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Abstract 

Background:  This study was performed to develop and validate machine learning models for early detection of 
ventilator-associated pneumonia (VAP) 24 h before diagnosis, so that VAP patients can receive early intervention and 
reduce the occurrence of complications.

Patients and methods:  This study was based on the MIMIC-III dataset, which was a retrospective cohort. The ran-
dom forest algorithm was applied to construct a base classifier, and the area under the receiver operating characteris-
tic  curve (AUC), sensitivity and specificity of the prediction model were evaluated. Furthermore, We also compare the 
performance of Clinical Pulmonary Infection Score (CPIS)-based model (threshold value ≥ 3) using the same training 
and test data sets.

Results:  In total, 38,515 ventilation sessions occurred in 61,532 ICU admissions. VAP occurred in 212 of these ses-
sions. We incorporated 42 VAP risk factors at admission and routinely measured the vital characteristics and laboratory 
results. Five-fold cross-validation was performed to evaluate the model performance, and the model achieved an AUC 
of 84% in the validation, 74% sensitivity and 71% specificity 24 h after intubation. The AUC of our VAP machine learn-
ing model is nearly 25% higher than the CPIS model, and the sensitivity and specificity were also improved by almost 
14% and 15%, respectively.

Conclusions:  We developed and internally validated an automated model for VAP prediction using the MIMIC-III 
cohort. The VAP prediction model achieved high performance based on its AUC, sensitivity and specificity, and its 
performance was superior to that of the CPIS model. External validation and prospective interventional or outcome 
studies using this prediction model are envisioned as future work.
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Background
Ventilator-associated pneumonia (VAP) is the most com-
mon nosocomial pneumonia in critically ill patients [1]. 

The occurrence of VAP prolongs not only ventilator sup-
port but also stays in intensive care units (ICUs) and 
hospitals, thereby increasing healthcare costs and result-
ing in a poorer prognosis [2–4]. Studies have shown that 
some risk factors are associated with VAP. Some risk fac-
tors are patient-specific factors, such as age, pre-existing 
disease (chronic obstructive pulmonary disease, COPD) 
and a Glasgow coma score of 9 or less [5–7]. Other fac-
tors are care-related factors, such as head-of-the-bed 
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angle, emergency intubation, aspiration, previous antibi-
otic treatment, and reintubation [5, 6, 8].

The early recognition of patients at a high risk of devel-
oping VAP and subsequent prevention of its progression 
are highly valuable in critical care units. Intensivists have 
been working on a VAP risk prediction model for sev-
eral years. Several available prediction models are used 
to predict mortality in VAP patients [9–12]. The Clinical 
Pulmonary infection Score (CPIS, range from 0 to 12) is 
a score based on general parameters(body temperature, 
leukocyte count, volume and character of tracheal secre-
tions, arterial oxygenation, chest X-ray, and culture of 
tracheal aspirate), it has moderate to good accuracy in 
VAP prediction and is simple and easy to perform and 
often used in clinical diagnosis of VAP [13, 14]. However, 
there is no early risk prediction model for VAP.

Machine learning algorithms have become more 
important tools since they can be more accurate than 
traditional logistic regression, which has been suggested 
by previous comparison studies [15, 16]. Of all machine 
learning algorithms, the random forest for regression and 
classification has considerably gained popularity. It is an 
“ensemble learning” technique consisting of the aggrega-
tion of a large number of decision trees. For classification 
tasks, the output of the random forest is the class selected 
by most trees and for regression tasks, the mean or aver-
age prediction of the individual trees is returned, result-
ing in a better performance and reduction of variance 
[16]. The study applied the random forest algorithm to 
construct a base classifier for early prediction of ventila-
tor-associated pneumonia in critical care patients.

The aim of this study was to use the Medical Infor-
mation Mart for Intensive Care (MIMIC)-III dataset to 
develop and validate machine learning models for the 
early discrimination of patients at a high risk of VAP 24 h 
after intubation and assess its prognostic accuracy. The 
MIMIC database is an open, large, single-center database 
that can be used freely by researchers worldwide, and it 
has been widely used in the development of predictive 
models, epidemiological studies, and educational courses 
[17]. Also, We also compare the performance of Clinical 
Pulmonary Infection Score (CPIS)-based model (thresh-
old value ≥ 3) using the same training and test data sets.

