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Abstract 

Background:  Identifying or prioritizing genes for chronic obstructive pulmonary disease (COPD), one type of com-
plex disease, is particularly important for its prevention and treatment.

Methods:  In this paper, a novel method was proposed to Prioritize genes using Expression information in Protein–
protein interaction networks with disease risks transferred between genes (abbreviated as PEP). A weighted COPD PPI 
network was constructed using expression information and then COPD candidate genes were prioritized based on 
their corresponding disease risk scores in descending order.

Results:  Further analysis demonstrated that the PEP method was robust in prioritizing disease candidate genes, and 
superior to other existing prioritization methods exploiting either topological or functional information. Top-ranked 
COPD candidate genes and their significantly enriched functions were verified to be related to COPD. The top 200 
candidate genes might be potential disease genes in the diagnosis and treatment of COPD.

Conclusions:  The proposed method could provide new insights to the research of prioritizing candidate genes of 
COPD or other complex diseases with expression information from sequencing or microarray data.

Keywords:  Chronic obstructive pulmonary disease, Candidate gene prioritization, Expression information, Protein–
protein interaction networks
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Background
Chronic obstructive pulmonary disease (COPD) is a 
public health problem causing morbidity and mortal-
ity [1]. As a multifactorial and polygenic disease, COPD 
is caused by many factors, including smoking, advanced 
age, systemic inflammation, and especially pathways or 
processes influenced by protein–protein interactions 

(PPIs), such as oxidative stress and protease activity 
affected by interactions between glutathione S-trans-
ferase M1 and matrix metalloproteinases 1, 9, and 12 in 
the pathogenesis of COPD [2]. Identification or prioritiz-
ing COPD candidate genes is particularly important for 
its prevention and treatment.

Computational methods for disease candidate gene pri-
oritizing has been conducted in terms of PPI networks. 
The accuracy/performance of these methods was evalu-
ated by the rank of known disease genes in their ranked 
lists, reflecting their ability to recognize known disease 
genes from other genes. If many known disease genes are 

Open Access

*Correspondence:  hewm@hit.edu.cn; chenlina@ems.hrbmu.edu.cn
1 College of Bioinformatics Science and Technology, Harbin Medical 
University, Harbin 150000, Heilongjiang, China
2 Institute of Opto‑Electronics, Harbin Institute of Technology, 
Harbin 150000, Heilongjiang, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-021-01646-9&domain=pdf


Page 2 of 11Li et al. BMC Pulm Med          (2021) 21:280 

ranked highly, the Area Under the Curve (AUC) value is 
large, which calculated from plotting the Receiver Opera-
tion Characteristic (ROC) curves using Leave One Out 
Cross-Validation (LOOCV), a widely used method in 
many existing works [3, 4]. Methods with AUC > 0.70 
were accurate or with good performance. For example, 
the online tool ToppNet of the ToppGene Suite (https://​
ToppG​ene.​cchmc.​org) [5] and another method proposed 
by Razaghi-Moghadam et  al. [6] prioritized candidate 
genes employing the topological measures of PPI net-
works. Ganegoda et  al. prioritized candidate genes of 
several types of cancer by evaluating similarity between 
diseases and similarity between proteins in a PPI network 
[7]. The random walk method considering probability 
transition was often used [8, 9], and was employed in the 
Random Walk and k-step Markov algorithms of LynxKB 
(http://​lynx.​ci.​uchic​ago.​edu/), a database and knowledge 
extraction engine for integrative medicine [10]. A ran-
dom walk-based computational method was developed 
to prioritize ectopic pregnancy-related genes based on 
text mining data and PPI network information [11].

