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Abstract

Background: Chronic obstructive pulmonary disease (COPD) is combination of progressive lung diseases. The
diagnosis of COPD is generally based on the pulmonary function testing, however, difficulties underlie in prognosis
of smokers or early stage of COPD patients due to the complexity and heterogeneity of the pathogenesis.
Computational analyses of omics technologies are expected as one of the solutions to resolve such complexities.

Methods: We obtained transcriptomic data by in vitro testing with exposures of human bronchial epithelial cells to
the inducers for early events of COPD to identify the potential descriptive marker genes. With the identified genes,
the machine learning technique was employed with the publicly available transcriptome data obtained from the
lung specimens of COPD and non-COPD patients to develop the model that can reflect the risk continuum across
smoking and COPD.

Results: The expression levels of 15 genes were commonly altered among in vitro tissues exposed to known
inducible factors for earlier events of COPD (exposure to cigarette smoke, DNA damage, oxidative stress, and
inflammation), and 10 of these genes and their corresponding proteins have not previously reported as COPD
biomarkers. Although these genes were able to predict each group with 65% accuracy, the accuracy with which
they were able to discriminate COPD subjects from smokers was only 29%.
Furthermore, logistic regression enabled the conversion of gene expression levels to a numerical index, which we
named the “potential risk factor (PRF)” index. The highest significant index value was recorded in COPD subjects
(0.56 at the median), followed by smokers (0.30) and non-smokers (0.02). In vitro tissues exposed to cigarette smoke
displayed dose-dependent increases of PRF, suggesting its utility for prospective risk estimation of tobacco
products.

Conclusions: Our experimental-based transcriptomic analysis identified novel genes associated with COPD, and the
15 genes could distinguish smokers and COPD subjects from non-smokers via machine-learning classification with
remarkable accuracy. We also suggested a PRF index that can quantitatively reflect the risk continuum across
smoking and COPD pathogenesis, and we believe it will provide an improved understanding of smoking effects
and new insights into COPD.

Keywords: Gene expression, Cigarette smoke, Chronic obstructive pulmonary disease, Random forest, Classifier,
Logistic regression, Computational scoring
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Background
Chronic obstructive pulmonary disease (COPD), a disorder
characterized by reduced maximum expiratory flow and
slow forced emptying of the lungs, is a common, costly, and
preventable disease that has implications for global health
[1]. Although cigarette smoke (CS) is a well-known risk fac-
tor for the development of COPD, smoking-related damage
manifestations, such as airway wall thickening, loss of small
airways functions, and emphysematous lung destruction,
vary in individual smokers [2]. These heterogeneities of
smoking-related manifestations lead to difficulty in investi-
gating the risk continuum across smoking and COPD.
Moreover, various next-generation products (NGPs), includ-
ing e-cigarettes and heat-not-burn tobacco products, have
been recently introduced in global markets [3, 4]. These
NGPs can potentially reduce the harms associated with to-
bacco use because of their reduced yields of toxicants, which
is attributable to the generation of aerosols without com-
busting tobacco leaves [5, 6], but the effects of long-term
use of these NGPs on human health remain controversial
[7, 8] despite previous non-clinical [9–12] and clinical stud-
ies [13–15]. Epidemiological analysis could be one of the
solutions to estimate the realistic risk of the use of such
products, but several years would be needed to reach a con-
clusion. Furthermore, epidemiological studies on a product-
by-product basis would be difficult because new products
are frequently introduced and customer choice would vary.
Considering these issues together, rapid methodology for
precisely predicting the potential risk of COPD is demanded
to estimate the realistic impact of NGPs in comparison with
combustible cigarettes.
Alternatives to animal testing have been introduced re-

cently based on the principle of 3Rs: reduction, refinement,
and replacement [16]. They have been also expected as
rapid and precise risk assessment tools because of their
high resemblance to in vivo situations [17]. In terms of
investigating the effects of airborne materials such as CS, a
three-dimensional (3D) cultured airway epithelial cell
model that functionally differentiates through an air-liquid
interface (ALI) culture is more representative, exhibiting a
pseudostratified columnar epithelial structure with beating
cilia as observed in the human airway [18, 19]. Our group
also applied these in vitro alternative testing approaches to
the investigation of biological responses to or prediction of
the risks of acute or subchronic inhalation toxicity of CS
[20–22]. In addition, the National Academy of Sciences
[23] proposed a paradigm shift in toxicology from current
animal-based testing toward the application of emerging
technologies, including “-omics” technologies. This new
paradigm would provide greater mechanistic insight into
the mechanism by which many compounds affect human
health [24]; therefore, omics technologies have also im-
proved our understanding of the complex effects of CS
[25–27]. Furthermore, these large-scale datasets may be

