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Abstract 

Partnership between anesthesia providers and proceduralists is essential to ensure patient safety and optimize 
outcomes. A renewed importance of this axiom has emerged in advanced bronchoscopy and interventional pul-
monology. While anesthesia-induced atelectasis is common, it is not typically clinically significant. Advanced guided 
bronchoscopic biopsy is an exception in which anesthesia protocols substantially impact outcomes. Procedure 
success depends on careful ventilation to avoid excessive motion, reduce distortion causing computed tomography 
(CT)-to-body-divergence, stabilize dependent areas, and optimize breath-hold maneuvers to prevent atelectasis. 
Herein are anesthesia recommendations during guided bronchoscopy. An FiO2 of 0.6 to 0.8 is recommended for pre-
oxygenation, maintained at the lowest tolerable level for the entire the procedure. Expeditious intubation (not rapid-
sequence) with a larger endotracheal tube and non-depolarizing muscle relaxants are preferred. Positive end-expir-
atory pressure (PEEP) of up to 10–12 cm H2O and increased tidal volumes help to maintain optimal lung inflation, if 
tolerated by the patient as determined during recruitment. A breath-hold is required to reduce motion artifact during 
intraprocedural imaging (e.g., cone-beam CT, digital tomosynthesis), timed at the end of a normal tidal breath (peak 
inspiration) and held until pressures equilibrate and the imaging cycle is complete. Use of the adjustable pressure-
limiting valve is critical to maintain the desired PEEP and reduce movement during breath-hold maneuvers. These 
measures will reduce atelectasis and CT-to-body divergence, minimize motion artifact, and provide clearer, more 
accurate images during guided bronchoscopy. Following these recommendations will facilitate a successful lung 
biopsy, potentially accelerating the time to treatment by avoiding additional biopsies. Application of these methods 
should be at the discretion of the anesthesiologist and the proceduralist; best medical judgement should be used in 
all cases to ensure the safety of the patient.
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Background
Advanced guided bronchoscopic biopsy is a minimally 
invasive method to diagnose suspicious lung lesions [1, 
2]. Guidance modalities include not only intraprocedural 

image-guided methods (e.g., augmented fluoroscopy, 
tomosynthesis-based fluoroscopic navigation), but also 
electromagnetic navigation bronchoscopy (ENB), elec-
tromagnetic-based and fiber-optic shape-sensing robotic 
bronchoscopy, virtual bronchoscopic navigation (VBN), 
radial endobronchial ultrasound (EBUS), and cone-beam 
computed tomography (CBCT) [1, 2]. Guided bronchos-
copy has a lower risk of complications than transthoracic 
biopsy [3, 4], and is particularly useful for small lesions in 
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the periphery of the lung that cannot be reached by tradi-
tional bronchoscopy [5]. Early diagnosis and treatment of 
malignant lung lesions can substantially increase survival 
rates [6, 7].

Despite these advantages, the diagnostic yield of all 
guided bronchoscopy systems has historically been lim-
ited by a phenomenon called computed tomography 
(CT)-to-body divergence [8]. This effect refers to a mis-
match between the preprocedure CT-based virtual map 
used to plan the navigation route to the lung lesion and 
the actual dynamic lung anatomy during bronchoscopy. 
This divergence can be caused by a number of factors [8] 
and has been addressed, in part, by advanced bronchos-
copy systems that provide real-time visualization and/
or positional correction during the bronchoscopy pro-
cedure [9–18]. However, anesthesia-induced atelectasis 
remains a challenge that can obscure lesion visibility and 
cause inaccurate localization, even with intraprocedural 
positional correction.

While it has long been known that nearly all patients 
experience atelectasis within minutes after general 
anesthesia induction [19–23], atelectasis during bron-
choscopy and its impact on outcomes has been underap-
preciated until recently. Because atelectasis is not visible 
on standard fluoroscopy [24, 25], its prevalence during 

