Aliberti S, Masefield S, Polverino E, De Soyza A, Loebinger MR, Menendez R, et al. Research priorities in bronchiectasis: a consensus statement from the EMBARC Clinical Research Collaboration. Eur Respir J. 2016;48(3):632–47.
Article
Google Scholar
Chalmers JD, Smith MP, McHugh BJ, Doherty C, Govan JR, Hill AT. Short- and long-term antibiotic treatment reduces airway and systemic inflammation in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2012;186(7):657–65.
Article
CAS
Google Scholar
Gramegna A, Amati F, Terranova L, Sotgiu G, Tarsia P, Miglietta D, et al. Neutrophil elastase in bronchiectasis. Respir Res. 2017;18(1):211.
Article
Google Scholar
Khan MA, D'Ovidio A, Tran H, Palaniyar N. Anthracyclines suppress both NADPH oxidase- dependent and -independent NETosis in human neutrophils. Cancers (Basel). 2019;11(9).
Oriano M, Gramegna A, Terranova L, Sotgiu G, Sulaiman I, Ruggiero L, et al. Sputum neutrophil elastase associates with microbiota and Pseudomonas aeruginosa in bronchiectasis. Eur Respir J. 2020;56(4).
Keir HR, Shoemark A, Dicker AJ, Perea L, Pollock J, Giam YH, et al. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med. 2021.
Oriano M, Terranova L, Sotgiu G, Saderi L, Bellofiore A, Retucci M, et al. Evaluation of active neutrophil elastase in sputum of bronchiectasis and cystic fibrosis patients: a comparison among different techniques. Pulm Pharmacol Ther. 2019;59:101856.
Article
CAS
Google Scholar
Shoemark A, Cant E, Carreto L, Smith A, Oriano M, Keir HR, et al. A point-of-care neutrophil elastase activity assay identifies bronchiectasis severity, airway infection and risk of exacerbation. Eur Respir J. 2019;53(6).
Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Ann Am Thorac Soc. 2015;12(11):1602–11.
PubMed
Google Scholar
Garcia-Clemente M, de la Rosa D, Máiz L, Girón R, Blanco M, Olveira C, et al. Impact of Pseudomonas aeruginosa infection on patients with chronic inflammatory airway diseases. J Clin Med. 2020;9(12).
Chai YH, Xu JF. How does Pseudomonas aeruginosa affect the progression of bronchiectasis? Clin Microbiol Infect. 2020;26(3):313–8.
Article
CAS
Google Scholar
Finch S, Shoemark A, Dicker AJ, Keir HR, Smith A, Ong S, et al. Pregnancy zone protein is associated with airway infection, neutrophil extracellular trap formation, and disease severity in bronchiectasis. Am J Respir Crit Care Med. 2019;200(8):992–1001.
Article
CAS
Google Scholar
Shekhar R, Pai S, Srinivasan VK, Srinivas V, Adhikary R, Bhavana MV. Alterations in leucocyte cell population data in bacteraemia: a study from a tertiary care hospital in India. Int J Lab Hematol. 2021;43(1):e1–4.
Article
Google Scholar
Lapic I, Brencic T, Rogic D, Lukic M, Lukic I, Kovacic M, et al. Cell population data: could a routine hematology analyzer aid in the differential diagnosis of COVID-19? Int J Lab Hematol. 2020.
Park SH, Park CJ, Lee BR, Kim MJ, Han MY, Cho YU, et al. Establishment of age- and gender-specific reference ranges for 36 routine and 57 cell population data items in a new automated blood cell analyzer, Sysmex XN-2000. Ann Lab Med. 2016;36(3):244–9.
Article
Google Scholar
Park SH, Park CJ, Lee BR, Nam KS, Kim MJ, Han MY, et al. Sepsis affects most routine and cell population data (CPD) obtained using the Sysmex XN-2000 blood cell analyzer: neutrophil-related CPD NE-SFL and NE-WY provide useful information for detecting sepsis. Int J Lab Hematol. 2015;37(2):190–8.
Article
CAS
Google Scholar
Schuff-Werner P, Kohlschein P, Maroz A, Linssen J, Dreissiger K, Burstein C. Performance of the XN-2000 WPC channel-flagging to differentiate reactive and neoplastic leukocytosis. Clin Chem Lab Med. 2016;54(9):1503–10.
CAS
PubMed
Google Scholar
Urrechaga E, Boveda O, Aguirre U. Role of leucocytes cell population data in the early detection of sepsis. J Clin Pathol. 2018;71(3):259–66.
Article
CAS
Google Scholar
Stiel L, Delabranche X, Galoisy AC, Severac F, Toti F, Mauvieux L, et al. Neutrophil fluorescence: a new indicator of cell activation during septic shock-induced disseminated intravascular coagulation. Crit Care Med. 2016;44(11):e1132–6.
Article
CAS
Google Scholar
Stiel L, Mayeur-Rousse C, Helms J, Meziani F, Mauvieux L. First visualization of circulating neutrophil extracellular traps using cell fluorescence during human septic shock-induced disseminated intravascular coagulation. Thromb Res. 2019;183:153–8.
Article
CAS
Google Scholar
Guan WJ, Chen RC, Zhong NS. The bronchiectasis severity index and FACED score for bronchiectasis. Eur Respir J. 2016;47(2):382–4.
Article
Google Scholar
Grudzinska FS, Brodlie M, Scholefield BR, Jackson T, Scott A, Thickett DR, et al. Neutrophils in community-acquired pneumonia: parallels in dysfunction at the extremes of age. Thorax. 2020;75(2):164–71.
Article
Google Scholar
Dente FL, Bilotta M, Bartoli ML, Bacci E, Cianchetti S, Latorre M, et al. Neutrophilic bronchial inflammation correlates with clinical and functional findings in patients with noncystic fibrosis bronchiectasis. Mediat Inflamm. 2015;2015:642503.
Article
Google Scholar
Wright TK, Gibson PG, Simpson JL, McDonald VM, Wood LG, Baines KJ. Neutrophil extracellular traps are associated with inflammation in chronic airway disease. Respirology. 2016;21(3):467–75.
Article
Google Scholar
Cortjens B, van Woensel JB, Bem RA. Neutrophil extracellular traps in respiratory disease: guided anti-microbial traps or toxic webs? Paediatr Respir Rev. 2017;21:54–61.
CAS
PubMed
Google Scholar
Khoo JK, Venning V, Wong C, Jayaram L. Bronchiectasis in the last five years: new developments. J Clin Med. 2016;5(12).