Although these current approaches have achieved 
good performance, improvements through integrating 
other information are still necessary. Expression informa-
tion could reveal differential expression pattern between 
normal and disease samples. In our previous work, 
functional information has been integrated to a COPD-
related PPI network to prioritize candidate genes [12]. 
FUN-L (http://​funl.​org/) is a tool for prioritizing genes 
by their probability of sharing pathways to a set of query 
genes [13]. ToppGene, another tool of the ToppGene 
Suite, prioritized candidate genes based on similarities of 
comprehensive factors, such as network topology, func-
tional annotation and expression information. Network 
propagation has been used in this type of tools to com-
pute the influence of initial vertexes (or disease genes) to 
other vertexes for gene prioritization [14, 15]. Borrowing 
ideas from network propagation, the influence of genes 
to another was referred to as disease risks transferred 
between each other in this study. A novel method was 
proposed to Prioritize genes using Expression infor-
mation in PPI networks with disease risks transferred 
between genes. Our method was named PEP as the 
acronym of three key words (the first letter capitalized) 
from the description of the method. In the PEP method, 
a weighted COPD PPI network was constructed using 
expression information and then disease candidate genes 
were prioritized based on their corresponding disease 
risk scores in descending order. To evaluate the perfor-
mance of the PEP method, AUC values were calculated 
using LOOCV and compared for different parameters 
and for different methods, as other researches did. The 
PEP method could prioritize candidate genes of COPD 

effectively and robustly with expression information from 
sequencing or microarray data.

Methods
Data
COPD disease genes were derived from Online Mende-
lian Inheritance in Man (OMIM, http://​omim.​org/) [16], 
which contained 29 genes. PPIs for products of COPD 
disease genes were obtained from the STRING database 
Version 10.0 (http://​string-​db.​org/) [17]. After filtering 
out duplicated PPIs and merging transcripts matching to 
the same gene to one vertex (labeled by the official gene 
symbol), a COPD PPI network comprising products of 
3740 genes (vertexes) and 7792 interactions (edges) were 
constructed. Non-COPD disease genes were candidate 
genes to be prioritized.

Gene expression information was retrieved from 
the Gene Expression Omnibus (GEO) database at the 
National Centre for Biological Information (NCBI) 
through accession number GSE57148 (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE57​148), which 
was an RNA-seq profiling of lung tissue in 98 COPD 
patients and 91 healthy controls [18]. As introduced in 
the original paper, the inclusion criteria were a postbron-
chodilator FEV1/FVC ratio (ratio of forced expiratory 
volume in the first second to forced vital capacity) of less 
than 0.7 for the COPD group and normal spirometry for 
the control group in accordance with American Thoracic 
Society/European Respiratory Society criteria (Table  1, 
mean ± standard deviation is shown).

The PEP method
The PEP method was conducted in two steps.

Construction of the weighted COPD PPI network
In the COPD PPI network, vertex weights and edge 
weights were calculated using gene expression 
information.

Table 1  Demographics of COPD and control subjects for 
GSE57148

py: pack-years; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; 
DLCO: diffusing capacity of the lung for CO2

COPD subjects Control subjects

Male, n (%) 98,100.0 91,100.0

Age, years 67.5 ± 6.4 60.9 ± 9.5

Smoking (py) 48.0 ± 22.0 35.2 ± 17.2

FEV1, % 71.9 ± 13.4 91.0 ± 12.4

FEV1/FVC 57.1 ± 7.8 74.8 ± 4.3

DLCO, % 77.4 ± 13.8 92.8 ± 13.2

https://ToppGene.cchmc.org
https://ToppGene.cchmc.org
http://lynx.ci.uchicago.edu/
http://funl.org/
http://omim.org/
http://string-db.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57148
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE57148


Page 3 of 11Li et al. BMC Pulm Med          (2021) 21:280 	

Vertex weight w(v) for vertex v was computed as the 
differential of expression values in different samples as 
follows:

where EvD  and EvN  represent the average of expres-
sion values for gene v in disease samples and normal 
samples, respectively.

Edge weight w(u, v) was defined as the Pearson cor-
relation coefficient between vertex u and vertex v in the 
state of COPD, as follows:

where Eu and Ev represent expression values of COPD 
patients for gene u and gene v , and X  is the average of 
the values in X .

Integrating all the above weights, a weighted COPD 
PPI network was constructed.

Prioritization of candidate genes with gene disease risk 
scores
The gene disease risk scores S were calculated to eval-
uate the disease risks of genes using the strategy of 
disease risks transferred between genes with an itera-
tion process, which was performed until the difference 
between S(i) and S(i+1) was less than 10−8.

where S(i+1) is the vector of gene disease risk scores 
of all genes in the COPD PPI network at step i , and 
k ∈ [0, 1] is a value measuring the importance between 
vertexes and edges.