Methods
Datasets
The MIMIC-III database was used to train, validate 
and test the models and comprises unidentified health-
related data associated with 61,532 ICU stays in multi-
ple critical care units in Beth Israel Deaconess Medical 
Center between 2001 and 2012 [17]. This database is a 
publicly available database constructed in compliance 
with the Health Insurance Portability and Accountability 

Act. The study protocol was approved by the ethics com-
mittee of the First Hospital of China Medical University 
(No. 2019–197-2).

Data annotation and extraction
In total, 38,515 ventilation sessions were identified in the 
MIMIC-III database and filtered according to the patient 
inclusion process depicted in Fig.  1. In total, 10,431 
patients aged over 18  years who received mechanical 
ventilation for longer than 24  h were included in this 
study. Pneumonia occurring > 48  h after endotracheal 
intubation and mechanical ventilation were annotated as 
VAP according to the VAP definition [18]. The other ses-
sions were grouped as non-VAP sessions. When VAP was 
diagnosed, the presence of infection at other sites was 
recorded.

To detect the risk of the first occurrence of VAP early, 
a set of 42 variables (features) were extracted from the 
MIMIC-III dataset according to our previous stud-
ies and literature [5–8, 19], including age, sex, admis-
sion source [medical intensive care unit (MICU), others 
( CCU (Coronary Care Unit), SICU(Surgical Intensive 
Care Unit), CSRU(Cardiac Surgery Recovery Unit) and 
ISICU(Trauma Surgical Intensive Care Unit))] and type 
(emergency, elective), reintubation, pre-existing diseases, 
the worst value of the partial pressure of the arterial oxy-
gen/fraction of inspired oxygen (PaO2/FiO2) ratio, white 
blood cell count (WBC), body temperature in the first 
24  h after ventilation, the worst value of the APACHE 
III and its subcomponents, the sequential organ fail-
ure assessment (SOFA) and its subcomponents in the 
first 24  h after admission to the ICU, coma, aspiration, 
sepsis, bacteremia, trauma/polytrauma, fracture and 

Fig. 1  Study profile. MIMIC, Medical Information Mart for Intensive 
Care; MV Mechanical ventilation; VAP, ventilator-associated 
pneumonia; ICU, intensive care unit
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pneumothorax (the detailed information of these 42 vari-
ables is provided in Additional file 4: Table S1). Figure 2 
shows the timeline for VAP diagnosis and VAP variable 
extraction.

Data splitting and sampling
Figure  3 describes the pipeline applied for the model 
training, validation and testing. The included dataset was 
divided into a training dataset and test dataset for the 
five-fold cross-validation in which four folds were used as 
the training dataset, the remaining fold was used as the 
test dataset, and the folds were mutually exclusive. To 
identify the optimal hyperparameter of the model, two-
fold cross-validation was performed using the training 
dataset, and then, the model was retrained using the opti-
mal hyperparameter based on the entire training dataset 
to learn the model parameters. Due to an extreme imbal-
ance between the number of non-VAP and VAP patients, 
the negative dataset was divided into 100 subgroups for 
resampling. Stratified sampling was used to ensure an 
even class distribution.

Data preprocessing
Additional file  1: Fig. S1 shows the data preprocessing 
steps. For the numeric variables, if a patient did not have 
a measurement, the missing value was filled by using the 
median interpolation of the whole cohort (Additional 
file 4: Table S1 shows the count and percentage of miss-
ing data in the VAP group and non-VAP group; Fisher’s 
exact test was used to test the significance). For the cat-
egorical variables with d categories, the raw data were 
mapped to a d-dimensional vector, where each dimen-
sion corresponded to a different category; however, the 
categorical variables with two categories (e.g., sex = {F, 
M}) were sufficiently mapped to {0, 1}. Then, both the 
numeric and categorical data were normalized for the 
training dataset, which required min–max feature scaling 
to adjust for variable values measured on different scales.

