
Wang et al. BMC Pulmonary Medicine          (2023) 23:515  
https://doi.org/10.1186/s12890-023-02736-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Pulmonary Medicine

A scoring model based on clinical factors 
to predict postoperative moderate to severe 
acute respiratory distress syndrome in Stanford 
type A aortic dissection
Maozhou Wang1†, Songhao Jia1†, Xin Pu2, Lizhong Sun1, Yuyong Liu1*, Ming Gong1* and Hongjia Zhang1* 

Abstract 

Background Postoperative acute respiratory distress syndrome (ARDS) after type A aortic dissection is common 
and has high mortality. However, it is not clear which patients are at high risk of ARDS and an early prediction model 
is deficient.

Methods From May 2015 to December 2017, 594 acute Stanford type A aortic dissection (ATAAD) patients who 
underwent aortic surgery in Anzhen Hospital were enrolled in our study. We compared the early survival of MS-
ARDS within 24 h by Kaplan–Meier curves and log-rank tests. The data were divided into a training set and a test set 
at a ratio of 7:3. We established two prediction models and tested their efficiency.

Results The oxygenation index decreased significantly immediately and 24 h after TAAD surgery. A total of 363 
patients (61.1%) suffered from moderate and severe hypoxemia within 4 h, and 243 patients (40.9%) suffered from MS-
ARDS within 24 h after surgery. Patients with MS-ARDS had higher 30-day mortality than others (log-rank test: p-value 
<0.001). There were 30 variables associated with MS-ARDS after surgery. The XGboost model consisted of 30 variables. 
The logistic regression model (LRM) consisted of 11 variables. The mean accuracy of the XGBoost model was 70.7%, 
and that of the LRM was 80.0%. The AUCs of XGBoost and LRM were 0.764 and 0.797, respectively.

Conclusion Postoperative MS-ARDS significantly increased early mortality after TAAD surgery. The LRM model 
has higher accuracy, and the XGBoost model has higher specificity.

Keywords Machine learning, Prediction model, Acute respiratory distress syndrome, Stanford type A aortic dissection

†Maozhou Wang and Songhao Jia contributed equally to this work.

*Correspondence:
Yuyong Liu
az5ward@163.com
Ming Gong
gongmaster@126.com
Hongjia Zhang
zhonghongjia722@ccmu.edu.com
1 Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical 
University, Beijing, China
2 Department of Interventional Therapy, Beijing Anzhen Hospital, Capital 
Medical University, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12890-023-02736-6&domain=pdf


Page 2 of 9Wang et al. BMC Pulmonary Medicine          (2023) 23:515 

Introduction
ARDS is a common complication in Stanford type A aor-
tic dissection (TAAD), with an incidence of 10–50% [1, 
2]. ARDS significantly increases the length of hospitali-
zation and mortality [3, 4]. However, the specific mecha-
nism underlying the high incidence of ARDS after TAAD 
is still unclear. The early prediction of high-risk patients 
with ARDS after surgery would help optimize the man-
agement of ventilators and in exploring the underlying 
disease mechanisms [5].

There are many factors affecting the occurrence and 
prognosis of postoperative ARDS [6, 7]. However, TAAD 
may have some specific high-risk factors, such as involve-
ment of the bronchial artery by aortic dissection or 
hypothermic circulatory arrest during surgery [8]. For 
these patients, special respiratory management may be 
required. According to the 2017 clinical practice guide-
lines of the American Thoracic Society/European Soci-
ety of Intensive Care Medicine/Society of Intensive Care 
Medicine, high PEEP is beneficial for patients with mod-
erate to severe ARDS (MS-ARDS) but not for mild ARDS 
patients [9]. Prone ventilation for more than 12 h per day 
is recommended for severe ARDS patients [10]. How-
ever, patients undergoing cardiac surgery cannot perform 
prone ventilation for a long time due to sternal problems 
and circulation instability [11]. In addition, patients with 
MS-ARDS may need further respiratory management, 
such as extracorporeal CO2 removal [12, 13]. The treat-
ment and management of MS-ARDS are different from 
those of mild ARDS. Early detection of high-risk patients 
with MS-ARDS and the identification of some high-risk 
factors for MS-ARDS would be beneficial for the imple-
mentation of preventive measures before MS-ARDS.