bronchoscopy was not realized until the use of CBCT 
became more common. Using CBCT, Casal et  al. were 
the first to report atelectasis in dependent areas in 40% of 
peripheral lung biopsies, completely obscuring the target 
in 20% of cases [24]. Avasarala et al. reported atelectasis 
in 75% of patients, obscuring the lesion in 38% [26]. In 
the first prospective study specifically designed to assess 
atelectasis during bronchoscopy (I-LOCATE), Sagar 
et  al. reported that 89% of patients had atelectasis in at 
least one bronchial segment with a prevalence greater 
than 50% in dependent lower lobe segments. Atelecta-
sis was observed within 30 min of anesthesia induction. 
Increased body mass index and time to atelectasis assess-
ment were significant predictors of atelectasis risk [25]. 
General anesthesia was used with a laryngeal mask air-
way (LMA) and neuromuscular blocking agents, and 
most patients were ventilated with 100% fraction of 
inspired oxygen (FiO2) and zero to minimal PEEP [25].

Atelectasis can have a significant impact on the success 
of guided bronchoscopy. Atelectasis decreases the visibil-
ity of lung lesions on imaging and changes the conforma-
tion of the airways (Fig.  1), exacerbating any mismatch 
between the virtual lung map and the patient’s anatomy. 
Atelectasis reduces the distance between the lesion and 
the pleura, increasing the risk of pneumothorax from 
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Fig. 1  A–C Computed tomography (CT) and cone-beam CT (CBCT) scans during image-guided bronchoscopy without an optimized ventilation 
protocol. Significant atelectasis and ghosting artifact were observed. D–F CT and CBCT scans from a different patient using a ventilation protocol 
designed to prevent atelectasis
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instrumentation. Because of its increased density com-
pared to aerated lung, atelectasis can also create false 
positive findings on radial EBUS that mimic a lung lesion 
[25]. The result is inaccurate localization and reduced 
diagnostic yield [27]. Significant changes in inflation 
pressure are required to open atelectatic lung units. 
Because recruitment maneuvers to temporarily increase 
PEEP and tidal volumes often fail to resolve the atelec-
tasis once it has appeared [24], it is important to prevent 
atelectasis from occurring and maintain optimal con-
ditions throughout the bronchoscopic navigation and 
biopsy procedures.

Literature review
A systematic literature search of MEDLINE and Embase 
was conducted for papers evaluating the impact of anes-
thesia methods on outcomes during advanced peripheral 
bronchoscopy (ENB, radial EBUS, VBN, CBCT, aug-
mented fluoroscopy, robotic bronchoscopy). Detailed 
methods are provided in Additional file  1: Figure S1, 
Additional file 1: Table S1 and Additional file 1: Table S2. 
After abstract and full-text review, there were 11 papers 
(8 original studies and 3 meta-analyses) that specifi-
cally evaluated the impact of the anesthesia method on 
atelectasis, safety, or diagnostic yield during advanced 
bronchoscopy [4, 27–36]. Bowling et  al. compared ENB 
using general anesthesia versus intravenous sedation 
and observed diagnostic yields of 70% and 78%, respec-
tively (P = NS) [29]. As will be described in greater detail 
below, Bhadra et  al. 2021 observed less atelectasis and 
a trend toward greater diagnostic yield using an opti-
mized ventilation protocol compared to conventional 
ventilation [28]. Minami et  al. (2017) reported that fen-
tanyl and midazolam sedation was useful for peripheral 
bronchoscopy [32]. Webb et  al. (2020) reported that jet 
ventilation was associated with reduced target displace-
ment and increased diagnostic yield compared to tradi-
tional ventilation during ENB [35]. General anesthesia 
and conscious sedation were used with approximately 
equal frequency across studies in a 2020 meta-analysis 
with no significant differences in diagnostic yield [4], 
consistent with results from the AQuIRE registry [33], a 
2015 meta-analysis [36], and the NAVIGATE study [30]. 
One 2014 meta-analysis observed significantly higher 
diagnostic yield with general anesthesia use compared to 
conscious sedation [31] and the NAVIGATE study found 
a significant effect of general anesthesia versus moderate 
sedation on complication rates [34]. Finally, Tanner et al. 
found no significant difference in diagnostic yield using 
moderate versus deep sedation using standard bronchos-
copy or radial EBUS [27].

