
Kim et al. BMC Pulmonary Medicine          (2021) 21:404  
https://doi.org/10.1186/s12890-021-01749-3

RESEARCH

Integrative analysis of lung molecular 
signatures reveals key drivers of idiopathic 
pulmonary fibrosis
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Abstract 

Background:  Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular 
signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic 
targets.

Methods:  Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were 
obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrich‑
ment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were 
performed, and the association of enriched pathways and clinical parameters was evaluated.

Results:  A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung 
tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway 
and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised cluster‑
ing. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, 
while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 sign‑
aling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity 
and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were 
the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational 
drugs showed differential diffusion scores in terms of their target molecules.

Conclusions:  An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct patho‑
biological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for 
controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes 
and the selection of therapeutic targets in IPF patients.
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Background
Idiopathic pulmonary fibrosis (IPF) is a chronic intersti-
tial lung disease characterized by progressive scarring of 
the lung parenchyma associated with a steady worsen-
ing of respiratory symptoms and a decline in pulmonary 
function, ultimately leading to death [1]. IPF is currently 
treated with systemic antifibrotic drugs, such as pirfeni-
done and nintedanib, which have been shown to delay the 
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progressive decline of lung function and to reduce mor-
tality [2]. However, neither pirfenidone nor nintedanib 
block or reverses the progression of IPF. Although ther-
apeutic interventions targeting the immune response, 
inflammation, or oxidative stress have been attempted, 
none have been proven to be successful, and no effective 
pharmacotherapy for IPF exists yet [3–5]. These unsat-
isfactory results in drug development might be partially 
ascribed to the complexity and heterogeneity of IPF. The 
active cellular components and mechanistic features of 
inflammation and fibrosis are mixed, and their levels dif-
fer depending on the disease status or anatomical lesions 
[1, 6, 7]. Further, IPF is associated with diverse clinical 
progressions, from an asymptomatic stable state to grad-
ual progressive respiratory failure or rapid deterioration 
of respiratory function through acute exacerbation [8].

Molecular subgroups exist within some fibrotic dis-
eases in which different clinical phenotypes or outcomes 
are presented [9–12]. Gene expression profiling has 
provided insights into the pathogenesis of IPF [6, 8, 13, 
14]. In previous pilot studies, molecular signatures from 
lung parenchyma proved helpful in predicting the like-
lihood of disease progression and therapeutic respon-
siveness [13, 15]. However, because all previous studies 
have been performed with cohorts of variable sizes and 
with different patient backgrounds, technical protocols, 
and technologies, direct comparisons between datasets 
and results are not feasible. A comprehensive integrated 
analysis of a compendium compiled using genome-wide 
datasets could reduce dataset bias, capture features miss-
ing from previous studies, and detect key factors driving 
the disease.

In this study, we compiled lung tissue transcriptome 
datasets from public data repositories to establish an IPF 
compendium and characterized the cellular and molecu-
lar features in detail. The samples were separated using 
data-driven, unsupervised clustering methods, and the 
clustered subgroups were subjected to prognostic profil-
ing. Finally, we employed an integrative network-based 
approach and Bayesian inference to identify key driv-
ers of the disease and evaluated the impact of current 
and investigational drugs in the context of the disease 
module.

Methods
Systematic search and data collection
We used the keywords “idiopathic pulmonary fibrosis,” 
“interstitial lung disease,” “lung,” “transcriptomics, micro-
array, or RNA-sequencing,” “dataset” in Google Scholar 
and PubMed to find relevant publications on the topic of 
lung gene signatures of patients with IPF. We retrieved 
all publications that were accompanied by high-through-
put datasets and ultimately selected 13 datasets with the 

GEO series (GSE) IDs GSE10667, GSE21369, GSE24206, 
GSE32537, GSE35145, GSE47460, GSE53845, GSE72073, 
GSE83717, GSE99621, GSE110147, GSE124685 and 
GSE150910 (Additional file  1: Table  S1). The combined 
datasets included 585 IPF patient samples and 362 
normal healthy controls and covered 15,447 genes in 
common.