well suited for computational methodology to develop risk
prediction models [28]. However, the development of
computational methodologies that can quantitatively assess
human disease risk remains challenging issues.
The objective of the present study was to further under-

stand of smoking effects and COPD pathogenesis. Among
the existing omics technologies, we believe that the tran-
scriptomic approach is one of the powerful tools because of
the high quality of the data and availability of public avail-
able databases, such as ArrayExpress (https://www.ebi.ac.
uk/arrayexpress/) and the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). Therefore, we first obtained the global
transcriptomic profiles of CS exposure and COPD-related
biological response inducers in ALI-cultured 3D human
bronchial epithelial cells. However, the precise mechanism
of action of CS exposure throughout the development of
COPD has been unclear. CS-mediated oxidative stress is
believed to be the uppermost biological event in respiratory
tissues [29], and severe oxidative stress may lead to chronic
inflammation and cellular DNA damage, as observed in the
tissues of patients with COPD [30–32]. Thus, we exposed a
commercially available 3D human airway epithelia reconsti-
tuted culture (MucilAir™) to the aqueous extract (AqE) of a
reference cigarette and inducers of oxidative stress, cellular
DNA damage, and inflammatory response. We hypothe-
sized that the transcriptomes of tissues exposed to CS and
those exposed to test substances possess valuable informa-
tion related to COPD; therefore, we identified descriptive
marker genes and their potential for reflecting the risk con-
tinuum across smoking and COPD pathogenesis. In this
study, we developed an effective approach for new potential
marker identification and estimation of disease risk using
machine-learning techniques.

Methods
Test products
The 3R4F Kentucky reference cigarette (University of
Kentucky, Lexington, KY, USA) was used as the repre-
sentative conventional combustible cigarette and condi-
tioned at 22 ± 1 °C and 60 ± 3% relative humidity for at
least 48 h before use.
The oxidative stress inducers sodium hypochlorite

(NaClO) and t-butylhydroquinone (tBHQ) were purchased
from Wako Pure Chemical Industries, Ltd. (Osaka, Japan)
[33, 34]. The DNA damage inducers cisplatin and bleo-
mycin were purchased from Wako Pure Chemical Indus-
tries, Ltd. and Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan) respectively [35, 36]. Human recombinant TNFα
and IL-1β were purchased from Sigma-Aldrich (St Louis,
MO, USA) and used as inflammatory response mediators.

Cell culture
MucilAir human bronchial epithelial cultures were pur-
chased from Epithelix Sàrl (Geneva, Switzerland). The
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cultures were composed of epithelial cells from 61-year-
old Caucasian male non-smoker in MucilAir™ (batch
number: MD053701). The MucilAir™ tissues, cultured in
24-well-sized Transwell inserts (Corning, Corning, NY,
USA), were placed into 24-well plates (Corning) with
700 μL of MucilAir™ culture medium (Epithelix Sàrl)
upon arrival. The tissues were incubated at 37 °C in a 5%
CO2 atmosphere for more than 10 days for acclimation
before starting exposure [37]. The medium was changed
every 2–3 days.

Preparation of the AqE of cigarette smoke
The ISO Intense smoking regimen (ISO 20778: a 55-mL
bell-shaped puff taken over 2 s, repeated every 30 s with
blocking of filter ventilation [38]) was used for smoking
3R4F cigarettes. The AqE was prepared by bubbling the
mainstream aerosol generated from 3R4F cigarettes
through PneumaCult-ALI without the supplements (Stem-
Cell Technologies, Vancouver, BC, USA). Two 3R4F ciga-
rettes were smoked in one smoking cycle to a butt length
of 35mm with RM20H (Borgwaldt, Hamburg, Germany),
and approximately 2.0 cigarettes of 3R4F smoke were bub-
bled into 15mL of ice-cold PneumaCult-ALI without the
supplements. The supplement of PneumaCult-ALI medium
was added immediately before mixing with MucilAir™
culture medium in accordance with the manufacturer’s
instructions. The AqE was diluted with MucilAir™ culture
medium to concentrations of 0.5, 1.0, and 2.0 cigarettes/L.

Experimental design of the exposure studies
The exposure studies were performed using each test
substance and the AqE of 3R4F smoke. MucilAir™ tissue
was exposed to each test substance for 4 or 24 h at the
following concentrations: 8 and 16 μM (cisplatin), 50
and 100 μg/mL (bleomycin), 0.7 and 1.4 mM (NaClO),
20 and 40 μM (tBHQ), 20 and 40 ng/mL (TNFα), and 20
and 40 ng/mL (IL-1β). MucilAir™ tissue was exposed to
the AqE of 3R4F smoke for 4 and 24 h at 0.5, 1.0 and 2.0
cigarettes/L. Non-treated MucilAir™ tissue was used as a
control.