This study aims to identify the clinical factors associ-
ated with postoperative moderate to severe ARDS in 
STAAD patients and develop predictive models for early 
detection. We present the content of the article according 
to the STROBE Checklist.

Materials and methods
Patients
From May 2015 to December 2017, 597 TAAD patients 
received surgery at Beijing Anzhen Hospital. The inclu-
sion criteria were TAAD patients who received aortic 
surgery and were ≥ 18 years old. The exclusion criteria 
were death during surgery or death within one day after 
surgery. There was one patient aged < 18 years old, and 2 
patients died within one day after surgery. Finally, a total 
of 594 patients were enrolled in our study. The Anzhen 
Hospital Ethics Committee approved the protocol of this 
retrospective study in April 2018 (No. 2,018,004) and 
waived the need for informed consent from each patient.

Definitions and endpoints
Aortic dissection is divided into 1–3 types and simple or 
complex types according to the Sun’s classification [14]. 
Hypoxemia is defined as OI ≤ 300 mmHg and moder-
ate to severe hypoxemia is defined as OI ≤ 200 mmHg. 
According to the Berlin definition [15], ARDS is defined 
as OI ≤ 300 mmHg with chest X-ray showing pulmonary 
infiltration and PEEP ≥ 5 cmH2O without clear reasons 
(such as left heart failure or pneumonia) within 24 h post-
operatively. MS-ARDS was defined as OI ≤ 200 mmHg 
with ARDS. The main endpoint is 30-day all-cause death. 
The secondary endpoint was moderate to severe hypox-
emia and MS-ARDS within 24 h after surgery.

Data processing and statistics
Variables missing more than 10% of the values were 
excluded; for variables missing less than 10% of the val-
ues, the data were interpolated (5 times interpolation). 
We divided the patients into two groups according to 
whether they had moderate to severe hypoxemia within 
4  h postoperatively: patients with moderate to severe 
hypoxemia and patients without moderate to severe 
hypoxemia. We also divided the patients into two groups 
based on whether they experienced MS-ARDS within 
24  h postoperatively: patients without MS-ARDS and 
patients with MS-ARDS. Kaplan–Meier curves and log-
rank tests were used to compare the 30-day survival rate 
between the two groups. Independent t-tests were used 
for continuous variables conforming to a normal distri-
bution, and Mann–Whitney U tests were used for con-
tinuous variables without a normal distribution. The χ2 
chi-square test was used for categorical variables. Bilat-
eral P < 0.05 was considered statistically significant. IBM 
SPSS 26 was used for all of the above statistics. Prism was 
used to draw the Kaplan–Meier curve.

Model construction
We first performed univariable logistic analysis and 
excluded variables with P > 0.1 from the analysis. We used 
a total of 30 variables to construct the models. XGBoost 
and logistic regression algorithms were used to construct 
the models. Accuracy and AUC were used to evaluate 
model effectiveness. RStudio version 4.1.1 was used for 
model construction. We used the following R packages: 
XGBoost, rms, nomogram, pROC, and Matrix.

Results
Baseline characteristics
We compared the baseline characteristics between the 
two groups (non-MS-ARDS vs. MS-ARDS), as shown 
in Table  1. MS-ARDS patients were older (50 years 
old vs. 46 years old; p < 0.001) and had a higher BMI 
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(26.37  kg/m2 vs. 25.39  kg/m2, p < 0.001)), and more 
patients in this group suffered from hypertension 
preoperatively (62.6% vs. 49.1%, p < 0.001). There was 
no significant difference in the incidence of patients 
with descending aortic dissection between the two 
groups (71.5% vs. 75.3%, p = 0.347). The differences 

in postoperative variables are shown in Table  2. The 
operation time, cardiopulmonary bypass time, aortic 
occlusion time, and cardiac arrest time were higher in 
MS-ARDS patients. A comparison of the missing vari-
ables between the two groups is presented in Supple-
mental Table 1.