The initial disease risk score vector S(0) is composed 
of initial scores s s for all vertexes. The score s(v) for 
vertex v was defined as

where G represents the set of COPD disease genes, 
w(v) represents the vertex weight of v , and h is an inte-
ger parameter to measure the significance of the COPD 
disease genes and candidate genes.

The disease risk transition score matrix T  is made up 
of the transition scores t s. The formula for the disease 
risk transition score t(v|u) from vertex u to vertex v was 
as follows:

w(v) =
EvD

EvN

w(u, v) =
EuEv − EuEv

√

E2
u −

(

Eu

)2
√

E2
v −

(

Ev

)2

S
(i+1) = (1− k)TS(i) + kS

(0)

s(v) =

{

h·w(v)
∑

a∈G h·w(a)+
∑

a/∈G w(a)
, v ∈ G

w(v)
∑

a∈G h·w(a)+
∑

a/∈G w(a)
, v /∈ G

where w(u, v) represents the weight of the edge between 
vertex u and vertex v , and neighbor(u) represents the set 
of vertexes interacting with vertex u . If vertex u has no 
neighbors, t(v|u) is 0.

The genes in the weighted COPD PPI network were 
prioritized based on their corresponding disease risk 
scores S in descending order. Top ranked genes were 
more related to the disease.

Parameter optimal value determination
The performance of the PEP method was evaluated and 
compared by AUC values using LOOCV based on COPD 
disease gene from the OMIM database for different 
parameters, h and k , to determine their optimal values. 
In each round of LOOCV, one COPD disease gene was 
selected as a test gene, while other COPD disease genes 
in the weighted COPD PPI network were used to prior-
itize the candidate genes and the test gene. This process 
was repeated until all COPD disease genes were set as 
test genes. Sensitivity (frequency of test genes that were 
ranked above a particular threshold) and specificity (the 
percentage of test genes ranked below the threshold) 
were calculated. ROC curves were plotted based on the 
sensitivity versus 1-specificity (true versus false positive 
rate) of the test genes by varying the threshold. The AUC 
value was then measured to facilitate the comparison for 
different parameters. The performance with AUC = 1 
is perfect since all test genes are ranked first in their 
respective ranked list, with AUC = 0.5 is no better than 
a random prioritization, with AUC > 0.5 is better than the 
random one, and with AUC < 0.5 is a worse one. The AUC 
is large when many disease genes are ranked highly. Thus, 
optimal parameter values with the highest AUC value 
were determined for the PEP method. The PEP method 
was effective if the AUC > 0.70 with optimal parameter 
values.

Evaluation of performance
In order to demonstrate the robustness of the PEP 
method, The AUC values of LOOCV were used to evalu-
ate the performance for random sample sets. Four sets 
of samples were randomly selected from the original 
RNA-seq profiling—20, 60, 100 and 140 samples—with 
an equal number of disease samples and of normal sam-
ples (10, 30, 50 and 70). The randomization process was 
repeated 100 times. Then, for each sample set, AUC val-
ues of LOOCV were calculated.

LOOCV was also performed to compare the per-
formance of the PEP method with that of other state-
of-the-art network-based prioritization methods, 

t(v|u) =
w(u, v)

∑

r∈neighbor(u) w(u, r)
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including ToppNet of the ToppGene Suite, Random Walk 
and k-step Markov of LynxKB, which exploited the topo-
logical information, as well as our previous work in [12], 
ToppGene and FUN-L exploiting functional information.

To prove the relationships of the top 200 candidate 
genes and COPD, a literature review was performed. 
Then to further verify their relevance, functional enrich-
ment analysis was conducted for the top 200 candidate 
genes employing the Database for Annotation, Visuali-
zation and Integrated Discovery (DAVID) v6.8 (https://​
david.​ncifc​rf.​gov/) [19, 20]. The Biological Process of 
Gene Ontology (GO) functions and pathways of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) with 
FDR < 0.05 were statistically significant.

Moreover, to further exhibit the effectiveness and 
robustness of the PEP method, it was applied to another 
independent microarray data, GSE76925 from the GEO 
database, which contained 40 normal samples and 111 

COPD patients. The AUC values of LOOCV were calcu-
lated for all samples and different sample sizes (20, 40, 60 
and 80 samples from GSE76925, in which the number of 
disease samples and normal samples was equal) as men-
tioned above, respectively.