Transcriptomic analysis using mRNA extracted from
MucilAir tissues
Total RNA was isolated from three tissue cultures at each
time point using RNeasy (Qiagen, Hilden, Germany). The
RNA quality of the samples was rated according to the
RNA integrity number using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, USA). Microarray
analysis was conducted by Takara Bio, Inc. (Shiga, Japan)
using Human Genome U133 Plus 2.0 arrays (Affymetrix,
Santa Clara, CA, USA). Raw data were summarized using
the GC-Robust Multiarray Average in GeneSpring Ver-
sion 14.9.1 (Agilent Technologies). Data with a normalized
intensity value below the 20th percentile and coefficient of

variation ≥50% were filtered out. The filtered list was ana-
lyzed using a moderated t-test, and multiple testing
correction of the t-test p-values was performed using the
Benjamini-Hochberg FDR [39] to detect significant differ-
ences at an FDR-corrected p < 0.05 between the exposure
groups and the controls. These normalization processes
were separately performed for both the AqE- and test
substance-exposed groups to remove genes that exhibited
high coefficients of variation. Genes exhibiting significant
changes (FDR-corrected p < 0.05 and |fold change| > 1.5 in
the AqE-exposed group and FDR-corrected p < 0.05 in the
test substance-exposed groups) were defined as DEGs.
Hierarchical clusters and Spearman’s rank correlation
heatmap were generated using GeneSpring Version 14.9.1.
Transcriptomic data are available in ArrayExpress at ac-
cession number E-MTAB-7992.

Identification of descriptive genes from in vitro exposure
study
To identify the descriptive genes related to COPD, we ana-
lyzed the transcriptomic data from the in vitro exposure
studies as follows: (1) To identify the CS-inducible genes,
we analyzed the gene expression profiles of MucilAir™
exposed to the AqE from 3R4F smoke for 4 h at three
different concentrations (0.5, 1.0, and 2.0 cigarettes/L). We
compared upregulated and downregulated genes separately,
and identified 25 commonly upregulated DEGs and 25
commonly downregulated DEGs (|fold change| > 1.5, false
discovery rate [FDR]-corrected p < 0.05) from the Venn
diagrams. (2) To identify the genes associated with COPD-
related biological processes, we compared the gene expres-
sion profiles of each inducer. We extracted DEGs in each
test substance (cisplatin, bleomycin, NaClO, tBHQ, TNFα,
and IL-1β)) at each dose (low and high) and at each time-
point (4 or 24 h), and identified common DEGs between 4
and 24 h exposure at the same dose for each test substance
(time-independently perturbed DEGs). Subsequently, we
integrated all the time-independently perturbed DEGs in
each test substance, and investigated the gene expression
profile using hierarchical clustering analysis. Finally, we
extracted the dose-independently perturbed DEGs. (3) We
compared the up- and downregulated DEGs identified in
steps (1) and (2) in a Venn diagram, and ultimately identi-
fied 15 descriptive genes. Figure 2 is a graphical summary
of the results.

Data processing and classification analysis of public
microarray datasets
Three previously published datasets for bronchia (E-MTAB-
1690) and small airways (E-GEOD-20257 and E-GEOD-
8545) were obtained from EMBL ArrayExpress. Raw data
were summarized using GC-Robust Multiarray Average in
GeneSpring Version 14.9.1. The summary of sample infor-
mation is shown in Table 1. The platform for all microarray
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data was Human Genome U133 Plus 2.0 Array, which we
also used. These datasets included 68 non-smokers, 88
smokers, and 48 COPD subjects. These subjects were used
to calculate the multi-classification accuracy using the
identified genes with the RF algorithm and develop the com-
putable model using logistic regression analysis. Multi-
classification analysis using the RF algorithm were per-
formed in the R 3.5.2 statistic environment with “caret”
packages [40]. The accuracy was calculated using RF with 5-
fold cross-validation, repeated on 100 times independently.
One-way ANOVA followed by Tukey’s honest significant
difference post-hoc test was performed to compare signifi-
cant differences (p < 0.05) between groups using R software
with “multcomp” packages [41].