Data normalization and removal of batch effects
For one-channel arrays, the Robust Multi-array Aver-
age (RMA) method (R package affy) was applied to the 
image data of a set of replicates for background correc-
tion, normalization, and probe-set summarization [16]. 
For dual-channel arrays, the image data were imported, 
background correction was performed using normexp (R 
package limma), and red and green channels were sepa-
rated [17, 18]. The matrix vectors were normalized using 
quantile normalization [19]. Residual technical batch 
effects arising due to heterogeneous data integration 
were corrected using the ComBat function [19]. Qual-
ity assurance and distribution bias was evaluated using 
principal component analysis. After preprocessing, sys-
tematic and dataset-specific bias was greatly reduced 
(Additional file 2: Figure S1).

Filtering of differentially expressed genes
In order to identify the differentially expressed genes 
(DEGs), we employed three independent methods: (a) 
an empirical Bayesian method (eBayes) using the Benja-
mini–Hochberg procedure with adjusted p value < 0.01 
as the significance threshold (R package limma) [20]; (b) 
the Significance Analysis of Microarray (SAM) method, 
with false discovery rate (FDR) < 0.01 as the significance 
threshold (R package EMA) [21]; (c) multivariate inferen-
tial analysis method, with false discovery rate (FDR) < 0.01 
as the significance threshold (R package acde) [22]. An 
absolute value of fold change > 1.5 was considered as 
DEGs. The resulting list of DEGs is the intersection of the 
three individual DEGs sets for each method to minimize 
the FDR statistic (Additional file: Figure S2). Upregulated 
DEGs were used in all the subsequent analyses.

Pathway‑ and cell subset‑driven enrichment analysis
We performed a functional enrichment analysis focus-
ing on upregulated DEGs using Enrichr software [23]; 
adjusted p value was made using the Benjamini–Hoch-
berg method for correction for multiple hypotheses 
testing and the terms were considered significant if the 
adjusted p value was less than 0.05. For biological pro-
cesses or signaling pathways, gene-set enrichment analy-
sis (GSEA) was conducted using Broad Institute software 
to assess overrepresentation [24]. Gene-set informa-
tion on signaling pathways or biological processes was 
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obtained from the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), Gene Ontology, and the Reactome 
databases [25–27]; the terms were regarded as significant 
if the false discovery rate was lower than 0.25, per the 
interpretative guidelines [24]. The enrichment score (ES) 
reflects the degree to which a gene set is overrepresented 
at the top or bottom of a ranked list of genes. GSEA cal-
culates the ES by walking down the ranked list of genes, 
increasing a running-sum statistic when a gene is in the 
gene set and decreasing it when it is not. The magnitude 
of the increment depends on the correlation of the gene 
with the phenotype. The ES is the maximum deviation 
from zero encountered in walking the list. Since ES can 
be biased by a single permutation, ES is adjusted based 
on the gene set enrichment scores for all dataset permu-
tations, producing normalized enrichment score (NES). 
NES is used to compare analysis results across gene set by 
accounting for differences in gene set size and in correla-
tions between gene sets and the expression dataset [24]. 
The enrichment results were visualized with the Enrich-
ment Map format, where nodes represent gene sets and 
weighted links between the nodes represent an overlap 
score depending on the number of genes two gene sets 
share (Jaccard similarity coefficient) [28]. To intuitively 
identify redundancies between gene sets, the nodes were 
connected if their contents overlap by more than 10%.

To test for gene enrichment in individual samples, we 
used a single-sample gene-set enrichment analysis, which 
defines an enrichment score as the degree of absolute 
enrichment of a gene set in each sample within a given 
dataset [29]. Information on markers of cell populations 
in the human lung was taken from a recent single-cell 
RNA sequencing study [30]. The digital signature algo-
rithm was applied to deconvolve the expression of a tis-
sue into the component profiles of each cell type using 
a set of marker genes that are highly expressed in each 
cell type [31]. The eigengene score for a specific gene-set 
group was calculated as previously described [32].

Construction of protein–protein interaction network
To assess the interconnectivity of DEGs in the IPF lung 
samples, we constructed a protein–protein interaction 
network based on the human interactome database [33]. 
Graph theory concepts such as degree, closeness, and 
betweenness were employed to assess the topology of this 
network [34, 35]. The degree centrality is defined as the 
number of node neighbours. The betweenness centrality 
measures the node’s role in acting as a bridge between 
separate clusters by computing the ratio of all shortest 
paths in a network that contains a given node. The close-
ness centrality quantifies how fast a given node in a con-
nected graph can access all other nodes; hence, the more 
central a node is, the closer it is to all other nodes. Hub 

molecules were defined as shared genes within the top 
10% with the highest rank in each arm of the three cen-
trality parameters [36].