Model development and performance measurement
Since there were many more non-VAP instances than 
VAP instances, we divided the non-VAP instances into 
100 subgroups with mutual exclusivity. One subgroup of 
non-VAP instances was combined with the VAP dataset 

Fig. 2  Timeline for the first VAP prediction and VAP variable extraction. ICU, intensive care unit; SOFA, Sequential Organ Failure Assessment; APACHE, 
Acute Physiology and Chronic Health Evaluation; PaO2/FiO2, the partial pressure of arterial oxygen/ fraction of inspired oxygen; WBC, white blood 
cell count; VAP, ventilator-associated pneumonia

Fig. 3  Model training, validation and testing pipeline. The dataset was divided into four groups as a training dataset and one group as test dataset 
for five-fold cross-validation. C-V, cross-validation
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to train one model; then, 100 models were combined 
based on the performance average or major voting as the 
final model. The ensemble method was applied to 100 
subgroups of non-VAP instances in combination with 
VAP instances as shown in Additional file 2: Fig. S2.

The random forest algorithm was applied to construct 
the classifier. The area under the receiver operating char-
acteristic (ROC) curve (AUC), accuracy, sensitivity and 
specificity of the prediction model were evaluated. Fur-
thermore, we used an original CPIS-based model for the 
early detection of VAP as a benchmark model to compare 
with our machine learning model, and the performance 
of the classification model was evaluated using the same 
training and test datasets. The performance is described 
as the mean ± SD to indicate the performance distribu-
tion of the subgroups, and the SD was used to determine 
whether any overfitting of the model occurred in certain 
datasets.

The Bayes search method was applied to fine-tune the 
hyperparameters of the base classifier using the valida-
tion set. In the random forest classifier, the optimal num-
ber of estimators of the hyperparameter was adjusted to 
104, which was randomly obtained via Bayes search in 
the range from 1 to 300.

Statistical analysis
In the analysis of the clinical characteristics of both the 
VAP and non-VAP groups, the numeric variables are 
described as medians and interquartile ranges (IQRs; rep-
resented by the 25th and 75th percentile values), and the 
categorical variables are described as counts and percent-
ages. To compare the two groups, we used Fisher’s exact 
test for the categorical variables and the Mann–Whitney 
U-test for the numeric variables. A p-value less than 0.05 
was considered statistically significant. Python3.0 was 
used to perform the statistical, sklearn.model was used to 
perform model building.

Results
According to the screening criteria shown in Fig.  1, 
38,515 ventilation sessions were included with 212 
VAP sessions between 2001 and 2012 in the MIMIC-III 
cohort, and the incidence density was 2 per 1,000 venti-
lator-days. The median time on mechanical ventilation 
from endotracheal intubation to the first VAP episode 
was 5.4  days (IQR, 3.2  days to 8.5  days). None of these 
VAP patients had infections in other sites. The missing 
counts and percentages of the 42 variables in the overall, 
VAP, and non-VAP groups are shown in Additional file 4: 
Table  S1. Compared with the overall study cohort, the 
non-VAP group had significantly higher missing albumin 
and acid–base scores in the APACHE III and respiration 
scores in SOFA. However, the VAP group had a higher 

missing percentage of pulmonary alveolus-arterial dif-
ference of oxygen pressure/partial pressure of oxygen 
(A-aDO2/PaO2) and urine output.

The univariate analysis indicated that compared to 
the control group, the VAP group in the study cohort 
had a significantly different admission source and type 
(p < 0.001); specifically, the VAP group had a significantly 
higher ratio of patients from the MICU, and only one 
VAP patient was not transferred from the emergency 
department (see details in Table  1). The worst value of 
the PaO2/FiO2 ratio in the first 24 h after ventilation was 
significantly deteriorated (p < 0.001) in the VAP group 
compared with that in the control group. The reintuba-
tion ratio did not significantly differ (p = 0.823) between 
the VAP group and non-VAP group, whereas the VAP 
group demonstrated a significantly higher ratio in aspi-
ration (p = 0.004). Regarding pre-existing diseases, there 
was no difference between the VAP group and non-VAP 
group, except for hypertension.