Individual COPD risk score prediction modeling
Normalized expression values of samples were used to
calculate the individual COPD potential risk score,
named the PRF index, as follows:
Stepwise logistic regression was performed in the R stat-

istical environment to extract the characteristic genes of
smokers and COPD subjects. We then developed a predic-
tion model with these genes using logistic regression. The
equations for estimating probabilities of smoker (PSMK)
and COPD (PCOPD) were as follows:

logit pSMKð Þ ¼ ln
pSMK

1−pSMK

� �
¼ CNSjSMK þ β1m1 þ β2m2 þ⋯þ βimi

logit pCOPDð Þ ¼ ln
pCOPD

1−pCOPD

� �
¼ CSMK jCOPD þ γ1n1 þ γ2n2 þ⋯þ γ jn j

where CNS|SMK and CSMK|COPD denote the intercepts of
each prediction model with the genes selected by compar-
ing non-smokers to smokers and smokers to COPD sub-
jects, respectively, mi or nj is the normalized expression
value of the ith or jth gene, respectively, and βi or γi denote
the regression coefficient of the ith or jth gene, respectively.
The probabilities Psmk and PCOPD were then used to com-
pute the PRF index as follows:

PRF ¼ pSMK � pCOPD
1− pSMK � pCOPDð Þ

Statistical analysis
Tukey–Kramer multiple comparison analysis was con-
ducted using JMP ver. 14.2.0 (SAS Institute, Cary, NC,

USA) to compare significant differences (p < 0.05) between
groups.

Results
Differential analysis of the gene expression profiles
related to the AqE of 3R4F smoke and stress inducers
We analyzed the gene expression profiles of MucilAir™
exposed to the AqE of 3R4F smoke for 4 h at three dif-
ferent concentrations (0.5, 1.0, and 2.0 cigarettes/L) and
identified 50 dose-independently up- and downregulated
differentially expressed genes (DEGs) (|fold change| >
1.5, false discover rate [FDR]-corrected p < 0.05) (Fig. 1a).
We also obtained the gene expression profile for each
inducer. We extracted time-independently perturbed
DEGs, and these DEGs were subjected to hierarchical
clustering analysis to identify dose-independently per-
turbed DEGs (Fig. 1b). The analysis revealed concentrated
gene clusters containing highly up- and downregulated
genes. Consequently, we merged DEGs in the AqE of
3R4F smoke and from the stress inducers, and identified
15 genes commonly up- or downregulated by the AqE of
3R4F smoke and inducers (Fig. 1c). The process of gene
identification is summarized in Fig. 2, and these genes and
their known functions and confirmation of their associ-
ation with COPD or lung function via literature reviews
using PubMed are summarized in Table 2.

Predictive performance of smoking and COPD status with
identified genes
The expression levels of the 15 identified genes were com-
pared using publicly available microarray datasets of non-
smokers, smokers, and COPD subjects (Fig. 3). Compared
with the findings in non-smokers, the expression levels of
ADM, AREG, CXCR4, CYP1B1, PHLDA1, SLC7A11,
TXNIP, and WNT5A were significantly different in COPD
subjects. In addition, compared with the findings in
smokers, the expression levels of AREG, CXCR4, and
DUSP6 were different in COPD subjects. We then pre-
dicted the accuracy of classification of smokers and COPD
subjects using these 15 genes with the random forest (RF)
classification algorithm. The 5-fold, 100 times repeated
cross-validation accuracy with the identified genes outper-
formed that for genes described by Bosse [42] based on
sensitivity and specificity values (Table 3).

Table 1 Overall summary of the publicly available datasets

Study name Study samples Age Sex Sample type

E-MTAB-1690 14 NS, 27 SMK, and 21 COPD 51.9 ± 8.69 53 male, 9 female Respiratory tract

E-GEOD-20257 36 NS, 43 SMK, and 9 COPD 42.8 ± 10.9 61 male, 27 female Small airway

E-GEOD-8545 18 NS, 18 SMK, and 18 COPD 45.7 ± 7.18 41 male, 13 female Small airway

NS non-smokers, SMK smokers, COPD COPD subjects
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Computable scoring method of potential COPD risk
To investigate the utility of the identified genes for
assessing the potential risk of COPD, we compared the
potential risk factor (PRF) indices of non-smokers,
smokers, and COPD subjects. Because of the similar
gene expression pattern between smokers and COPD
subjects, a stepwise logistic regression model was ap-
plied to extract the characteristic genes of smokers and
COPD subjects. We finally identified 11 genes (ADM,
AREG, CXCR4, EFNA1, EGLN3, FBXO32, HILPDA,
IGFBP3, SLC7A11, TXNIP, and WNT5A) as potential
descriptive marker genes for smokers and 4 genes

(AREG, DUSP6, EFNA1, and TXNIP) as potential de-
scriptive marker genes for COPD subjects. We then
calculated the logistic regression equation using the 11
and 4 genes, and the calculated parameters are sum-
marized in Table 4. We then calculated the respective
PRF indices of non-smokers, smokers, and COPD sub-
jects to verify the validity. As expected, the highest
PRF index was recorded in COPD subjects (0.56 at the
median), followed by smokers (0.30) and non-smokers
(0.02) (Fig. 4a). We also analyzed the correlations be-
tween the PRF index and both pack-years and age
(Fig. 4b), and found that there was little correlation