However, with one exception [28], the studies described 
above used navigation bronchoscopy systems without 

intraprocedural advanced imaging. Newer systems such 
as tomosynthesis-based fluoroscopic navigation [10] and 
CT augmented fluoroscopy [28] require a breath hold to 
minimize lung movement during intraprocedural imag-
ing and location adjustments. Furthermore, CT-to-body 
divergence and atelectasis are likely strong contributors 
to the sub-optimal diagnostic yield seen with earlier gen-
erations of navigation bronchoscopy technology in large 
multicenter studies [30].

Ventilation recommendations
The following is a recommended protocol for ventila-
tion during advanced guided bronchoscopic biopsy 
(Table  1). These recommendations were derived from 
the anesthesia literature regarding the principles of 
minimizing atelectasis during positive pressure ventila-
tion [37–42], the authors’ published work [28], and the 
authors’ combined experience of over 1000 CBCT navi-
gation cases assessing the presences of atelectasis and 
CT-to-body divergence. While the use of higher PEEP 
and lower FiO2 during induction may contradict tradi-
tional anesthesiology practices, they are important for 
guided bronchoscopy where the success of the biopsy is 
highly dependent upon stabilizing dependent areas of 
the lung during intraprocedural imaging, particularly in 
obese patients and those with posterior or lower lobe 
lesions [43, 44]. These techniques will help to reduce 
movement and minimize atelectasis, thereby increas-
ing the chances of a successful biopsy and potentially 
accelerating the time to treatment by reducing the need 
for repeat biopsy procedures. These methods should be 
used at the discretion of the anesthesiologist and the 
proceduralist based on the individual risk factors of 
each patient. Standard monitoring procedures should 
be followed according to the American Society of Anes-
thesiologists (ASA) recommendations.

Preprocedure incentive spirometry
Preprocedure incentive spirometry has been recom-
mended to recruit lung volume and prevent atelecta-
sis [45]. The incentive spirometry maximum value will 
also allow the anesthesiologist to anticipate any risks of 
the higher intraprocedural tidal volumes recommended 
below. This is especially important for patients at par-
ticular risk of intraprocedural atelectasis, such as obese 
patients or those with lesions in the dependent areas of 
the lung.

Preoxygenation
The benefits of pre-oxygenation prior to anesthetic 
induction and tracheal intubation are widely accepted. 
However, nitrogen washout during pre-oxygenation 
promotes loss of gas from the lung to the bloodstream, 
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resulting in alveolar collapse and absorption atelectasis. 
Gas absorption accelerates airway collapse by a com-
bination of decreased functional residual capacity and 
compression atelectasis [46]. Therefore, the use of 100% 
oxygen during induction and anesthesia maintenance is a 
major cause of atelectasis [41]. Given the risk of absorp-
tion atelectasis and lung injury, the lowest tolerable FiO2 
is recommended for preoxygenation [46] as guided by 
oxygen saturation. Edmark et  al. demonstrated that in 
most patients, an FiO2 of 0.8 to 0.6 was associated with 
little to no atelectasis compared to an FiO2 of 1.0 [37]. 
Inspired oxygen content should also be kept as low as 
tolerated during the procedure to minimize absorption 
atelectasis.

If it is not possible to decrease the FiO2 to less than 
1.0 during pre-induction, the FiO2 should be kept at the 
lowest tolerable level immediately after the endotracheal 
tube (ETT) cuff is inflated, and recruitment maneuvers 
should be performed with the lowered FiO2. This lowered 
FiO2 should be maintained for the remainder of the pro-
cedure, including during the biopsy, as the patient’s oxy-
gen saturation permits.

Anesthesia type and intubation
The need for a completely motionless patient during 
guided bronchoscopy necessitates general anesthesia, 
paralysis, and intubation. The largest ETT size feasible 
based on patient anatomy will enable gas passage around 

the bronchoscope (which ranges in diameter from 5.9 
to 6.3  mm) with the least increase in circuit pressure 
[47]. An ETT is preferred over an LMA to accommo-
date higher airway pressures (larger tidal volumes and 
increased PEEP). LMA use may increase the risk of gas-
tric insufflation with higher pressures. This in turn may 
increase the risk for aspiration, although the risk remains 
low based on previous studies [48]. Following bronchos-
copy, the ETT can be exchanged for an LMA to facilitate 
complete EBUS staging if desired. LMA may be feasible 
in smaller patients (e.g., < 80 kg) provided that a good seal 
can be obtained whilst providing the recommended tidal 
volumes and PEEP. Jet ventilation has also been used to 
minimize motion and CT-to-body divergence [35, 49], 
but may be limited by availability and expertise.