Results
Parameters of the PEP method
Optimal value of parameter h
Parameter h was used to evaluate the significance of the 
COPD disease genes and candidate genes in the weighted 
COPD PPI network. LOOCV was used to investigate the 
performance for a range of h values (1, 10, 15 and 30), 
which were shown as ROC curves (Fig. 1). The AUC values 
corresponding to these ROC curves (> 0.88) showed that 
good performance could be attained with all h values. The 
best performance was achieved when h = 1 , which implied 

Fig. 1  ROC curves for the PEP method with a h = 1 , b h = 10 , c h = 15 and d h = 30

https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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that the COPD disease genes and candidate genes were of 
equal importance in the COPD PPI network.

Optimal value of parameter k
The k parameter in the PEP method was used to evalu-
ate the significance between vertexes and edges in the 
weighted COPD PPI network. LOOCV was also con-
ducted to evaluate their performance for different k values 
(Table 2).

AUC values for k = 0 or 1 were lower than those for other 
k values. This demonstrated that the performance when 
the vertex and edge information were considered simulta-
neously was better than that when only the vertex or the 
edge information was considered. The AUC value was the 
highest for k = 0.7, demonstrating that vertexes were more 
important than edges in the COPD PPI network.

As mentioned above, h = 1 and k = 0.7 were optimal 
parameter values for the PEP method with and AUC of 
0.945, indicating the effectiveness of the PEP method. 
These optimal values were used to calculate the gene dis-
ease risk scores in the following sections.

Assessment and comparison
Robustness assessment
In the COPD PPI network, the vertex and edge weights 
were calculated using gene expression information from 
all samples in GSE57148. Here, in order to confirm that the 
results were not affected by various sample sizes, four sets 
of samples were randomly selected with an equal number 
of disease samples and normal samples. The randomiza-
tion process was repeated 100 times. The AUC values of 
LOOCV were also used to evaluate their performance 
(Fig. 2). With the growth of the sample sizes, the AUC val-
ues also had a growth tendency. For different sample sizes, 
all AUC values were larger than 0.86, indicating the robust-
ness of the PEP method. The AUC value for all samples was 
higher than any median of the AUC values for other sample 
sizes. Thus, using all samples was appropriate to prioritize 
candidate genes.

Method comparison
The performance of the PEP method was compared with 
that of other state-of-the-art network-based prioritization 
methods. The comparison was first conducted between the 
PEP method and ToppNet of the ToppGene Suite, Ran-
dom Walk and k-step Markov of LynxKB, which exploited 
the topological information (Fig.  3). Results of LOOCV 

showed that the PEP method had the highest AUC value, 
while the AUC values for the k-step Markov and Random 
Walk applying random walk were a little inferior, and that 
for ToppNet were the lowest.

The PEP method was then compared to our previous 
work in [12], ToppGene and FUN-L exploiting functional 
information (Fig.  4). The AUC values for the latter three 
methods were between 0.7 and 0.8, which were all less than 
that for the PEP method.

These results indicated that the performance of the 
PEP method was better than that of other existing meth-
ods using either topological information or expression 
information.

COPD Candidate gene prioritization
Genes in the COPD PPI network were prioritized based 
on their disease risk scores in descending order. The top-
ranked candidate genes were supposed to be more relevant 
to COPD. To prove their relationships, a literature review 
and functional enrichment analysis were conducted for the 
top 200 candidate genes (Additional file 1).

Table 2  AUC values using different k values of the PEP method

k 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AUC​ 0.808 0.885 0.894 0.904 0.915 0.924 0.931 0.945 0.933 0.925 0.541

Fig. 2  The distribution of AUC values for different sample sizes. 
Horizontal lines in each box plot from the bottom to the top are first 
quartile, median and third quartile, and dots are outliers
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Literature validation
After searching in the NCBI PubMed database (https://​
www.​ncbi.​nlm.​nih.​gov/​pubmed), nearly half of the top 
200 candidate genes were validated as being associated 
with COPD. It is worth highlighting that the validation 
rate for higher-ranked genes was higher than that for 
lower-ranked genes. That is, 50% of the top 50, 44% of the 
top 100, 40% of the top 150, and 37% of the top 200 can-
didate genes were validated.