Fig. 1 Identifying descriptive marker genes from in vitro exposure studies. a Venn diagram of up- and downregulated genes (|fold change| > 1.5,
false discovery rate-corrected p < 0.05) following exposure to the aqueous extract of 3R4F smoke at a concentration of 0.5, 1.0, or 2.0 cigarettes/L.
b Hierarchical clustering analysis with time-independently differentially expressed genes (DEGs) (false discovery rate-corrected p < 0.05) following
exposure to each test substance. The orange box denotes up- or downregulated gene clusters. c Venn diagram of up- and down-regulated DEGs
derived from (a) cigarette smoke exposure studies and (b) test substances exposure studies. Identified 15 descriptive genes is summarized in the
right table of the Venn diagram. Cig, cigarettes

Matsumura and Ito BMC Pulmonary Medicine           (2020) 20:29 Page 5 of 13



Fig. 2 Schematic diagram for identifying descriptive marker genes. The process for identifying descriptive marker genes for multi-classification
and stepwise logistic regression analysis. Cig, cigarettes; CV, coefficient of variation; NI, normalized intensity value; NS, non-smokers; SMK, smokers;
COPD, chronic obstructive pulmonary disease subjects
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between the PRF index and pack-years (R ≈ 0.17), and
between the PRF index and age (R ≈ 0.29).

Discussion
In this study, we utilized a 3D cultured bronchial epi-
thelial tissue model, which is expected to be one of
the alternative models to animal testing. We con-
ducted exposure studies using the AqE of 3R4F smoke
and inducers of oxidative stress, DNA damage, and
inflammatory responses because these are considered
the earliest key events for chronic inflammatory lung
diseases [29–32]. To identify potential descriptive marker
genes, we extracted commonly up- and down-regulated
genes from the transcriptomes of tissues exposed to those
test substances (Fig. 2). ADM, AREG, CXCR4, CYP1B1,

DUSP6, EFNA1, EGLN3, FBXO32, HILPDA, IGFBP3,
PHLDA1, SLC7A11, TXNIP, WNT5A, and ZBED2 were
identified as commonly perturbed genes, and 10 of these
genes, as well as their coding proteins, had not previously
been identified as biomarkers for chronic inflammatory
lung disease or associated with lung function (Table 2). In
addition, these 15 genes were highly correlated with each
other (Additional file 1: Figure S1), suggesting that they
are perturbed by the same or similar mechanisms. To
verify the association of these 15 genes with COPD path-
ology, we performed RF-based multi-classification to
discriminate COPD subjects, smokers, and non-smokers
using publicly available transcriptomic data (Table 1). This
model with the 15 genes clarified patient status with mar-
ginally higher accuracy than known COPD-associated

Table 2 Known function and association with chronic obstructive pulmonary disease (COPD) for identified genes

Gene Known function of the gene product References (PMIDs)

Upregulated genes

AREG Member of the EGF family, which interacts with the EGF/TGF-alpha
receptor to promote the growth of normal epithelial cells.

Stolarczyk M, et al. (27561911), Wang J, et al. (30291869)

CYP1B1 Member of the cytochrome P450 superfamily of enzymes. High
expression is induced by cigarette smoke exposure.

Liu C, et al. (29110844), Slowikowski BK, et al. (28858732)

DUSP6 Dual-specificity protein phosphatase subfamily. It negatively
regulates MAPK superfamily proteins, which are associated with
cellular proliferation and differentiation.

–

PHLDA1 Proline–histidine-rich nuclear protein that might play an important
role in the anti-apoptotic effects of insulin-like growth factor-1.

–

SLC7A11 Sodium-independent, high-affinity exchange of anionic amino acids
with high specificity for the anionic forms of cystine and glutamate.

–

TXNIP Thioredoxin-binding protein that inhibits the antioxidative function
of thioredoxin, resulting in the accumulation of ROS and
cellular stress.

–

WNT5A Wnt family member 5A, ligand for members of the frizzled family
of seven-transmembrane receptors.

Koopmans T, et al. (27468699), Baarsma HA, et al. (27979969)

ZBED2 Zinc finger BED-type containing 2. –

Downregulated genes

ADM Preprohormone with several functions, including vasodilation,
regulation of hormone secretion, promotion of angiogenesis, and
antimicrobial activity.

Xu P, et al. (14720432), Meng DQ, et al. (24962223)

CXCR4 CXC chemokine receptor specific for stromal cell-derived factor-1. Weigold F, et al. (29566745), Karagiannis K, et al. (28804668)

EFNA1 Member of the ephrin family. Its target receptors comprise the
protein-tyrosine kinases, and it has been implicated in mediating
developmental events.