General anesthesia using total intravenous anesthesia 
(TIVA) with propofol and muscle paralysis is optimal 
[47]. Lengthy intubation times may increase the risk of 
atelectasis, thus, avoid “traditional” rapid-sequence intu-
bation (i.e., avoid the use of FiO2 of 1.0). Instead, perform 
an expeditious intubation using non-depolarizing mus-
cle relaxants rather than suxamethonium. Application of 
PEEP throughout induction has also been shown to pre-
vent atelectasis [42]. Whilst the use of volatile anesthetics 
is not contraindicated, repeated opening of the circuit for 
the passage of the scope poses additional challenges to 
maintaining the depth of anesthesia and volatile gas pol-
lution in the operating room.

Table 1  Anesthesia for advanced guided bronchoscopy

APL adjustable pressure-limiting valve, FiO2 fraction of inspired oxygen, PEEP positive end-expiratory pressure, TIVA total intravenous anesthesia

Step Considerations Recommendations

1 Preprocedure Recruit lung volume, assess tolerance to higher PEEP, and 
prevent atelectasis

Perform incentive spirometry

2 Preoxygenation Avoid absorption atelectasis Modest FiO2 (0.6 to 0.8) as tolerated

3 Anesthesia type Need for a completely motionless patient TIVA with propofol and muscle paralysis

4 Intubation Enable gas passage past the bronchoscope with the least 
increase in circuit pressure

Use a larger endotracheal tube (usually ≥ 8.5, but as guided 
by patient anatomy)

Minimize atelectasis by avoiding traditional rapid-sequence 
intubation (i.e., avoid FiO2 of 1.0 and Suxamethonium)

Perform an expeditious intubation using non-depolarizing 
muscle relaxants

5 Post-intubation Reverse any induction-related atelectasis and assess hemo-
dynamic stability during higher PEEP

Conduct up to 4 recruitment maneuvers as tolerated

Maintain FiO2 at the lowest tolerable level

Maintain optimal lung inflation PEEP of up to 10–12 cm H2O for upper lobe biopsies, con-
sider higher PEEP for lower lobe lesions or obese patients

An increase in tidal volumes may be considered

6 Breath-hold: timing Reduce motion artifact Breath-hold at peak inspiration (end of a normal tidal breath)

Breath-hold: pressure Maintain a constant circuit pressure and PEEP and reduce 
diaphragmatic movement

Manually adjust APL valve to maintain circuit pressure at 
desired PEEP level

Breath-hold: duration To minimize lung movement during imaging, allow time 
for pressure to equilibrate

Maintain breath-hold for 5–10 s before beginning imaging 
sweep

7 Biopsy Ensure consistent settings between imaging and biopsy Maintain settings at the same levels as Step 6

8 Post-procedure Exclude pneumothorax and assess any residual atelectasis Routine reversal and post-procedure methods. Perform 
chest X-ray
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Recruitment maneuvers
Reducing the FiO2 to the lowest tolerable percentage 
after intubation will improve airway visualization. Unless 
contraindicated (e.g., due to acute respiratory distress 
syndrome, ventilator-induced lung injury, recent seg-
mentectomy, structural lung disease, or surgery), con-
duct up to four recruitment maneuvers immediately 
after intubation [46] to reverse any intubation atelectasis 
and to assess hemodynamic stability during higher PEEP 
(Fig.  2). This is especially important if intubation was 
prolonged due to a difficult intubation. Hemodynamic 
instability may preclude the use of traditional recruit-
ment maneuvers, such as the use of 40 cm H2O for 40 s 
(the ‘40 for 40 hold’). Judicious use of PEEP from the pre-
induction phase and throughout the procedure is recom-
mended [21, 38, 42], but may vary based on the patient’s 
hemodynamic tolerance. Maintain higher PEEP with the 
lowest tolerable FiO2 as guided by oxygen saturation. 
PEEP of up to 10–12 cm H2O may be beneficial for upper 
lobe biopsies, and even higher PEEP may be required for 
lower lobe biopsies (particularly in obese patients) due to 
the lower functional residual capacity and increased risk 
of atelectasis in the dependent areas. An increase in tidal 
volumes may be considered if tolerated.