Unsupervised clustering and determination of the optimal 
number of clusters
To categorize the IPF patients into subgroups based on 
their molecular signatures, agglomerative hierarchical 
clustering was performed with the dissimilarity matrix 
given by Euclidean distance and Ward’s method was used 
to join similar clusters [37]. To interpret the robustness 
of each clustering output for multiple models of one to 
six clusters (k), we computed the silhouette scores and 
the within-cluster sum of squared error for each k [38]. 
The maximum peak of the silhouette score plots and 
the point at which the sum of squared error begins to 
diminish (the “elbow” method) determined the optimal 
number of clusters. t-distributed stochastic neighbor-
hood embedding was used to confirm the unsupervised 
clustering results [39], a powerful dimensionality reduc-
tion method that captures data variance by attempting to 
preserve the distances between data points from high to 
low dimensions without any prior assumptions regarding 
data distribution.

Key driver analysis
When mapped onto the protein–protein interaction 
network, disease-associated genes tend to co-localize 
and form networks of functionally related genes called 
disease modules. To predict genes that regulate the dis-
ease module, we performed a key driver analysis (KDA) 
using a previously defined algorithm that mathemati-
cally identifies causal modulators of the regulatory state 
of functionally interconnected gene groups (R package 
mergeomics) [40]. The significance of key driver genes 
(KDGs) for a given gene set in a particular Bayesian net-
work was estimated by permuting the gene labels in the 
network and estimating the p value based on the simu-
lated null distribution. False discovery rates were esti-
mated using the Benjamini–Hochberg method and genes 
with values below 0.01 were considered key drivers.

Network‑based diffusion scoring
To quantify the leverage of each gene in the disease mod-
ule, we employed label propagation and the network dif-
fusion algorithm, which models heat flow from the seed 
genes through interactions in a protein–protein interac-
tion network. The z-scaled Monte-Carlo method loaded 
in the R package diffuStats was used to calculate the dif-
fusion score of the nodes based on the genes across the 
largest connected component of the network with default 
parameters [41].
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Statistical analysis
For continuously distributed data, between-group com-
parisons were performed using the unpaired t-test. Cat-
egorical or dichotomous variables were compared using 
Fisher’s exact test. Correlation analysis between variables 
was carried out using Pearson’s method and Bonferroni 
correction. All analyses were conducted in R (version 
4.0.3, The R Project for Statistical Computing, www.r-​
proje​ct.​org).

Results
Differentially expressed genes and their network 
and enriched pathways
A total of 2,967 upregulated DEGs was filtered during 
the comparison of gene expression profiles of lung tis-
sues between IPF patients and healthy controls (Addi-
tional file 2: Figure S2). PPI networks constructed using 
those DEGs identified 6,658 interactions and 1,190 genes 
with more than one linkage to other genes. The network 
included DSP gene, a variant of which are known to con-
fer the risk of developing IPF [42, 43], and 14 biomarkers 
(CCL18, CD28, CHI3L1, CLU, CXCL13, HSPA4, KRT19, 
MMP1, MMP7, MUC16, POSTN, SPP1, TNFSF13B, 
and VCAM1) [2, 44, 45]. The largest connected compo-
nent (LCC), also known as the giant component, is the 
connected component of a network that contains a sig-
nificant proportion of all network nodes [46]. The LCC 
is typically the most complex part of the network and 
represents the network’s core. Here, the LCC consisted of 
1,777 genes. Centrality analysis revealed 172 hub mole-
cules, which included one susceptibility genes (DSP) and 
three biomarkers (HSPA4, SPP1, and VCAM1).

We performed a functional enrichment analysis of 
the LCC-DEGs, obtained 327 Gene Ontology biological 

process terms (Fig.  1A), and identified key enriched 
KEGG pathways (Fig. 1B): the p53 (P = 1.37 × 10−11) and 
PI3K-Akt (P = 7.15 × 10−4). The most significant path-
way, p53 signaling pathway, was confirmed by GSEA 
(p value = 0.0057, FDR = 0.0523, and NES = 1.6951) 
(Fig. 1C).