For the first ranked candidate gene, UGT1A1, its low 
expression was found to play a protective role in COPD 
since several studies has found that the enzyme uridine 
diphosphate glucuronosyltransferase polypeptide 1A1, 
encoded by gene UGT1A1, was responsible for clear-
ing bilirubin from the blood, whereas higher biliru-
bin concentrations were associated with a lower risk of 
acute exacerbations of COPD [21–23]. The serum levels 
of BDNF (Rank: 2) (but not concentrations of platelets 

in the peripheral blood) were significantly elevated at 
all stages of COPD as compared to controls [24]. SHC1 
(Rank: 3) was significantly decreased in alveolar epithe-
lial cells in COPD patients. Thus, it could reduce the risk 
of lung diseases [25, 26]. The up-regulation of CREB1 
(Rank: 5) activated pro-inflammatory HSP60 in bronchial 
epithelial cells, as observed in severe COPD patients 
compared to control smokers and non-smokers [27]. Air-
way levels of MUC2 (Rank: 9) were decreased in patients 
with severe COPD colonized by potentially pathogenic 
micro-organisms [28]. These genes participated in the 
disease regulation process and could be main factors in 
the pathogenesis of COPD.

Functional enrichment analysis
Functional enrichment analysis was performed for the 
200 candidate genes using DAVID. The top 200 candidate 
genes were significantly enriched in 37 COPD-related 

Fig. 3  ROC curves of a PEP, b ToppNet, c random walk, and d k-step Markov

https://www.ncbi.nlm.nih.gov/pubmed
https://www.ncbi.nlm.nih.gov/pubmed
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KEGG pathways, especially four pathways that were 
significantly enriched in by the top 50 candidate genes 
(Fig. 5). The “PI3K-Akt signaling pathway” was required 
for Sirtuin 1 induction by endoplasmic reticulum stress 
and exacerbated the COPD [29]. The increases in “Focal 
adhesion” expression affected the proliferation of apical 
cells behind the wound edge related to some respira-
tory diseases, such as COPD [30]. The loss of epithelial 
anion transport in COPD is correlated with the increased 
inflammation driven by the release of chemokines regu-
lated by the “Chemokine signaling pathway” and subse-
quent immune cell infiltration of the respective organs 
[31]. Few studies showed the association of the “Hepati-
tis B pathway” with COPD. However, genes in the path-
way were also found to be involved in the COPD-related 
“PI3K-Akt signaling pathway” and lung-related pathways, 
such as “Influenza A” and “Tuberculosis”. Additionally, a 
study of the efficiency of the anti-hepatitis B vaccination 

in adults with COPD suggested that the pathway could 
influence the COPD process under treatment with 
Affonoleikin [32]. These results implied the relationship 
between the “Hepatitis B pathway” and COPD to some 
extent, while further studies are still needed.

Moreover, 33 COPD-related GO functions were sig-
nificantly enriched in by the top 200 candidate genes 
(Fig.  6). For example, impairing “cell adhesion” could 
alter the function of airway epithelial cells. These changes 
contributed to local inflammation, which led to lung 
function decline and increased susceptibility to COPD 
[33]. “Angiogenesis” was observed to be significantly 
decreased among COPD patients versus controls. This 
suggested the possibility of blunted “angiogenesis” in 
COPD patients, who showed impaired training-induced 
blood pressure adaptation related to a change in mus-
cle capillarizatio [34, 35]. Hepatocyte growth factor was 
involved in the pathogenesis of various lung diseases as 

Fig. 4  ROC curves of a PEP, b our previous work, c ToppGene, and d Fun_L
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it was significantly higher in COPD patients compared to 
control patients. Hence, the “cellular response to hepato-
cyte growth factor stimulus” might be relevant for tissue 
repair in COPD [36]. The remodeling of the “extracellu-
lar matrix organization” is a common feature in lung dis-
eases such as COPD [37].

These results showed that the top 200 candidate 
genes prioritized by the PEP method could be enriched 
in COPD-related pathways and functions. It was also 
indicated that these genes might be potential disease 
genes of COPD.