Table 1 Baseline of MS-ARDS after TAAD  surgerya

a Moderate to severe acute respiratory distress syndrome; STAAD Stanford type A aortic dissection. bBMI Body mass index. c Chronic obstructive pulmonary 
disease.**:p < 0.01;*:p < 0.05.

Variable All patients Non-MS-ARDS MS-ARDS p-value
n = 594 n = 351 (59.1) n = 243 (40.9)

Age (years), median (IQR) 49(16) 46(16) 51(14) < 0.001**

Male, n (%) 437(73.6) 264(75.2) 173(71.2) 0.298

BMI (kg/m2)b, median (IQR) 25.95(4.12) 25.35(4.69) 26.89(4.64) < 0.001**

Hypertension, n (%) 333(56.1) 158(45.0) 175(72.0) < 0.001**

Diabetes, n (%) 20(3.7) 12(3.4) 8(3.3) 0.104

Coronary artery disease, n (%) 9(1.5) 6(1.7) 3(1.2) 0.170

Smoking, n (%) 208(35.0) 118(33.6) 90(37.0) 0.431

D-dimer (ng/ml), median (IQR) 2043.5(1912) 1902(1884) 2203(2148) 0.018*

COPDc, n (%) 3(0.5) 3(0.9) 0(0) 0.274

Descending aortic dissection, n (%) 434(73.1) 251(71.5) 183(75.3) 0.347

Table 2 Perioperative factors between MS-ARDS and non-MS-ARDS undergoing STAAD surgerya

a MS-AHRF Moderate to severe acute respiratory distress syndrome, STAAD Stanford type A aortic dissection, b Coronary artery bypass grafting. **:p < 0.01, *:p < 0.05

Variable All patients Non-MS-ARDS MS-ARDS p-value
n=594 n=351 (59.1) n=243 (40.9)

Operation time (hours), median (IQR) 7.8 (2.1) 7.5 (1.8) 8.0 (2.3) < 0.001**

Cardiopulmonary time (min), median (IQR) 205 (57) 198 (58) 217 (61) < 0.001**

Aortic occlusion time (min)b, median (IQR) 114 (42) 110 (42) 119 (45) 0.002**

Cardiac arrest time, median (IQR) 22 (10) 21 (10) 22 (12) 0.005**

Proximal aorta management

 Ascending aorta replacement, n (%) 131 (22.1) 64 (18.2) 67 (27.6) 0.009**

 Bentall, n (%) 249 (41.9) 172 (49.0) 77 (31.7) < 0.001**

 Wheat, n (%) 2 (0.3) 1 (0.3) 1 (0.4) 1

 David, n (%) 1 (0.2) 0 (0) 1 (0.4) 1

Aortic arch management

 Partial arch replacement, n (%) 30 (5.1) 17 (4.8) 13 (5.3) 0.850

 Total arch replacement, n (%) 434 (73.1) 251 (71.5) 183 (75.3) 0.347

 Concomitant  CABGb, n (%) 34(5.7) 13(3.7) 21(8.6) 0.018*

 Concomitant mitral valve replacement, n (%) 8(1.3) 6(1.7) 2(0.8) 0.482

 Concomitant tricuspid valvuloplasty, n (%) 3(0.5) 3(0.9) 0(0) 0.274

 ASA anesthesia score, n (%) 360(60.6) 204(58.1) 156(64.2) 0.925

 1, n (%) 1(0.3) 1(0.4)

 2, n (%) 6() 3

 3, n (%) 86 72

 4, n (%) 98 71

 5, n (%) 13 9

 The nasopharyngeal temperature during circulatory arrest 23.9(1.7) 23.8(1.7) 24.0(1.6) 0.326

 The anal temperature during circulatory arrest 25.3(1.8) 25.2(2.1) 25.4(1.6) 0.088
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Early outcomes
As shown in Fig. 1, we analyzed the OI of all patients at 
different time points. We identified two main time points 
at which the OI decreased in patients with STAAD: 
immediately after surgery and 24 h after surgery. In addi-
tion, we analyzed the early survival of early hypoxemia 
and 24-hour MS-ARDS patients, and we found that there 
was no significant difference in the early mortality of 
patients with or without early hypoxemia within 4  h of 
surgery (P = 0.09, Fig. 2a). However, at 24 h, the develop-
ment of MS-ARDS significantly increased early mortality 

(HR: 2.2 95% CI: 1.4–3.4, P < 0.001, Fig. 2b). Therefore, we 
explored and established models of the risk factors for 
24-hour postoperative MS-ARDS.