Gene expression‑driven subgrouping and pathobiological 
characterization
To identify gene expression-driven subgroups in an 
unbiased manner, we performed an agglomerative hier-
archical clustering using DEG profiles from lung tissue 
samples of 585 IPF patients. We found that two clusters 
most optimally represented the data by computing the 
silhouette score and sum of squared error for two to six 
clusters (Fig.  2A). Two clustered subgroups were desig-
nated C1 (n = 252) and C2 (n = 333) in order. Segregation 
of IPF subgroups were reproduced by t-stochastic neigh-
bor embedding analysis and principal component analy-
sis (Fig. 2C).

To distinguish pathobiological characteristics among 
the two subgroups, we curated IPF-related pathways and 
imported information on markers of cell populations in 
the human lung from the literature [1, 7, 30] and com-
pared the enrichment scores of pathways and cell sub-
sets. The p53 signaling pathway was more enriched in C1 
(P = 2.803 × 10−4), while cellular senescence, FoxO sign-
aling pathway, PI3K-Akt signaling pathway, and TGFβ 
signaling pathway were more activated in C2 (Fig.  3A 
and Additional file  2: Figure S3). Ciliated and dendritic 
cells were more enriched in C1 (P = 3.43 × 10−21 and 
P = 5.07 × 10−14, respectively), whereas alveolar epi-
thelial cells type I (AEC1), alveolar epithelial cells type 
II (AEC2), fibroblasts and macrophages were more 

Fig. 1  A Enrichment map from the functional enrichment analysis using the Enrichr tool. Nodes represent gene ontology–biological process 
(GO-BP) gene sets, and GO-BPs of interest are labeled. Their color intensity and size are proportional to the enrichment score and the degree, 
respectively. The edge thickness represents the degree of overlap between gene sets, and only edges with a Jaccard similarity coefficient larger 
than 0.10 are visualized. B Functional enrichment analysis of DEGs for KEGG pathways. Point size and color express the odds ratios and adjusted p 
values. C GSEA plot of the p53 signaling pathway

http://www.r-project.org
http://www.r-project.org
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populated in C2 (Fig.  3B). Cilium-associated genes 
(DNAH6, DNAH7, and DNAI1) and ciliated cell mark-
ers (FOXJ1 and MUC5B) were also highly expressed in 
C1 (Fig. 3C) [13, 47]. These results indicated that C1 was 
more transformed to microscopic honeycombing state 
[13, 48]. However, there was no difference in forced vital 
capacity (FVC) and carbon-monoxide diffusion capacity 
(DLCO) between the two groups (Fig. 3D).

Association of enriched pathways with pulmonary 
functional parameters
A decline in the FVC and DLCO of lungs is associated 
with a more severe IPF prognosis [49]. We examined 
correlations between enriched pathways and pulmonary 
function test parameters (Additional file  2: Figure S4). 
FVC (% predicted) and DLCO (% predicted) was most 
strongly correlated with the p53 and IL-17 signaling 
pathway (n = 328, all γ < -0.35, P < 1.0 × 10–10) (Fig. 4 and 
Additional file  2: Figure S4). The p53 and IL-17 signal-
ing pathway was also positively correlated with cellu-
lar senescence (n = 328, all γ > 0.54, P < 2.2 × 10–16) and 
apoptosis (n = 328, all γ > 0.24, P < 4.2 × 10–5) (Fig. 4).

Prognostic risk estimation using molecular biomarkers
IPF biomarkers could allow improved clinical classifica-
tion and guide diagnostic, therapeutic, and prognostic 
approaches to enable disease management [2, 44, 45]. 
In total, 38 molecular biomarkers were identified in the 
gene expression profiles of IPF lung tissue and were cat-
egorized into three subgroups: risk variants (n = 15), 
diagnostic markers (n = 10), and prognostic markers 
(n = 18). Gene expression values in 30 biomarkers dif-
fered significantly between the two subgroups (Fig. 5A), 
and 11 genes (CLU, CXCL13, DSP, EGFR, FAM13A, 
KRT19, MMP1, MMP7, MUC16, NAF1, SPP1) were 
more highly expressed in C1 than in C2. The most differ-
entially expressed gene in C1 was DSP (P = 4.15 × 10−72, 
fold change 2.20), which was followed by MUC16 
(P = 2.64 × 10−64, fold change 3.65), a strong predictor 
for disease progression and mortality in IPF [50]. This 
was confirmed by a comparative DEG analysis of the 
subgroups (Additional file  2: Figure S5). The integrated 
levels of biomarkers were determined using eigengene 
scores based on categorized biomarker panels [2, 32, 44]. 
The prognostic eigengene scores of subgroup C1 were 
significantly higher than those in C2 (P = 6.922 × 10−10) 