Fig. 5  KEGG pathways significantly enriched by the top 50, 100, 150 and 200 candidate genes

Fig. 6  GO functions significantly enriched by the top 50, 100, 150 and 200 candidate genes
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Independent data validation
To test the applicability of our method for other microar-
ray data, the PEP method was applied to another inde-
pendent microarray data GSE76925, which contained 40 
normal samples and 111 COPD patients. The AUC value 
of LOOCV was 0.831, which demonstrated the good per-
formance of the PEP method (Fig. 7).

As for GSE57148, four sets of samples were randomly 
selected with an equal number of disease samples and 
normal samples from GSE76925. The randomization pro-
cess was repeated 100 times. The AUC values of LOOCV 
were also used to evaluate their performance. The robust-
ness of the PEP method was also confirmed, since all 
AUC values were larger than 0.83 for different sample 
sizes.

All the above results suggested that the PEP method 
was effective and robust for both RNA-seq and microar-
ray data.

Discussion
The expression information of normal and disease sam-
ples can reveal dynamic changes between these statuses. 
In this paper, disease candidate genes were prioritized 
based on the disease risk scores from a COPD PPI net-
work using expression information by a newly proposed 
method PEP. The PEP method using expression infor-
mation in the COPD PPI network had good robustness, 
since the AUC values using LOOCV were all larger than 
0.86 for different sample sizes randomly selected from 
the original profile. The method was also superior to 

other existing methods exploiting either topological or 
functional information.

Different values for parameters h and k had certain 
influence on the results of the PEP method. After inves-
tigating the performance of different values, h = 1 and 
k = 0.7 were found to be the optimal parameters, dem-
onstrating that the COPD disease genes and candidate 
genes were of equal importance in the COPD PPI net-
work, and the vertex and edge information should be 
considered simultaneously.

The top 200 candidate genes prioritized with optimal 
parameters were confirmed to be correlated with COPD 
through a literature review and functional enrichment 
analysis. As a result, the top 200 candidate genes might 
be potential disease genes in the diagnosis and treat-
ment of COPD. In order to test the potential ability of 
the top-ranked candidate genes acting as markers, they 
were used as classification features to classify samples 
of the original profile by applying the support vector 
machine (SVM) method with a linear kernel. The per-
formance was assessed by comparing the AUC values for 
the COPD disease genes, the top 29 (the same number 
as the COPD disease genes) candidate genes, and four 
groups of 50 genes from the top 200 candidate genes 
(the top 50, Rank 51–100, 101–150 and 151–200). It was 
demonstrated that different classification features were 
all effective to classify samples (Table 3). The AUC value 
of the top 29 candidate genes was higher than the COPD 
disease genes, indicating a stronger discriminative power. 
The AUC value for the top 50 candidate genes had the 
best classification performance. Therefore, top-ranked 
genes prioritized by the PEP method could be used as 
markers to identify disease samples.

Our study has some limitations. The computation pro-
cess of the PEP method was complicated, which made it 
inappropriate to be performed as a web tool at present. 
The code need to be further optimized so that a web 
tool could be constructed to facilitate the use of other 
researchers. Additionally, top 200 candidate genes were 
verified using literature reviews, which might not be 
objective enough. Further downstream validation experi-
ments and functional studies is needed to reveal their 
biological relevance with COPD.

Fig. 7  The ROC curve of the PEP method for GSE76925

Table 3  AUC values of the classification performance of different 
classification features

Classification feature AUC value Classification feature AUC value

COPD disease genes 0.837 Rank 51–100 genes 0.881

top 29 genes 0.846 Rank 101–150 genes 0.810

top 50 genes 0.882 Rank 151–200 genes 0.745
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Conclusions
To sum up, the PEP method was effective and robust 
in prioritizing disease candidate genes using expres-
sion information from sequencing or microarray data. 
Therefore, the top-ranked candidate genes of the PEP 
method or their significantly-enriched functions were 
verified to be related to COPD. These genes could also 
classify COPD and normal samples effectively. In addi-
tion, the PEP method could provide new insights to the 
research of prioritizing disease candidate genes and 
identifying potential makers of diseases, and could be 
applied to other complex diseases.
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