Model results
There were 116 variables in total, of which the number 
of missing values of 30 variables was greater than 10% 
(Supplemental Table 2), and we excluded them. We con-
ducted univariate logistic analysis on the remaining 86 
variables (Supplemental Table  3) We identified 30 vari-
ables related to 24-hour MS-ARDS in the univariate 
logistic analysis. These variables are shown in Table  3 
(other variables with P > 0.1 are shown in Supplemental 
Table 2). As shown in Table 3, we conducted heterogene-
ity tests on the interaction terms between cardiopulmo-
nary bypass time and cardiac arrest time, and the results 
showed that there was no interaction on MS-ARDS 
between the two factors (P = 0.412). In addition, we also 
conducted heterogeneity tests on the interaction terms 
between Concomitant CABG and Bentall surgery, and 
found that there was also no interaction on MS-ARDS 
between the two factors (P = 0.853). As shown in Sup-
plemental Fig. 1, we discretized the continuous variables 
in this section and reconstructed a forest map of their 
impact on the postoperative MS-ARDS. According to 
a 7:3 ratio, 415 patients were randomly assigned to the 
training set, and 179 patients were randomly assigned to 
the test set. We established a logistic regression model 
and XGBoost model with these 30 variables using the 
training set. XGBoost generated a total of 29 trees, and 
the first three trees are shown in Fig. 3. In addition, we 
analyzed which variables were most important in the 
XGBoost model. The 10 most important variables affect-
ing MS-ARDS are body mass index, creatinine, age, Fig. 1 OI of all patients at different time points

Fig. 2 The early mortality rate of patients; a Early mortality of patients with or without early hypoxemia within 4 h of surgery; b Early mortality 
of patients with or without early hypoxemia within 24 h of surgery
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uric acid, cardiopulmonary bypass time, preoperative 
OI, direct bilirubin, preoperative PCO2, cardiac arrest 
time, and albumin (Fig.  4). The max-depth of the tree 
is three, and the eda is six. The bidirectional stepwise 

optimization method was used for logistic regression, 
and 11 variables (age, systolic blood pressure, body 
mass index, Sun’s classification, red blood cell distribu-
tion width, creatinine, uric acid, PCO2, CPB time, car-
diac arrest time and albumin) were included in the final 
logistic regression model. The nomogram is presented 
in Fig.  5. The discretized nomogram can be found in 
supplemental Fig.  2. We use Sun’s classification as the 
basis for stratified sampling, with 3/5 of the data as the 
training set, and 2/5 of the data as the test set. Finally, 
we found that the AUC of the logistic regression model 
test set is 0.71, and the AUC of XGboost is 0.59 (Sup-
plemental Fig. 3). It also indicates that the logistic model 
has good predictive performance under different patient 
feature stratification of aortic dissection.

Comparison of model prediction efficiency
As shown in Fig. 6, the accuracies of the logistic regres-
sion model and XGBoost model are 0.800 and 0.707, 
respectively. The precision is 0.663 and 0.875. The areas 
under the curve (AUCs) of the two models were 0.79 and 
0.76 in the test set.

Discussion
Determining whether or what measures should be taken 
to manage ARDS after STAAD surgery has not yet been 
clarified. We found that postoperative MS-ARDS sig-
nificantly increased 30-day mortality. Thirty preop-
erative and perioperative variables were associated with 
MS-ARDS after surgery. Based on these variables, we 
established postoperative MS-ARDS risk models, and 
we clarified the key factors affecting postoperative MS-
ARDS. In addition, we used the model to identify high-
risk patients with postoperative MS-ARDS that would 
benefit from early respiratory management.