Fig. 2  Unsupervised clustering using an agglomerative hierarchical clustering method. A Dendrogram of the hierarchical clustering based on 
differentially expressed genes (DEGs). B Silhouette scores and the sum of squared error were used to identify the optimal number of clusters. The 
maximum peak of the silhouette score plots and the point at which the sum of squared error begins to diminish (the “elbow” method) determined 
the optimal number of clusters. C t-distributed stochastic neighbor embedding (t-SNE) and principal component analysis of the DEG profiles. C1 
(n = 252) and C2 (n = 333) are colored red and yellow, respectively
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(Fig.  5B) as confirmed by gene-set enrichment analysis 
(Additional file 2: Figure S6).

Key drivers of the disease module
Elucidation of linkages within a disease module can 
lead to the identification of KDGs that are predicted to 
modulate the regulatory state of the module and are par-
ticularly suitable for prioritizing as causative of disease 
development and progression [40]. We constructed a 
Bayesian network by projecting the LCC-DEGs onto the 
human interactome and employed KDA. We identified 
119 KDGs, of which 30 were DEGs (Fig. 6A, B). The dif-
fusion kernel ranks a gene using the sum of a global dis-
tance measure and diffusion rate from all seed genes of a 
disease [41]. To better understand genes’ leverage within 
the core disease module, we calculated the network-based 
diffusion score for the KDGs belonging to IPF-associated 

pathways using the network kernel diffusion algo-
rithm (Fig.  6C) [41]. RPS6 (diffusion score = 23.545) 
was top-ranked by diffusion score and was followed by 
RPS6KA1(21.509), VCAM1(18.475), ITGA4(17.047), 
and CSNK1A1(16.772). FN1(15.088), ICAM1(15.472), 
CDK2(14.546), CDK1(11.926), CDKN2A(11.846), and 
CKDN1A(11.586) also ranked as high-priority genes.

We collected information on the target molecules 
of 11 current treatment drugs and two investigational 
drugs (omipalisib, UCN-01) from a publicly avail-
able database and literature [2, 51–53] and compared 
their diffusion scores (Fig.  6D). The target molecules of 
N-acetylcysteine, azathioprine, imatinib, nintedanib, and 
prednisone were scored higher than those of endothelin 
receptor blockers, pirfenidone, sildenafil, and warfarin. 
Notably, UCN-01, an ATP competitive inhibitor, targeted 
the cyclin-dependent kinases (CKDs) and checkpoint 
kinase 1 (CHEK1) with high diffusion scores. CDK1 and 

Fig. 3  Pathway and cell subset-driven characterization. A Pathway enrichment scores of IPF subgroups. B Cell subset enrichment score of IPF 
subgroups. Cell scores predict relative enrichment for cell types. C Expression levels of cilia-associated genes and ciliated cell markers. D Forced vital 
capacity (FVC) and diffusing capacity of the lung for carbon monoxide (DLCO). Pulmonary function testing was performed within 6 months before 
lung tissue sampling, and the data on FVC and DLCO was available for 328 patients (C1 = 160, C2 = 168). Differences across the two subgroups were 
evaluated using an unpaired t-test. *P < 0.01; **P < 0.01; ***P < 0.001
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CDK2 were KDGs and key elements of the p53 signaling 
pathway and cellular senescence.

Discussion
In the present study, we built a comprehensive transcrip-
tomic compendium of IPF lung tissue and performed an 
integrative analysis to better understand the relationship 
between cellular and molecular expression patterns and 
clinical parameters. An unsupervised cluster analysis of 
the IPF transcriptomic profiles yielded two subgroups 
with different cellular and pathologic activities and prog-
nostic risk profiles. Finally, we identified KDGs and mol-
ecules that may serve as promising targets for therapeutic 
intervention based on network-based Bayesian inference.