–

EGLN3 Hypoxia-inducible factor. Essential for the hypoxic regulation of
neutrophilic inflammation and it has crucial role in DNA damage
response.

–

FBXO32 Fbox protein that functions in phosphorylation-dependent
ubiquitination and subsequent proteasomal degradation.

–

HILPDA Hypoxia-inducible lipid droplet-associated protein. Stimulates
cytokine expression and enhances cell growth and proliferation.

–

IGFBP3 Insulin-like growth factor binding protein family. It prolongs the
half-life of IGFs and alters their interaction with cell
surface receptors.

–

The cited references describe the confirmation of the association of the selected genes with COPD or lung function, which were obtained by reviewing the
literature using PubMed ((“COPD” OR “Lung Function”) AND “name of each selected gene”)
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genes [42], suggesting that the 15 genes, including newly
identified potential marker genes, are closely associated
with COPD status. These newly identified biomarkers are
related to proliferation (DUSP6 [43], EFNA1 [44], IGFBP3
[45], and PHLDA1 [46]), hypoxia (EGLN3 [47] and
HILPDA [48]), redox homeostasis (SLC7A11 [49] and
TXNIP [50]), and epithelial-mesenchymal transition
(FBXO32 [51]) (Table 2). Among them, the expression
levels of AREG, CXCR4 and DUSP6 were significantly dif-
ferent between non-smokers and COPD subjects, and
these genes are known to be associated with EGFR signal-
ing, which plays a key role in the pathogenesis of COPD
[52]. AREG, an EGFR ligand generated by the ADAM17-
mediated shedding of pro-AREG proteins, stimulates the
transcription of inflammatory mediators in bronchial

epithelial cells [53]. Moreover, recent research illustrated
that AREG-mediated IL-6 secretion is enhanced in differ-
entiated bronchial cells from patients with COPD com-
pared with the findings in cells from subjects without
COPD [54, 55]. CXCR4 is associated with the recruitment
of lymphocytes to disease lesions [56]. The mRNA levels
of the CXCR4 ligand SDF-1 are reduced in mesenchymal
stem cells (MSCs) derived from bone marrow, suggesting
an impairment of the migratory capacity of MSCs. MSC
migration to disease lesions plays crucial roles in anti-
inflammatory effects and tissue repair [57, 58]. The pub-
licly available transcriptomic data used in this study were
obtained from lung biopsies; however, downregulation of
CXCR4 in COPD subjects implies attenuation of MSC
recruitment, thereby eventually accelerating inflammation

Fig. 3 Expression value of identified genes in publicly samples. The box plot presents the normalized expression values of the 15 identified genes
in publicly available samples for non-smokers (green), smokers (yellow), and chronic obstructive pulmonary disease (COPD) subjects (red). The box
plot presents the median (line) and 25th and 75th percentiles (box); the whiskers are the 5th and 95th percentiles; and the outliers are denoted
by open circles. One-way ANOVA with subsequent Tukey’s honest significant difference post-hoc analysis revealed differences between NS and
SMK or COPD (*p < 0.05) and between SMK and COPD (†p < 0.05). NS, non-smokers; SMK, current smokers; COPD, COPD subjects

Table 3 Multi-classification analysis with random forest (5-fold cross-validation repeated 100 times independently)

Gene set Original Published Extended

Pred./Truth NS SMK COPD True rate NS SMK COPD True rate NS SMK COPD True rate

NS 25.5 5.8 1.0 0.77 16.1 10.2 4.2 0.48 19.7 8.8 2.4 0.59

SMK 7.2 32.6 15.8 0.76 15.0 25.9 15.0 0.60 13.0 30.4 15.0 0.71

COPD 0.6 4.8 6.7 0.29 2.2 7.0 4.3 0.18 0.6 4.0 6.2 0.26

Classification analysis with random forest was performed using the identified 15 genes (Original) and previously published genes, including genes cited in > 10
(Published) or > 6 publications (Extended)
NS non-smokers, SMK smokers, COPD COPD subjects
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and tissue destruction. Although the direct relationship
between DUSP6 and COPD has not yet been reported,
several advanced studies demonstrated that activation of
EGFR induces DUSP6, which regulates EGFR signaling via
specific ERK1/2 inhibition [59]. Therefore, the observation
of DUSP6 upregulation in COPD subjects in this study
implies constitutive activation of the EGFR signaling path-
way. Taken together, these three genes extracted from the
transcriptome of in vitro tissues may be associated with
COPD pathogenesis via the EGFR signaling pathway, and
they are expected as novel markers of COPD.
Although the 15 genes were able to predict non-

smokers, smokers, and COPD subjects with high accuracy,
the result clearly revealed that it is difficult to discriminate
COPD subjects from smokers (Table 3). Therefore, we
provide the PRF index model based on a logistic regres-
sion method to distinguish COPD subjects from smokers.
This approach enabled the conversion of gene expression
levels to a numeral index named the PRF index (see the
formula in the Materials and Methods section). Logistic
regression is used frequently in clinical trials to calculate
the odds ratio when the risk ratio cannot be obtained dir-
ectly [60]. The PRF index is also based on the concept of
odds ratios, which indirectly estimate the risk ratio of CS
exposure. Because the gene expression profiles of smokes
and COPD subjects were similar, we first performed

