mortality risk, suggesting chronic inflam-
mation as the common pathway. GlycA is shown to be a
biomarker for chronic inflammation, neutrophil activity
and risk of future severe infection, even superior com-
pared with CRP [34, 35].
The present study extends previous research by widen-

ing the number of NMR metabolites studied and we
found that GlycA is the only metabolite significantly
associated with COPD after adjusting for multiple test-
ing. Our analyses were adjusted for smoking and the as-
sociation between GlycA and COPD is thus not
explained by smoking. We used data integration ap-
proach (MR) to test the hypothesis that GlycA increases
the risk of COPD causally or rather is a bystander bio-
marker that is part of the disease pathogenesis (marker
of the disease). Our findings suggest that the latter is
more likely, as the genes associated with COPD also as-
sociate with GlycA levels. In contrast, no support was
found for the hypothesis that GlycA is a causal deter-
minant of COPD: the genes that are known to be associ-
ated with GlycA levels are not associated with the risk of
COPD. The findings of the MR are in line with the find-
ing that GlycA was not consistently associated with the

Table 4 Results of the bi-directional MR approach on GlycA and COPD

Model Exposure Outcome R2 nSNP Method β SE P-value

1 GlycA COPD 2.30 9 Inverse variance weighted 0.001 0.027 0.97

Weighted median −0.009 0.029 0.76

Weighted mode −0.028 0.039 0.49

Simple mode −0.013 0.046 0.79

MR Egger −0.140 0.147 0.37

2 COPD GlycA 1.72 8 Inverse variance weighted 0.306 0.090 0.00068

Weighted median 0.348 0.115 0.0024

Weighted mode 0.378 0.150 0.04

Simple mode 0.359 0.157 0.06

MR Egger 0.412 0.624 0.53

R2 - the explained variance in the exposure by applied genetic risk score; nSNP - number of SNPs used to construct the genetic risk score; β - the weighted effect
of the genetic risk score of exposure on outcome; SE standard error; Significance threshold = P-value < 0.05. The Egger regression is a test to check the
assumption of the instrument strength being independent of the direct effect to the outcome and should be P > 0.05
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FEV1/FVC ratio across the discovery and replication co-
horts, which suggests that GlycA is more likely increased
as an early consequence of the developed disease. This is
in line with other studies on different diseases involving
systemic inflammation. However, as many other factors,
aside from genetics, play a role in this complex disease
and blood metabolic patterns, our MR results need fur-
ther corroboration using experimental animal models to
support the causality.
Although it is known to be a marker of acute inflam-

mation, it has also been shown that it is predictive of
long-term risk of severe infection, and high levels corre-
lated with an increased risk of hospitalization and death
from septicaemia and pneumonia [34]. This is particu-
larly important for exacerbations of COPD and the prog-
nosis. In the present paper we do not find evidence that
GlycA is associated with COPD mortality. Such relation-
ship was seen for cardiovascular disease. GlycA not only
increased the risk of incident cardiovascular disease [7,
36] but was also associated with a 5-fold increased 12-
year risk of mortality in those with the highest GlycA
levels [7]. This suggests that our analysis would benefit
from increasing the sample size even more.
GlycA, is a composite NMR-based signal related to

changes in multiple circulating glycoproteins, mainly oro-
somucoids [37], which are a positive acute phase proteins,
and their concentration increases in response to systemic
tissue injury, inflammation or infection [38, 39]. Even in
apparently healthy people high GlycA was related with
elevation in many inflammatory cytokines suggesting they
may be in a state of chronic inflammatory response up to
10 years [34]. Another acute phase protein modulating the
immune response, whose deficiency has an established ef-
fect on COPD pathogenesis, is alpha 1-antitrypsin (AAT).
It is found that although alpha-1-acid-glycoprotein had a
strongest correlation with GlycA, it was the AAT variation
that had the most predictive properties for morbidity and
mortality for many different diseases [39]. Moreover, pro-
tein haptoglobin, also included in GlycA signal, was esti-
mated to be the strongest predictor of chronic lower
respiratory diseases of all proteins included in this signal
[39]. GlycA is mainly produced by the liver, but it is also
synthesized in myelocytes and released by activated neu-
trophils [40]. Being a type I acute phase protein, GlycA is
induced by cytokines, interleukins and tumour necrosis
factor alpha (TNFα) [41, 42], which among others stimu-
late a systemic inflammatory response in COPD patients
who lose weight [43]. GlycA is one of the main drug bind-
ing proteins, carrying basic and neutral lipophilic drugs
such as steroid hormones or medications in blood [44].
A strength of our study is that it is the largest and

most comprehensive metabolic study of COPD and lung
function. Another strength is the use of the NMR plat-
form, which is valued for being non-invasive, non-

destructive, fast and for providing highly reproducible
results [45]. A limitation of this study is our COPD def-
inition, mainly based on pre-bronchodilator lung func-
tion measurements or review of medical records and
national registries, which may have introduced some se-
lection bias. Nevertheless, we do identify and replicate
significant results which should be further corroborated
in studies with post-bronchodilator measures. Our MR
approach allowed us to gain more insight into the direc-
tion of the effects, suggesting that GlycA is an independ-
ent biomarker of COPD. Yet we have to acknowledge
that MR is limited to the knowledge of the genetic deter-
minants of both COPD and GlycA. In addition, we ac-
knowledge possible limitations of MR due to pleiotropy,
the lack of trans-ethnic studies and remaining bias due
to canalization.

Conclusions
Altogether, combining the epidemiological data with our
MR analyses suggests that GlycA is a biomarker of
COPD inflammatory pathways, present in higher con-
centrations even before the COPD is clinically present.
Further studies should investigate the possibility for
GlycA to serve as a prediction tool for COPD morbidity
and severity. Further functional studies investigating the
role of GlycA in COPD will provide more insight into
the pathogenesis, prognosis and treatment response of
patients with COPD. Our study highlights the power of
cross-omics and epidemiological data integration.
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