Biological functions in living organisms are orches-
trated by the cooperative interactions of genes, proteins, 
and chemical compounds. Likewise, a complex disease 
is rarely the consequence of an abnormality in a single 
gene but rather results from the aberrant activation of 
pathways or disease modules by dysregulated genes and 
their linked neighbors. We identified the p53 signaling 
pathway as the most significant dysregulated pathway 
in IPF, and its enrichment score had a close correlation 
with cellular senescence and apoptosis in the lung tis-
sue of IPF patients. This finding aligns with previously 
reported upregulation of p53 and activation of the p53 
signaling pathway in response to the proliferation and 

hyperactivity of AECs leading to AEC apoptosis and 
senescence, the pathologic hallmarks of IPF lungs [1, 
54, 55]. IL-17 was also localized to active area of IPF 
and profibrotic roles of IL-17 in the pre-clinical models 
were well-documented [56]. Given that the p53 and IL-17 
signaling pathways were closely correlated with FVC and 
DLCO, p53 and IL-17 signaling pathway activity could be 
an intriguing biomarker bridging the mechanistic feature 
and clinical condition in IPF.

We identified two novel molecular subtypes of IPF 
using an unsupervised clustering method. C1 subgroup 
was more enriched with p53 signaling pathway and cili-
ated cell signature, indicating further transformation into 
fibrosed structural change, honeycombing state. Histo-
logically, honeycomb cysts are lined with ciliated cells 
that express a variety of epithelial markers [57] and this 
result are consistent with the previous results [13, 48]. 
Interestingly, C1 highly expressed MMP7, MUC16, and 
SPP1, which were powerful predictors of IPF progression 
[15, 50]. This underscores a close relationship between 
the p53 signaling pathway, AEC senescence, and progres-
sive disease in IPF, suggesting the need for a stratified 
approach to patient management based on the molecu-
lar signature of lung tissue. Cellular senescence, oxida-
tive stress, and profibrosing signaling pathways including 
FoxO-, PI3K-Akt-, TGFβ-, and Wnt signaling pathways 
were more enriched in C2 subgroup, and molecular 

Fig. 4  A Correlation of p53 signaling pathway with forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO), cellular 
senescence and apoptosis. B Correlation of IL-17 signaling pathway with forced vital capacity (FVC), diffusing capacity of the lung for carbon 
monoxide (DLCO), cellular senescence and apoptosis. Correlation between variables was investigated using Pearson’s method and Bonferroni 
correction
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signatures of AECs were also stronger, indicating that C2 
subgroup is less advanced and under ongoing fibrosis. If 
the fibrotic processes are effectively controlled, it is pre-
sumed that C2 subgroup has partial reversibility.

Current IPF therapies cannot effectively modify the 
disease’s clinical course and their efficacy is inconsist-
ent, although the anti-fibrotic drugs pirfenidone and 
nintedanib have demonstrated to ability to significantly 
slow respiratory deterioration in some IPF patients [1, 
2]. Their limited and heterogeneous efficacy might be 
partly ascribed to a failure to optimally target pathways 
that will disrupt the IPF disease module. Therefore, we 
constructed differentially expressed and probabilistic 
causal gene networks to model molecular interactions 

and causal gene relationships and applied a Bayesian 
network-based analysis to identify key drivers of the 
IPF disease module. CDK1, CDK2, CDKN1A, CDKN2A, 
and MDM2 were identified as KDGs involving both the 
p53 signaling pathway and cellular senescence. To bet-
ter understand the KDGs in the disease module network, 
we calculated their diffusion scores. Fibronectin (FN1) 
is responsible for mediating cell–matrix adhesion and is 
essential in driving myofibroblast differentiation. Inhibi-
tion of FN1 deposition attenuated fibrosis in hepatic and 
cardiac fibrosis models [58, 59]. FN1 was highly ranked in 
our analysis but seemed to be of low druggability because 
it is an end product of multiple fibrosing pathways depos-
ited at an extracellular matrix. In contrast, CDKs and 

� Risk variant
� Diagnostic marker
� Prognostic marker

Expression value

log10(P value)