Table 4 The parameters calculated via stepwise logistic
regression analysis

Estimate Std. Error Z value Pr(>|Z|)

(Intercept) NS|SMK 1.6715 0.4229 3.953 7.73E−05

ADM −2.2568 1.0247 −2.202 0.027641

AREG 2.0152 1.0407 1.936 0.052820

CXCR4 −3.1177 1.4308 − 2.179 0.029336

EFNA1 3.7889 1.9572 1.936 0.052882

EGLN3 −4.0571 1.7627 −2.302 0.021357

FBXO32 −3.8824 2.4113 −1.610 0.107376

HILPDA 3.2193 0.8100 3.974 7.06E−05

IGFBP3 −8.2992 2.3747 −3.495 0.000474

SLC7A11 −3.5355 1.2516 −2.825 0.004730

TXNIP −5.6745 1.4851 −3.281 1.33E−04

WNT5A 2.7391 0.8231 3.328 8.75E−04

(Intercept) SMK|COPD −0.8555 0.2144 −3.990 6.61E−05

AREG −1.3039 0.7058 −1.847 0.06469

DUSP6 1.4688 0.6254 2.349 0.01885

EFNA1 2.3861 0.9058 2.634 0.00843

TXNIP −0.8847 0.5167 −1.712 8.69E−02

Fig. 4 Potential risk factor calculation with publicly samples. a The box plot showing the potential risk factor (PRF) indices of non-smokers
(green), smokers (yellow), and chronic obstructive pulmonary disease (COPD) subjects (red) in publicly available samples. The box plot presents
the median (line) and 25th and 75th percentiles (box); the whiskers are the 5th and 95th percentiles; and the outliers are denoted by open
circles. One-way ANOVA with subsequent Tukey’s honest significant difference post-hoc analysis revealed differences between NS and SMK (*p <
0.05) and between SMK and COPD (†p < 0.05). b The correlations of the PRF indices with pack-years and age in smokers and COPD subjects. The
Pearson correlation coefficient (R) is shown in upper right of each image. NS, non-smokers; SMK, smokers; COPD, COPD subjects
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stepwise elimination of the 15 extracted genes to identify
important variables. We selected 11 genes as important
for distinguishing non-smokers from smokers, and 4
genes for distinguishing smokers from COPD subjects.
Interestingly, 3 out of 4 genes for distinguishing smokers
from COPD subjects (AREG, EFNA1, and TXNIP) were
also marker genes for distinguishing non-smokers from
smokers (Table 4). AREG was considered to be associated
with EGFR signaling pathway activation as described.
EFNA1 encodes a member of the ephrin family, ephrin
A1. Advanced studies suggest that these proteins play an
important role in inflammation through NF-κB signal acti-
vation [61]. Thioredoxin-interacting protein (TXNIP)
reduces the anti-oxidative function of thioredoxin by
binding to its redox-active cysteine residues [62, 63]. The
expression level of EFNA1 increased in smokers compared
with non-smokers, and was higher in COPD subjects than
in smokers (Fig. 3). On the other hand, the expression
level of TXNIP decreased in smokers compared with non-
smokers, and was lower in COPD subjects than in
smokers. These data suggest that those gene expression
levels could provide an important means of distinguishing
between smokers and COPD subjects. The PRF index was
then calculated using the normalized expression values of
the selected genes, the estimated intercept, and the regres-
sion coefficient of each gene. The PRF indices of smokers
and COPD subjects were significantly different from that
of non-smokers (Fig. 4a). Because the ages and pack-years
differed significantly between the smokers and COPD sub-
jects (Additional file 2: Figure S2A), and were moderately
correlated (Additional file 2: Figure S2B), we analyzed
the correlations of the PRF indices and the expression
values of the 15 identified genes with age and pack-
years. AREG and TXNIP exhibited weak correlations
with both pack-years (Additional file 3: Figure S3) and
age (Additional file 4: Figure S4). However, the other
genes exhibited little correlation, and notably, there
were very weak correlations between the PRF indices
and those factors. This suggests that a combination of
several genes could appropriately reflect the risk con-
tinuum across smoking and COPD pathogenesis, and
also, each individual genes used in the PRF index model
may provide further understanding of smoking effects
and new insights into COPD.
Although the PRF index does not reflect future COPD