Figure  4 shows that the AUC of the optimal perfor-
mance corresponding to the random forest model was 
84% ± 2% in the validation using the pure testing data-
sets, and the sensitivity and specificity approached 
74 ± 3% and 71 ± 1%, respectively. Using the same test 
datasets, the best performance of the CPIS-based model 
was AUC = 59 ± 2%, sensitivity = 60± 4%, and specific-
ity = 55± 1% as CPIS equal to or greater than 3. Figure 5 
shows the feature importance of the optimal random for-
est model, indicating the contribution rankings of the 
features to the prediction value in the model. The admis-
sion source, APACHE III and SOFA scores along with 
their sub items, age, worst body temperature value, PaO2/
FiO2 ratio, and WBC in the initial 24 h after ventilation 
were the top 10 most important features and contributed 
over 46% of the total prediction value. The respiration 
items of the SOFA were the highest contributors to the 
total SOFA score (4% of the VAP prediction model), indi-
cating the significance of respiration for organ failure.

Discussion
In this retrospective cohort study, we developed and vali-
dated a machine learning model for the early detection of 
VAP patients in the first 24 h after intubation. The final 
predictive AUC showed a good performance (AUC: 84%, 
sensitivity: 74%, and specificity: 71%) as an AUC value 
between 75 and 92% indicates good diagnostic capabil-
ity [20]. Additionally, our VAP machine learning model 
achieved better results than the CPIS-based model by 
almost 25%, and the sensitivity and specificity were 
improved by almost 14% and 15%, respectively.

A CPIS score threshold of 6 helps to distinguish the 
presence or absence of pulmonary infection [21]. But 
in our MIMIC III cohort data, a CPIS score of 6 did not 
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Table 1  Demographic and clinical characteristics of study cohort in MIMIC III

Overall
(n = 10,431)

VAP group
(n = 212)

Non-VAP group
(n = 10,219)

p value

Age(years), median(IQR) 66.3 (53.1–76.0) 66.3 (52.1–77.8) 66.3 (53.1–76.0) 0.387

Gender, n(%) 0.107

 Male 5937 (56.9) 109 (51.4) 5828 (57.0)

 Female 4494 (43.1) 103 (48.6) 4391 (43.0)

Admission source, n(%)  < 0.001

 MICU 4089 (39.2) 154 (72.6) 3935 (38.5)

 Other ICU 6342 (60.8) 58 (27.4) 6284 (61.5)

Admission type, n(%)  < 0.001

 Emergency 9504 (91.1) 211 (99.5) 9293 (90.9)

 Elective 927 (8.9) 1 (0.5) 926 (9.1)

Reintubation, n(%) 3294 (31.6%) 65 (30.7%) 3229 (30.6%) 0.823

Pre-existing Diseases, n(%)

 COPD 101 (1.0%) 2 (0.9%) 99 (1.0) 1.0

 Diabetes 2698 (25.9) 60 (28.3) 2638 (25.8) 0.428

 Hypertension 4943 (47.4) 80 (37.7) 4863 (47.6) 0.004

 Solid tumor 313 (3.0) 8 (3.8) 305 (3.0) 0.537

 Metastatic tumor 418 (4.0) 5 (2.4) 413 (4.0) 0.286

 Renal failure 1721 (16.5) 26 (12.3) 1695 (16.6) 0.111

 Liver failure 1653 (15.9) 22 (10.4) 1631 (16.0) 0.028

PaO2/FiO2, median(IQR) 240.0 (178.5–315.4) 194.17 (150.0–256.5) 241.0 (179.4–316.7)  < 0.001

WBC(K/uL), median(IQR) 12.8 (9.2–17.7) 13.2 (9.8–18.0) 12.8 (9.2–17.7) 0.121

Body temperature(℃), median(IQR) 37.8 (37.3–38.4) 37.9 (37.3–38.6) 37.8 (37.3–38.4) 0.255

APACHE III score, median(IQR) 50.0 (37.0–66.0) 53.0 (40.75–64.0) 50.0 (37.0–66.0) 0.031