The reasons for the high incidence of MS-ARDS 
after type A aortic dissection are multifaceted. First, 
the operation time and cardiopulmonary bypass time 
of type A aortic dissection are relatively long, and lung 
ischemic injury may be more severe than that in regu-
lar cardiac surgery. Second, the systemic inflammatory 
response is common in patients undergoing type A 
aortic dissection, and this response is closely related to 
the occurrence of MS-ARDS [16]. Prealbumin and uric 
acid have also been reported to be related to inflamma-
tion [17, 18]. In addition, aortic dissection can involve 
bronchial arteries, resulting in the involvement of pul-
monary nutrient vessels, which can lead to pulmonary 
ischemia. Most of the bronchial arteries originate from 
the descending aorta [19]. However, in our study, there 
was no significant relationship between descending 
aorta involvement and MS-ARDS, which may be due to 
the difficulty of distinguishing the degree of bronchial 

Table 3 Univariate logistic regression of MS-ARDSa within 24 h 
(variables with P<0.1)

a Moderate to severe acute respiratory distress syndrome, bBody mass index, 
cPlatelet, dProcalcitonin, eBlood urine nitrogen, fCreatinine, gUric acid, hAlanine 
aminotransferase, iAspartate transaminase, jTotal bile acid, kPlasma 
prothrombin time, lRed blood cell distribution width, mTotal bilirubin, nDirect 
bilirubin, oCardiopulmonary bypass time, pConcomitant coronary bypass 
grafting surgery, qTotal plasma protein, rAlbumin; sPrealbumin, tCarbon dioxide 
partial pressure, uPreoperative oxygenation index

Variables OR 95%CI P-value

Self-related factors

 Age 1.042 1.025–1.059 < 0.001

 Pulse 1.013 1.001–1.025 0.033

 Systolic blood pressure 1.008 1.000-1.017 0.061

 Diastolic blood pressure 1.017 1.005–1.029 0.004

  BMIb 1.164 1.109–1.223 < 0.001

 Hypertension 1.869 1.335–2.617 < 0.001

 Diabetes 2.227 0.897–5.533 0.085

Inflammatory factors

  PLTc 0.995 0.992–0.998 < 0.001

  PCTd 0.006 0.000-0.008 < 0.001

  BUNe 1.126 1.076–1.179 < 0.001

  CREAf 1.011 1.007–1.014 < 0.001

  UAg 1.005 1.003–1.006 < 0.001

  ALTh 1.001 1.000-1.002 0.08

  ASTi 1.001 1.000-1.001 0.049

  TBAj 1.106 0.996–1.228 0.06

  PTBFBk 0.991 0.984–0.998 0.016

  RDWl 1.166 1.037–1.311 0.01

  TBILm 1.006 1.000-1.011 0.062

  DBILn 1.011 1.002–1.021 0.018

Surgical factors

 Sun’s classification(Type 2 vs. Type 1) 0.664 0.436–1.010 0.056

 Sun’s classification(Type 3 vs. Type 1) 0.356 0.220–0.578 < 0.001

 CPB  timeo 1.009 1.005–1.013 < 0.001

 Cardiac Arrest time 1.028 1.010–1.047 0.003

 Concomitant  CABGp 2.456 1.205–5.008 0.013

Proximal surgery

 Bentall 0.506 0.346–0.740 < 0.001

pulmonary edema

  TPq 0.97 0.952–0.988 0.001

  ALBr 0.945 0.916–0.974 < 0.001

  PALBs 0.004 0.000-0.190 0.005

Preoperative lung injury factors

  PCO2t 0.956 0.924–0.989 0.009

  PreOIu 0.998 0.997-1.000 0.098

Preoperative aspiration

 Chest and back pain 1.383 0.994–1.924 0.054
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artery involvement. Finally, certain surgical methods, 
such as hypothermic circulatory arrest, differ from 
those used for simple cardiopulmonary bypass and may 
also cause MS-ARDS. At the time of circulatory arrest, 
the lung is in a state of complete ischemia due to the 
reduction in the bronchial artery blood supply, which 
could lead to more serious lung ischemia–reperfusion 
injury. Our research has found most of the factors that 
affect postoperative MS-ARDS. But blood product 
transfusion which has been reported associated with 
ARDS and its prognosis not included in our models 
[20]. This may have an impact on the accuracy of our 
models.