risk, and is incapable of diagnosing COPD severity in indi-
viduals, the model may have a potential to compare the
toxicity of various tobacco products in in vitro study based
on the COPD-related biological responses. We also calcu-
lated the PRF index using MucilAir™ samples exposed to
the AqE of 3R4F smoke for 4 and 24 h (Additional file 5:
Figure S5). Although dose-dependent increases of the PRF
index were observed, the PRF index for the lowest concen-
tration of the AqE of 3R4F smoke was less than 1.0,

indicating a lower risk than observed for the air-exposed
control group. Because the pathological or morphological
changes in smokers or patients with COPD could be
caused by habitual cigarette smoking, we must examine
the variability of the PRF index in a repeated long-term
CS exposure study in a future analysis to validate the PRF
index using in vitro experimental datasets for prospective
risk estimations. In addition, it is also a reasonable next
step to calculate the PRF index in a study comparing
exposure to NGP vapor and conventional combustible
cigarette smoke to demonstrate the usefulness of the
index for the potential assessment of the relative toxicity
based on the COPD-related biological responses.
We believed our model and PRF index are useful for the

discrimination of non-smokers, smokers, and COPD sub-
jects, but there are some limitations, which must be con-
sidered further. (i) Because cigarette smoking can have
acute and eventually chronic effects, the smoking status of
the subjects is an important consideration with regard to
the gene signature (e.g., the gene expression profiles would
be different between smokers with COPD and former
smokers with COPD). However, we only found a clear
description of the smoking status of the subjects in the E-
MTAB-1690 study [64–66]. Therefore, it is possible that
our model ignored the factors related to acute phase ef-
fects in the COPD subjects. (ii) Eight substances, focusing
on three biological events, were used to identify COPD-
associated biomarker genes. Because COPD is a complex
disease, other important biological perturbations such as
apoptosis and autophagy are involved. Gene expression
profiles obtained in additional exposure studies using the
inducers of such biological events would increase the
plausibility of potential biomarker genes. (iii) We utilized
microarrays to analyze gene expression profiles in this
study; however, next-generation sequencing could poten-
tially permit a more comprehensive analysis of RNA ex-
pression profiles including non-coding RNAs. As such,
room for improvement of our methodology remains, but
our present approach suggests that mechanism-based
large-scale dataset generation combined with computa-
tional analyses is useful for biomarker identification and
risk estimation using the identified biomarker genes.

Conclusion
Our results strongly suggest that the combination of
large-scale datasets and computational modeling rep-
resents a powerful approach for identifying novel bio-
markers to further understand the smoking effects and
providing new insights into COPD. Considering that
the selected genes were originally identified in an
in vitro exposure study, the application of PRF scoring
for prospective toxicity of combustible CS and com-
parisons with NGPs in a repeated long-term exposure
study are conceivable next steps.
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Additional file 1: Figure S1. Spearman’s correlation coefficients
analysis. Hierarchical clustering of the Spearman’s correlation coefficients
of the 15 identified genes. Normalized intensity values following
exposure to the aqueous extract of 3R4F smoke were subjected to the
analysis.

Additional file 2: Figure S2. Comparison of age and pack-years
between smokers and COPD subjects. (A) The box plot showing the age
and pack-years of non-smokers (NS), smokers (SMK), and COPD subjects
(COPD) in publicly available datasets. The box plot presents the median
(line) and 25th and 75th percentiles (box); the whiskers are the 5th and
95th percentiles. The dots beyond the whiskers represent outlying data.
The histogram shows the number of subjects in each group. Tukey–-
Kramer multiple comparison analysis revealed differences between NS
and SMK (*p < 0.05) and between SMK and COPD (†p < 0.05). (2)
Correlation between age and pack-years in SMK and COPD.

Additional file 3: Figure S3. Correlation analysis of gene expression
value of each identified gene with pack-years. Correlation between the
pack-years and the normalized intensity value of each gene with all
smokers and COPD subjects. The Pearson correlation coefficient (R) is
shown in the upper right of each image.

Additional file 4: Figure S4. Correlation analysis of gene expression
value of each identified gene with age. Correlation between the pack-
years and the normalized intensity value of each gene with all smokers
and COPD subjects. The Pearson correlation coefficient (R) is shown in
the upper right of each image.

Additional file 5: Figure S5. Potential risk factor calculation with
in vitro exposure study. The potential risk factor (PRF) index ratios versus
control for exposure to the aqueous extract of 3R4F smoke for 4 and 24
h at 0.5, 1.0, and 2.0 cigarettes/L. Each value is presented as the mean
and standard deviation of three tissues. Cig: cigarettes.
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