 HR 5.0 (0.0–7.0) 5.0 (0.0–7.0) 5.0 (0.0–7.0) 0.028

 MAP 15.0 (7.0–15.0) 15.0 (7.0–15.0) 15.0 (7.0–15.0) 0.197

 Temperature 0.0 (0.0–2.0) 0.0 (0.0–2.0) 0.0 (0.0–2.0)  < 0.001

 RR 6.0 (0.0–6.0) 6.0 (0.0–9.0) 6.0 (0.0–6.0) 0.001

 A-aDO2/PaO2 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0)  < 0.001

 Hematocrit 3.0 (3.0–3.0) 3.0 (3.0–3.0) 3.0 (3.0–3.0) 0.269

 WBC 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.083

 Creatinine 0.0 (0.0–7.0) 0.0 (0.0–7.0) 0.0 (0.0–7.0) 0.484

 UO 5.0 (0.0–7.0) 5.0 (0.0–7.0) 5.0 (0.0–7.0) 0.013

 BUN 7.0 (2.0–11.0) 7.0 (2.0–11.0) 7.0 (2.0–11.0) 0.094

 Sodium 0.0 (0.0–2.0) 0.0 (0.0–2.0) 0.0 (0.0–2.0) 0.016

 ALB 0.0 (0.0–6.0) 0.0 (0.0–6.0) 0.0 (0.0–6.0) 0.087

 Bilirubin 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.008

 Glucose 0.0 (0.0–3.0) 3.0 (0.0–3.0) 0.0 (0.0–3.0) 0.017

 Acid–base 3.0 (1.0–6.0) 3.0 (1.0–5.0) 3.0 (1.0–6.0) 0.077

 GCS 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.0 (0.0–0.0) 0.017

SOFA score, median(IQR) 6.0 (4.0–9.0) 6.0 (4.0–8.0) 6.0 (4.0–9.0) 0.034

 Respiration 3.0 (0.0–3.0) 3.0 (2.0–3.0) 3.0 (0.0–3.0) 0.014

 Coagulation 0.0 (0.0–1.0) 0.0 (0.0–1.0) 0.0 (0.0–1.0)  < 0.001

 Liver 0.0 (0.0–1.0) 0.0 (0.0–0.0) 0.0 (0.0–1.0) 0.004

 Cardiovascular 1.0 (1.0–3.0) 1.0 (1.0–3.0) 1.0 (1.0–3.0) 0.022

 CNS 0.0 (0.0–1.0) 0.0 (0.0–0.0) 0.0 (0.0–1.0) 0.008

 Renal 1.0 (0.0–2.0) 1.0 (0.0–2.0) 1.0 (0.0–2.0) 0.471

Coma adm, n(%) 6 (0.1%) 0 (0.0%) 6 (0.1%) 1.0

Aspiration adm, n(%) 32 (0.3%) 4 (1.9%) 28 (0.3%) 0.004

Sepsis adm, n(%) 548 (5.3%) 10 (4.7%) 538 (5.3%) 0.876
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show a good performance. Considering the heterogene-
ity in the performances of CPIS for the diagnosis of VAP 
in ventilated patients [13, 14], different score thresholds 

were tested to determine the best performance. Addi-
tional file 3: Fig. S3 shows that when the score was equal 
to or greater than 3, the CPIS-based model had the best 

MICU medical intensive care unit, APACHE III Acute Physiology and Chronic Health Evaluation III, PaO2/FiO2 the partial pressure of arterial oxygen/ fraction of inspired 
oxygen, WBC white blood cell count, HR heart rate, MAP mean arterial pressure, RR respiratory rate, A-aDO2/PaO2 pulmonary alveolus-arterial difference of oxygen 
pressure/ partial pressure of oxygen, UO urine output, BUN blood urea nitrogen, ALB albumin, GCS Glasgow Coma Scale, SOFA sequential organ failure assessment, 
CNS central nervous system, COPD chronic obstructive pulmonary disease, adm admission

Table 1  (continued)

Overall
(n = 10,431)

VAP group
(n = 212)

Non-VAP group
(n = 10,219)

p value

Bacteremia adm, n(%) 11 (0.1%) 0 (0.0%) 11 (0.1%) 1.0

Trauma adm, n(%) 202 (1.9%) 0 (0.0%) 202 (2.0%) 0.037

Polytrauma adm, n(%) 45 (0.4%) 0 (0.0%) 45 (0.4%) 1.0

Fracture adm, n(%) 27 (0.3%) 0 (0.0%) 27 (0.3%) 1.0

Pneumothorax adm, n(%) 19 (0.2%) 0 (0.0%) 19 (0.2%) 1.0

Fig. 4  Performances of the VAP predictive model and CPIS model
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performance. It is for this reason that we have compared 
our model with a CPIS score ≥ 3 instead of with a CPIS 
score ≥ 6.