Moderate to severe hypoxemia immediately after sur-
gery may be caused by acute lung ischemia, but it is still 

unclear why OI decreased at 24 h in some patients, similar 
to other reports [1]. The improvement in OI at 4 h after 
surgery indicates that ventilator management is effective 
over the short term after surgery. Regarding the decrease 
in OI at 24 h, there may be two reasons why this occurs. 
On the one hand, there are some factors of continuous 
injury in the body, which may be due to the influence of 
the postoperative hypercoagulable state and high levels 
of inflammatory factors. On the other hand, there may be 
secondary lung injury after surgery. Most patients need to 
maintain high-concentration oxygen inhalation after aor-
tic dissection surgery. However, studies have shown that 
high-concentration oxygen inhalation may expedite the 
frangibility of pulmonary surfactant, thereby causing ate-
lectasis [21].According to the 2012 Berlin standard [15], 

Fig. 3 The first three trees of XGBoost

Fig. 4 The 10 most important variables affecting MS-ARDS
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the onset of ARDS in most people occurs within 72 h after 
direct or indirect injury. At the same time, multiple stud-
ies and American-European Consensus Conference have 
shown that the 24-hour oxygen and index oxygenation 
index is the most valuable predictor of the prognosis of 
ARDS [22–24] .The selection of a 24-hour time point after 
aortic dissection surgery is in line with the internationally 

recognized characteristics of ARDS. Meanwhile, our study 
found that the oxygenation index was lower immediately 
and 24 h after aortic dissection surgery. At the same time, 
we found that 24-hour MS-ARDS significantly increased 
early mortality.Taking into account the above factors, we 
chose 24  h as the time point for judging MS-ARDS. In 
addition, the Berlin criteria indicate that the prognosis 

Fig. 5 The nomogram of the model

Fig. 6 The areas under the curve (AUCs) of the two models; a XGBoost model ROC; b Logistic regression model ROC
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of moderate to severe ARDS is significantly worse than 
that of mild ARDS [15], and there are also other literature 
reports using moderate to severe ARDS as a predictive 
outcome indicator [25]. Therefore, we chose moderate to 
severe ARDS as our outcome.

At present, there is no corresponding prediction model 
for acute respiratory distress syndrome after STAAD. 
Therefore, we established the two prediction models 
through the machine learning method and compared 
their performance. XGboost is a model with high diag-
nostic efficiency rising in recent years and often appears 
in various machine learning competitions. Its full name 
is extreme gradient boosting. It is an advanced version 
of the decision tree model [21]. It was superior to the 
conventional decision tree model in finding the best pre-
diction segmentation point and processing to improve 
efficiency [26]. Secondly, for the Logistic regression 
model, it can easily synthesize all types of variables as 
linear variables, which is more conducive to interpreta-
tion [27]. In our study, the impact of each variable on the 
MS-ARDS and the score of each variable can be clearly 
defined in Logistic regression. We compared the pre-
diction efficiency of the two models. The logistic model 
has a higher positive prediction rate than XGboost. For 
patients at high risk of postoperative MS-ARDS, we can 
give priority to the logistic regression model to evaluate 
patients. However, the specificity of the XGboost model 
is higher than that of the Logistic model. We can use 
the XGboost model as an exclusion criterion. These two 
models have great clinical significance for the extraction 
time of endotracheal intubation after STAAD.

There are still some limitations to this research. First, 
for machine learning, our sample size is still small because 
of the low incidence of type A aortic dissection. Second, 
there were some missing data variables (more than 10%) 
in our research. We compared the different missing vari-
ables between the two groups, and there were significant 
differences in a small number of variables. We may have 
therefore missed some variables closely related to MS-
ARDS and the missing samples may differ from the over-
all features, which may result in an imprecise description 
of the overall features. In addition, some variables may be 
related to other variables, such as operation time and car-
diopulmonary bypass time. Finally, due to the retrospec-
tive nature of the study, there was a certain selection bias, 
and the baseline data of the two groups were different, 
which may have caused some deviation in the results.

Conclusions
Postoperative MS-ARDS significantly increased early mor-
tality after STAAD surgery. The LRM model has higher 
accuracy, and the XGBoost model has higher specificity.
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