Use of higher PEEP and tidal volumes will help main-
tain optimal lung inflation [44]. However, use of these 
higher settings should be guided by what the patient is 
able to tolerate hemodynamically, as demonstrated in 
the post-intubation recruitment maneuvers. This is espe-
cially important in obese patients or those with structural 
lung disease who may be at increased risk of barotrauma 
or volutrauma. Also, the risk of barotrauma is minimized 

when the sheer stress of repeated alveolar re-expansion is 
avoided, and the alveoli are held on a favorable part of the 
compliance curve (Fig. 3). While intuitively contradictory 
to the classical teaching of low tidal volume to prevent 
barotrauma, airway visualization, accurate lesion locali-
zation, and successful biopsy require these preprocedural 
conditions to be replicated as closely as possible.

Breath‑hold for image acquisition
Timing the breath‑hold
A breath-hold is required to reduce motion artifact and 
provide clearer, more accurate images during certain 
image-guided bronchoscopy procedures (e.g., fluoro-
scopic navigation, CBCT). These procedures require a 
complete lack of movement beyond cardiac pulsations; 
therefore, a carefully timed breath-hold is essential. The 
breath-hold should be performed at peak inspiration, not 
at end-expiration. This does not require a vital capacity 
maneuver, rather, it should occur at the end of a normal 
inspiratory breath (Fig. 4).

Maintaining a constant circuit pressure and PEEP
The breath-hold may be achieved by either the anesthesia 
machine’s automatic feature or manually. The automatic 
feature sets and maintains the appropriate pressure using 
the Vital Capacity Hold Function. In the manual method, 
the breath-hold is initiated by switching the ventilator to 
manual mode. Adjusting the adjustable pressure-limiting 
(APL) valve during breath hold maneuvers is required 
to maintain a constant circuit pressure and PEEP and 
reduce diaphragmatic movement once a leak is created 
in the circuit with the passage of the bronchoscope. The 

A
irw

ay
 P

re
ss

ur
e 

(c
m

 H
20

)

Lung Recruitment

Recruitment Hold Time
Time (Seconds)

Recruitment
Hold Pressure

Fig. 2  Recruitment maneuvers after intubation may reverse any induction-related atelectasis and assess hemodynamic stability during higher PEEP. 
Hemodynamic instability may limit use of the traditional ‘40 for 40’ hold. Higher PEEP for shorter duration may be considered
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measured circuit pressure reflects intrapulmonary pres-
sure (PEEP) and is a balance between fresh gas inflow and 
leak from the circuit plus outflow via the APL. Therefore, 
it’s preferable to focus on the circuit pressure reading 
(shown either on the digital screen or on the circuit pres-
sure manometer) and adjust the APL manually to main-
tain this pressure at the designated PEEP, rather than on 
an absolute APL number. Vigilance is required to ensure 
that there is a balance of fresh gas inflow to circuit leak. 
These measures will minimize motion artifact of the dia-
phragm during imaging which can cause blurring and 
thereby hinder image interpretation by the clinician.

Maintaining the breath‑hold
The breath-hold should be maintained for a suffi-
cient time to allow pressures to plateau and equilibrate 
throughout the bronchial tree prior to beginning intrap-
rocedural imaging (Fig. 5). The proceduralist should wait 
5–10  s before beginning the imaging sweep after the 
anesthesiologist initiates the breath-hold (once PEEP is 

stabilized as measured by constant circuit pressure). This 
gives time for the intrapulmonary pressures to equili-
brate before the imaging sweep begins. These measures 
will remove motion artifact, provide clearer images, and 
allow for more accurate localization of the lung lesion. 
By maintaining high PEEP, the bronchial tree is also opti-
mally dilated. The imaging sweep will add additional time 
to the breath-hold (up to 30 s, depending on the system 
used). Therefore, it is important to be aware of the poten-
tial for hemodynamic changes due to prolonged breath-
hold during the equilibration and imaging sweep.