Low PaO2/FiO2 ratio is one of the main clinical mani-
festations of ARDS. The typical ARDS manifestations 
include increased pulmonary vascular permeability, 
pulmonary edema and alveolar trapping, which lead to 
refractory hypoxia and decreased pulmonary compliance 
[22]. The relationship between ARDS and the subsequent 
development of VAP is complex. In mechanically-venti-
lated patients, the cyclic stretching of lung cells induces 
acidification of the milieu, which promotes bacterial 
growth [23]. Injurious mechanical ventilation may pro-
mote the lungs to release cytokines [24, 25]. In addition, 
alveolar macrophages and neutrophils exhibit reduced 
bacterial phagocytosis and killing, thereby affecting the 
lung and systemic antibacterial defenses [24, 26, 27].

We found that the APACHE III and SOFA scores 
greatly contributed to the final predictive model. The 
APACHE scoring system is used to describe the severity 
of illness and predict the outcome of critically ill patients. 
The APACHE II and III are widely employed in the ICU 
[28, 29], and the overall goodness-of-fit of the two pre-
dictive models was similar. APACHE III expanded the 
acute physiology score project compared to APACHE 
II, added the following six parameters: blood urea nitro-
gen, total bilirubin, blood glucose, albumin, artery CO2 
partial pressure (PaCO2) and urine output. These six 
parameters are more responsive in clinical practice [30, 
31]. The APACHE II was better in predicting risk among 

surgical  patients  and  patients  with gastrointestinal  dis-
ease [30], while the APACHE III score was a good pre-
dictor of internal medical conditions and nosocomial 
pneumonia [31, 32].

Reintubation, aspiration, COPD, trauma, and coma are 
usually the risk factors of VAP. In our model, only first 
VAP sessions were accounted for the prediction to avoid 
intra-correlation between consecutive sessions. That 
is why reintubation were not in the higher ranking. For 
aspiration, COPD, trauma and coma, we only included 
diagnosis in admission as predictor, and then, the ratio in 
both VAP and non-VAP group is quite low (< 2%, details 
in Table 1).

A major limitation of this study was that a small num-
ber of VAP cases were delayed or missed for various 
reasons, resulting in a false negative diagnosis of VAP. 
We acquired the infections sites by using nursing chart. 
It was possible to be underrecognized or not charted by 
nurses. Sputum examination is necessary when VAP is 
suspected. Sputum frequency is reported to be a factor 
in the VAP prediction model. The definition of VAP has 
greatly evolved over the last two decades and different 
definitions are used in clinical practice. Our model is 
developed based on definitions used between 2001 and 
2012. Our solution to circumvent this problem is to take 
the current definitions of VAP(18) and use a data driven 
approach to label patients as VAP or non-VAP. This 
would solve the problem of outdated definitions, time 
stamping and subjectivity. In our study, the non-VAP 
group included patients with mechanical ventilation for 

Fig. 5  Feature importance in our predictive model of VAP. The feature importance of the optimal random forest model indicates the features’ 
contribution to the VAP prediction
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24 h rather than patients with 48 h of mechanical ven-
tilation for the following reasons: we selected the worst 
body temperature values, PaO2/FiO2 ratio, and WBC 
during the initial 24  h after ventilation and the worst 
values of the APACHE III and SOFA scores in the first 
24  h after admission to the ICU as VAP predictors. If 
we included patients with 48  h of mechanical ventila-
tion in the control group, some non-VAP patients could 
be missed. Our predictive model can provide risk strat-
ification for VAP patients within independently-defined 
patient groups. Prevention guidelines have been devel-
oped to allow higher-risk patients to benefit from more 
aggressive strategies or adjuvant therapy. Additionally, 
a longer prediction lead time could increase the likeli-
hood that a patient can benefit from early intervention.

Conclusions
We developed and internally validated an automated 
model for VAP prediction using the MIMIC-III cohort. 
The VAP prediction model achieved a high perfor-
mance based on the AUC, sensitivity and specificity, 
and its performance was superior to that of the CPIS-
based model. External validation and prospective inter-
ventional or outcome studies using this prediction 
model are envisioned as future work.
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