P
value

A B

4                8               12              16

P = 6.922 x 10-10

Prognostic markers

Fig. 5  IPF biomarker expression within the two subgroups. A Expression values of genetic risk variants and diagnostic and prognostic markers. B 
Eigengene scores of prognostic markers within IPF subgroups. The difference between the subgroups was evaluated using an unpaired t-test
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Fig. 6  Key driver analysis and kernel-based diffusion scores. A Probabilistic causal gene network projection and key driver analysis to identify causal 
regulators in the IPF disease module. Key driver genes (KDGs) and their neighbors are distinguished by color. B Fold change and false discovery rate 
of KDGs. C KDGs involving IPF-associated pathways (upper panel) and their diffusion scores (lower panel). D Current and investigational drugs for 
IPF and their molecular targets and diffusion scores. Diffusion scores were calculated using the z-scaled Monte-Carlo method based on the largest 
connected component of the disease module
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HDACs are fascinating targets because they are high-
priority drivers, and drugs targeting these genes are cur-
rently in use or under clinical trials as anti-cancer agents. 
The unbalanced proliferation and profibrosing activity of 
AEC2 and fibroblasts is a key initial event in the patho-
genesis of IPF [1]. CDKN1A, also known as p21, is a 
physiologic CDK antagonist under the control of p53 and 
was also identified as a KDG. In the bleomycin-induced 
pulmonary fibrosis model, the forced expression of p21 
exerted both anti-apoptotic and anti-fibrotic effects [55, 
60]. HDAC inhibitors are known to cause cell-cycle arrest 
by inducing CDKN1A or inhibiting CDKs and effectively 
suppress profibrotic fibroblast phenotypes IPF, notably 
offering better performance than that of pirfenidone [61]. 
These results could be more applicable to the high-risk 
C1 subgroup than to subgroup C2.

To evaluate the use of current drug therapies in the dis-
ease module, we compared the diffusion scores of their 
target molecules. N-acetylcysteine, imatinib, and nin-
tedanib ranked higher than did other drugs and were 
assumed to be more effective owing to their multiple tar-
gets. The performance of pirfenidone was likely underes-
timated because its exact targets and mechanisms are not 
clearly defined. Notably, the investigational drug UCN-
01 (7-hydroxystaurosporine) showed good diffusion 
scores for its targets. UCN-01 targets CDK1, CDK2, and 
CHEK1, the main components of the p53 signaling path-
way and cellular senescence, and reactivates FoxO3 to 
control its inappropriate proliferation and differentiation 
[52, 53]. In particular, UCN-01 showed great promise in 
the pre-clinical IPF model by reverting the IPF myofi-
broblast phenotype in vitro and blocking the bleomycin-
induced lung fibrosis in vivo [53].

This study had several limitations. First, the combi-
nation of multiple datasets inevitably caused the loss of 
genes that overlapped only among some datasets, and the 
correction of the batch effect was not ideal. Second, we 
did not address the association with clinical factors, such 
as radiographic pattern or fibrosis score, due to the lack 
of this information. Third, minority signatures of specific 
cell subsets might have been diluted because the gene 
expression signature was at the bulk tissue level. Fourth, 
the datasets did not provide detailed background medi-
cations for individual patients. Surgical lung biopsy pro-
tocol [62, 63], the fresh lung area that best represents the 
disease should be biopsied for reliable results. Lung tis-
sue under ongoing fibrosis reflects the current pathologic 
status rather than the response to treatment. Although 
some molecular signatures could be susceptible to the 
effect of current or past treatments and potentially 
biased, it is considered that they would not be enough to 
overturn our finding of the overwhelming significance of 
the p53 signaling pathway.

Conclusion
IPF represents a major medical challenge with high 
unmet treatment needs. Our network-based integrative 
approach described discrete IPF subtypes with distinct 
cellular and molecular characteristics and revealed their 
significance in terms of clinical prognostic scales. Patient 
stratification could be leveraged to formulate custom-
ized therapies and improve clinical trial design. KDGs 
and target molecules were identified in the defined dis-
ease module, and particularly, inhibition against CDKs or 
HDACs afforded great promise of successful anti-fibrotic 
drugs. This not only explained the limitations of current 
pharmacotherapies but also provided insights into navi-
gating new drug therapies.
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