Biopsy procedure
The recommended anesthesia settings described above 
should be maintained throughout the biopsy procedure 
to ensure that lung volumes are consistent with those 
present during intraprocedural imaging. Any changes 
during the biopsy procedure would necessitate a repeat 
of both the breath-hold and the imaging sweep.
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Fig. 3  Mechanisms leading to atelectasis during bronchoscopy and increased airway resistance. A Surface tension caused by water molecules 
leads to attraction. B Once the airflow is disrupted in atelectatic lung units, turbulent airflow leads to increased airway resistance. C As the bronchi 
decrease in diameter, there is a substantial increase in airways resistance. D Compliance curve for alveoli. As the lung deflates, resistance increases 
and gas flow through the airways decreases. Atelectatic lung units have poor compliance and require significant changes in inflation pressure to 
result in minor changes in volume
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Post‑procedure
Routine reversal and standard assessment of fitness for 
extubation should be employed, as should suctioning of 
secretions. Standard post-procedural discharge criteria 

should be employed, and a postprocedure chest x-ray is 
recommended to exclude complications such as pneu-
mothorax. Patients should be completely reversed from 
neuromuscular paralysis.
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Fig. 4  A breath-hold is required to reduce motion artifact during intraprocedural imaging (e.g., CBCT, digital tomosynthesis). The breath-hold 
should be performed at peak inspiration, not at end-expiration. This does not require a vital capacity maneuver but should occur at the end of a 
normal tidal breath. Adapted from Kapwatt at English Wikipedia (https://​commo​ns.​wikim​edia.​org/w/​index.​php?​curid=​74891​988) and used with 
permission under the terms of Creative Commons License CC BY-SA 3.0 ()
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Fig. 5  To prevent motion artifact, maintain the breath-hold until pressures plateau before beginning the imaging sweep (5–10 s). Be aware of the 
potential for hemodynamic changes due to prolonged breath-hold
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Clinical evidence
The proposed ventilation protocol has been evaluated 
in a retrospective, single-center study of subjects with 
peripheral lung lesions < 30 mm undergoing CBCT with 
augmented fluoroscopy [28]. In two non-randomized, 
consecutively enrolled groups (25 subjects per group), 
a conventional, non-standardized ventilation protocol 
(typically 100% FiO2 and PEEP set to 0 or 5  cm H2O) 
was compared to the optimized ventilation protocol. 
Two independent reviewers observed significantly less 
atelectasis in dependent areas (P = 0.0001) and in sublo-
bar or lobar regions (P = 0.01) using the optimized pro-
tocol. There was also a significantly smaller proportion 
of lesions obscured by atelectasis using the optimized 
protocol (8% Reviewer 1, 4% Reviewer 2) than the con-
ventional protocol (36% observed by both reviewers). 
Furthermore, this significant reduction in atelectasis 
was accompanied by a higher diagnostic yield, though 
not statistically significant (70% conventional versus 92% 
optimized, P = 0.08). Pneumothorax not requiring a chest 
tube was observed in 1 patient following the optimized 
protocol compared to 0 patients with conventional ven-
tilation (P = 1.0). A study of tomosynthesis-based fluor-
oscopic navigation used a similar ventilation protocol, 
with intubation under TIVA, neuromuscular blockade, a 
recruitment maneuver after intubation, minimized oxy-
gen, and 15 cm H2O applied throughout the procedure. 
A diagnostic yield of 77% was observed, with a pneumo-
thorax rate of only 2.5% (8/324) [10]. While future ran-
domized studies are necessary to confirm these results, 
this data suggests that a ventilation protocol optimized 
for advanced guided bronchoscopy not only reduces 
atelectasis, but may also increase in diagnostic yield. 
The randomized VESPA trial is (NCT04311723) cur-
rently enrolling and aims to compare a ventilation strat-
egy designed to prevent atelectasis during bronchoscopy 
compared to conventional mechanical ventilation [50].

Conclusions
Atelectasis is common during advanced guided broncho-
scopic biopsy [25] and can cause CT-to-body divergence 
[8], interfering with the ability to obtain diagnostic tissue 
[28]. The anesthesia techniques proposed in this paper 
are designed to stabilize dependent areas of the lung, 
reduce atelectasis, minimize motion artifact, and provide 
more accurate localization during guided bronchoscopy. 
Future randomized studies are needed to prospectively 
compare bronchoscopy procedures with and without 
optimized ventilation strategies.
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